The Chloroplast Genome of Endive (Cichorium endivia L.): Cultivar Structural Variants and Transcriptome Responses to Stress Due to Rain Extreme Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Growth Conditions, Samplings and Studied Models
2.2. DNA Isolation, Sequencing, Chloroplast Assembly and Annotation
2.3. RNA Isolation, Sequencing, SNP Calling and Transcriptomic Analyses
2.4. Phylogenetic Trees
2.5. Metabolite Profiling of Hydro-Soluble Compounds by NMR
3. Results
3.1. Endive Chloroplast DNA Assembly and Annotation
3.2. Phylogenetic and Sequence Variant Analyses
3.3. Cp Transcriptome Response to Heavy Rain-Related Stress Before Harvest
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mentel, I.; Cieślik, E.; Sadowska-Rociek, A. Healthy properties of endive (Cichorium endivia L.) depending on the variety and vegetative of season. J. Microbiol. Biotechnol. Food Sci. 2015, 4, 118–121. [Google Scholar] [CrossRef]
- Kalloo, G. Endive, Cichorium endivia L. In Genetic Improvement of Vegetable Crops; Kalloo, G., Bergh, B.O., Eds.; Pergamon Press: Oxford, UK, 1993; pp. 541–542. [Google Scholar]
- Lucchin, M.; Varotto, S.; Barcaccia, G.; Parrini, P. Chicory and Endive. In Vegetables I: Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae; Prohens, J., Nuez, F., Eds.; Springer: New York, NY, USA, 2008; pp. 3–48. [Google Scholar]
- Cox, J.; McFarlane, D. Causes of waterlogging. J. Dep. Agric. West. Aust. Ser. 4 1990, 31, 58–61. [Google Scholar]
- Parent, C.; Capelli, N.; Berger, A.; Crèvecoeur, M.l.; Dat, J.F. An overview of plant responses to soil waterlogging. Plant Stress 2008, 2, 20–27. [Google Scholar]
- Testone, G.; Sobolev, A.P.; Mele, G.; Nicolodi, C.; Gonnella, M.; Arnesi, G.; Biancari, T.; Giannino, D. Leaf nutrient content and transcriptomic analyses of endive (Cichorium endivia) stressed by downpour-induced waterlog reveal a gene network regulating kestose and inulin contents. Hortic. Res. 2021, 8, 92. [Google Scholar] [CrossRef]
- Song, Y.; Feng, L.; Alyafei, M.A.M.; Jaleel, A.; Ren, M. Function of chloroplasts in plant stress responses. Int. J. Mol. Sci. 2021, 22, 13464. [Google Scholar] [CrossRef]
- Van Aken, O.; De Clercq, I.; Ivanova, A.; Law, S.R.; Van Breusegem, F.; Millar, A.H.; Whelan, J. Mitochondrial and chloroplast stress responses are modulated in distinct touch and chemical inhibition phases. Plant Physiol. 2016, 171, 2150–2165. [Google Scholar] [CrossRef]
- Li, X.; Hao, C.; Zhong, J.; Liu, F.; Cai, J.; Wang, X.; Zhou, Q.; Dai, T.; Cao, W.; Jiang, D. Mechano-stimulated modifications in the chloroplast antioxidant system and proteome changes are associated with cold response in wheat. BMC Plant Biol. 2015, 15, 219. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjaer, K.; Stjern, C.W.; Hodnebrog, O.; Marelle, L.; Samset, B.H.; Sillmann, J.; Schaller, N.; Fischer, E.; Schulz, M.; et al. Frequency of extreme precipitation increases extensively with event rareness under global warming. Sci. Rep. 2019, 9, 16063. [Google Scholar] [CrossRef]
- Palmer, J.D. Plastid chromosomes: Structure and evolution. In The Molecular Biology of Plastids: Cell Culture and Somatic Cell Genetics of Plants; Hermann, R.G., Ed.; Springer: Vienna, Austria, 1991; Volume 7, pp. 5–53. [Google Scholar]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Yang, Y.; Xie, X.; Lu, Y.; Yang, Z.; Jin, X.; Dong, W.; Suo, Z. Interspecific chloroplast genome sequence diversity and genomic resources in Diospyros. BMC Plant Biol. 2018, 18, 210. [Google Scholar] [CrossRef]
- Jansen, R.K.; Palmer, J.D. A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. USA 1987, 84, 5818–5822. [Google Scholar] [CrossRef]
- Mandel, J.R.; Dikow, R.B.; Funk, V.A. Using phylogenomics to resolve mega-families: an example from Compositae. J. Syst. Evol. 2015, 53, 391–402. [Google Scholar] [CrossRef]
- Ingvarsson, P.K.; Ribstein, S.; Taylor, D.R. Molecular evolution of insertions and deletion in the chloroplast genome of silene. Mol. Biol. Evol. 2003, 20, 1737–1740. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zheng, Y.; Huang, P. Molecular markers from the chloroplast genome of rose provide a complementary tool for variety discrimination and profiling. Sci. Rep. 2020, 10, 12188. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.Y.; Zhang, X.Q.; Bai, S.Q.; Huang, L.K.; Luo, X.M.; Ji, Y.; Jiang, L.F. Genetic diversity and relationship of chicory (Cichorium intybus L.) using sequence-related amplified polymorphism markers. Genet Mol. Res. 2014, 13, 7736–7746. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Han, X.; Liu, X.; Wang, Q.; Zhang, J.; Zhao, H.; Tang, J.; Luo, K.; Zhai, Z.; et al. The chromosome-scale assembly of endive (Cichorium endivia) genome provides insights into the sesquiterpenoid biosynthesis. Genomics 2022, 114, 110400. [Google Scholar] [CrossRef]
- Hodgins, K.A.; Lai, Z.; Oliveira, L.O.; Still, D.W.; Scascitelli, M.; Barker, M.S.; Kane, N.C.; Dempewolf, H.; Kozik, A.; Kesseli, R.V.; et al. Genomics of Compositae crops: reference transcriptome assemblies and evidence of hybridization with wild relatives. Mol. Ecol. Resour. 2014, 14, 166–177. [Google Scholar] [CrossRef]
- Testone, G.; Mele, G.; di Giacomo, E.; Tenore, G.C.; Gonnella, M.; Nicolodi, C.; Frugis, G.; Iannelli, M.A.; Arnesi, G.; Schiappa, A.; et al. Transcriptome driven characterization of curly- and smooth-leafed endives reveals molecular differences in the sesquiterpenoid pathway. Hortic. Res. 2019, 6, 1. [Google Scholar] [CrossRef]
- D’Acunzo, F.; Giannino, D.; Longo, V.; Ciardi, M.; Testone, G.; Mele, G.; Nicolodi, C.; Gonnella, M.; Renna, M.; Arnesi, G.; et al. Influence of cultivation sites on sterol, nitrate, total phenolic contents and antioxidant activity in endive and stem chicory edible products. Int. J. Food Sci. Nutr. 2017, 68, 52–64. [Google Scholar] [CrossRef]
- Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic. Acids Res. 2017, 45, e18. [Google Scholar] [CrossRef]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq - versatile and accurate annotation of organelle genomes. Nucleic. Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic. Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef]
- Liu, S.; Ni, Y.; Li, J.; Zhang, X.; Yang, H.; Chen, H.; Liu, C. CPGView: A package for visualizing detailed chloroplast genome structures. Mol. Ecol. Resour. 2023, 23, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Diaz, J.P.; Garcia, S.; Vitales, D. Plastome diversity and phylogenomic relationships in Asteraceae. Plants 2021, 10, 2699. [Google Scholar] [CrossRef]
- Yang, S.; Sun, X.; Wang, L.; Jiang, X.; Zhong, Q. The complete chloroplast genome sequence of Chicory (Cichorium intybus L.). Mitochondrial DNA Part B 2019, 4, 1533–1534. [Google Scholar] [CrossRef]
- Wang, W.; Lanfear, R. Long-reads reveal that the chloroplast genome exists in two distinct versions in most plants. Genome Biol. Evol. 2019, 11, 3372–3381. [Google Scholar] [CrossRef] [PubMed]
- Scarcelli, N.; Mariac, C.; Couvreur, T.L.; Faye, A.; Richard, D.; Sabot, F.; Berthouly-Salazar, C.; Vigouroux, Y. Intra-individual polymorphism in chloroplasts from NGS data: where does it come from and how to handle it? Mol. Ecol. Resour. 2016, 16, 434–445. [Google Scholar] [CrossRef]
- Wang, M.; Cui, L.; Feng, K.; Deng, P.; Du, X.; Wan, F.; Weining, S.; Nie, X. Comparative analysis of Asteraceae chloroplast genomes: structural organization, RNA editing and evolution. Plant Mol. Biol. Report. 2015, 33, 1526–1538. [Google Scholar] [CrossRef]
- Wang, X.; Bai, S.; Zhang, Z.; Zheng, F.; Song, L.; Wen, L.; Guo, M.; Cheng, G.; Yao, W.; Gao, Y.; et al. Comparative analysis of chloroplast genomes of 29 tomato germplasms: genome structures, phylogenetic relationships, and adaptive evolution. Front. Plant Sci. 2023, 14, 1179009. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, P.; Liu, S.; Amanullah, S.; Luan, F. Comparative analysis of single nucleotide polymorphisms in the nuclear, chloroplast, and mitochondrial genomes in identification of phylogenetic association among seven melon (Cucumis melo L.) cultivars. Breed. Sci. 2016, 66, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.S.; Kim, J.H.; Kim, C.S.; Mejias, J.A.; Kim, S.C. Sow thistle chloroplast genomes: insights into the plastome evolution and relationship of two weedy species, Sonchus asper and Sonchus oleraceus (Asteraceae). Genes 2019, 10, 881. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Lee, H.L. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 2004, 11, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Curci, P.L.; De Paola, D.; Danzi, D.; Vendramin, G.G.; Sonnante, G. Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLoS ONE 2015, 10, e0120589. [Google Scholar] [CrossRef]
- Gnutikov, A.A.; Nosov, N.N.; Punina, E.O.; Probatova, N.S.; Rodionov, A.V. On the placement of Coleanthus subtilis and the subtribe Coleanthinae within Poaceae by new molecular phylogenetic data. Phytotaxa 2020, 468, 243–274. [Google Scholar] [CrossRef]
- Shi, C.; Wang, S.; Xia, E.H.; Jiang, J.J.; Zeng, F.C.; Gao, L.Z. Full transcription of the chloroplast genome in photosynthetic eukaryotes. Sci. Rep. 2016, 6, 30135. [Google Scholar] [CrossRef]
- Osuna-Mascaro, C.; Rubio de Casas, R.; Perfectti, F. Comparative assessment shows the reliability of chloroplast genome assembly using RNA-seq. Sci. Rep. 2018, 8, 17404. [Google Scholar] [CrossRef]
- Lin, C.P.; Ko, C.Y.; Kuo, C.I.; Liu, M.S.; Schafleitner, R.; Chen, L.F. Transcriptional slippage and RNA editing increase the diversity of transcripts in chloroplasts: insight from deep sequencing of Vigna radiata genome and transcriptome. PLoS ONE 2015, 10, e0129396. [Google Scholar] [CrossRef]
- Sabater, B. On the edge of dispensability, the chloroplast ndh genes. Int. J. Mol. Sci. 2021, 22, 12505. [Google Scholar] [CrossRef]
- Dong, W.; Xu, C.; Li, C.; Sun, J.; Zuo, Y.; Shi, S.; Cheng, T.; Guo, J.; Zhou, S. ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 2015, 5, 8348. [Google Scholar] [CrossRef]
- Krawczyk, K.; Sawicki, J. The uneven rate of the molecular evolution of gene sequences of DNA-Dependent RNA polymerase I of the Genus Lamium L. Int. J. Mol. Sci. 2013, 14, 11376–11391. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.; Olorunwa, O.J.; Wilson, J.C.; Barickman, T.C. Morphological and physiological response of different lettuce genotypes to salt stress. Stresses 2021, 1, 285–304. [Google Scholar] [CrossRef]
- Chan, K.X.; Phua, S.Y.; Crisp, P.; McQuinn, R.; Pogson, B.J. Learning the Languages of the Chloroplast: Retrograde Signaling and Beyond. Annu. Rev. Plant Biol. 2016, 67, 25–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, G.; Yan, C.; Zhang, X.; Cao, N.; Le, M.; Hu, X.; Zhu, F.; Liu, W. Elucidating the molecular responses to waterlogging stress in Cucumis melo by comparative transcriptome profiling. Horticulturae 2022, 8, 891. [Google Scholar] [CrossRef]
- Rogalski, M.; Schottler, M.A.; Thiele, W.; Schulze, W.X.; Bock, R. Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 2008, 20, 2221–2237. [Google Scholar] [CrossRef]
- Malone, L.A.; Proctor, M.S.; Hitchcock, A.; Hunter, C.N.; Johnson, M.P. Cytochrome b(6)f - Orchestrator of photosynthetic electron transfer. Biochim. Biophys. Acta Bioenerg. 2021, 1862, 148380. [Google Scholar] [CrossRef]
Parameters | Values | Gene Groups |
---|---|---|
Total length (bp) | 152,809 | |
LSC size (bp) | 84,057 | |
SSC size (bp) | 18,582 | |
IR size (bp) | 25,085 | |
GC% | 37.7% | |
Genes number | 136 (20 occurring in both IRs) | |
Protein-coding genes | 90 (8 duplicated in IR) | |
psaA, psaB, psaC, psaI, psaJ, pafI**(ycf3), pafII(ycf4), | Photosystem I | |
psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbM, pbf1, psbT, psbZ | Photosystem II | |
petA, petB *, petD *, petG, petL, petN | Cytochrome b6/f complex | |
ccsA | Cytochrome C synthesis | |
atpA, atpB, atpE, atpF *, atpH, atpI | ATP synthase | |
rbcL | RuBisCO | |
ndhA *, ndhB * (x2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | NADH oxidoreductase | |
rpl2 * (x2), rpl14, rpl16 *, rpl20, rpl22, rpl23 (x2), rpl32, rpl33, rpl36 | Large subunit ribosomal proteins | |
rps2, rps3, rps4, rps7 (x2), rps8, rps11, rps12 *,a (x2), rps14, rps15, rps16 *, rps18, Ψrps19, rps19 | Small subunit ribosomal proteins | |
rpoA, rpoB, rpoC1 *, rpoC2 | RNA polymerase | |
infA | Translation initiation factor | |
accD, cemA, clpP **, matK | Others | |
Ψycf1, ycf1, ycf2 (x2), ycf15 (x2), Ψycf68 (x2) | Unknown function genes | |
tRNA genes | 38 (8 occurring in both IRs) | |
trnA-UGC * (x2), trnC-GCA, trnD-GUC, trnE-UUC (x2), trnF-GAA, trnfM-CAT, trnG-GCC, trnG-UCC *, trnH-GUG, trnI-GAU * (x2), trnI-CAU (x2), trnK-UUU *, trnL-CAA (x2), trnL-UAA *, trnL-UAG, trnM-CAU, trnN-GUU (x2), trnP-UGG, trnQ-UUG, trnR-ACG (x2), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC (x2), trnV-UAC *, trnW-CCA, trnY-GUA | Transfer RNAs | |
rRNA genes | 8 (4 occurring in both IRs) | |
rrn4.5S (x2), rrn5 (x2), rrn16 (x2), rrn23 (x2) | Ribosomal RNAs |
Unit Repeat Type | Number of Repetitions | Total | Major Type (%) | |||
---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | |||
Di-nucleotide | 0 | 0 | 1 | 1 | 2 | AT/AT (100.0%) |
Tri-nucleotide | 65 | 2 | 0 | 0 | 67 | AAT/ATT (34.3%) |
Tetra-nucleotide | 1 | 0 | 0 | 0 | 1 | AAAG/CTTT (100.0%) |
Type | Gene | #SSR | Type | Gene | #SSR |
---|---|---|---|---|---|
mRNA | ycf1 (IRA) | 2 | mRNA | rps19 (IRB) | 1 |
ycf2 (IRA) | 5 | ndhA | 3 | ||
ycf2 (IRB) | 5 | ndhB (IRA) | 2 | ||
accD | 1 | ndhB (IRB) | 2 | ||
matK | 2 | ndhF | 2 | ||
rpoC1 | 2 | psbA | 1 | ||
rpoC2 | 1 | psbB | 2 | ||
atpI | 1 | psbC | 2 | ||
rbcL | 1 | psaA | 1 | ||
rpoA | 2 | psaB | 1 | ||
rpl16 | 1 | tRNA | trnK-UUU | 2 | |
rpl22 | 1 | trnV-UAC | 1 | ||
rpl36 | 1 | rRNA | rrn23S (IRB) | 1 | |
rps18 | 1 | rrn23S (IRA) | 1 |
Smooth | Curly | ||||||
---|---|---|---|---|---|---|---|
Event | Confiance | Flester | E02S | Domari | Myrna | Imari | A32861 |
No calls | 18 | 12 | 43 | 22 | 46 | 59 | 10 |
HomoREF | 41 | 36 | 40 | 49 | 41 | 39 | 52 |
Het | 66 | 72 | 53 | 59 | 45 | 40 | 63 |
HomoALT | 75 | 80 | 64 | 70 | 68 | 62 | 75 |
TOT variantsa | 141 | 152 | 117 | 129 | 113 | 102 | 138 |
SNP | 104 | 108 | 87 | 95 | 83 | 79 | 98 |
INDEL | 37 | 44 | 30 | 34 | 30 | 23 | 40 |
Coverage (%) | 98.4 | 97.2 | 74.3 | 96.1 | 93.8 | 70.1 | 83.4 |
Coverage (kbp) b | 150.36 | 148.53 | 113.54 | 146.85 | 143.33 | 107.12 | 127.44 |
Freq (variants/kb) | 0.94 | 1.02 | 1.03 | 0.88 | 0.79 | 0.95 | 1.08 |
Freq (bp/variants) | 1066.4 | 977.2 | 970.4 | 1138.4 | 1268.4 | 1050.2 | 923.5 |
Impact | n. | % | Effect | n. | % |
---|---|---|---|---|---|
High | 3 | 5.9 | stop_lost | 2 | 3.9 |
stop_gained | 1 | 2.0 | |||
Moderate | 25 | 49.0 | missense_variant | 25 | 49.0 |
Low | 5 | 9.8 | synonymous_variant | 4 | 7.8 |
splice_region_variant&intron_variant | 1 | 2.0 | |||
Modifier | 18 | 35.3 | intergenic_region | 10 | 19.6 |
intron_variant | 7 | 13.7 | |||
non_coding_transcript_exon_variant | 1 | 2.0 |
Gene | Pos | Ref | Alt | Impact | Effect | Myrna | E02S | Imari |
---|---|---|---|---|---|---|---|---|
psbC | 51406 | C | A | Moderate | Missense_variant | * | ||
psaB | 55447 | A | G | Moderate | Missense_variant | * | ||
cemA | 78984 | A | G | Moderate | Missense_variant | * | ||
psbE | 82115 | G | C | Moderate | Missense_variant | * | ||
psbE | 82130 | G | A | Moderate | Missense_variant | * | ||
rpl14 | 98501 | C | A | High | stop_gained | * | ||
ndhA | 137326 | C | T | Modifier | intron_variant | * |
Cultivars a | SNP Effect b | SNP Impact c | Protein Changes d | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Genes | C | F | E | D | M | I | A | |||
rpoC1 | * | * | * | * | stop- | H | Ter598Gluext *? | |||
psbZ | * | miss | M | Ser17Leu | ||||||
psbF | * | * | * | * | * | * | miss | M | Ser26Phe | |
ndhD | * | * | * | * | * | * | miss | M | Ser160Leu | |
ndhA | * | * | * | * | * | * | miss | M | Ser321Phe | |
ycf1 | * | * | * | * | miss | M | Phe664Leu |
Gene | Group | HRY vs. MRY | HRY + WL vs. MRY | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
D | F | D | M | C | F | ||||||||
LFC | Padj | LFC | Padj | LFC | Padj | LFC | Padj | LFC | Padj | LFC | Padj | ||
atpI | ATP-SYN | −1.01 | * | −1.19 | ** | ||||||||
atpE | −1.18 | * | −1.05 | * | |||||||||
atpB | −1.28 | ** | −1.04 | * | |||||||||
petA | Cyt.b6/f | 1.01 | ** | 1.07 | ** | 1.36 | *** | 1.02 | * | 1.40 | *** | 1.55 | *** |
petL | 1.35 | ** | 1.10 | * | 1.52 | ** | 1.52 | *** | |||||
petG | 1.04 | ** | 1.07 | * | 1.83 | *** | 1.50 | ** | 1.70 | ** | 1.83 | *** | |
rpl33 | LS-RP | 1.16 | * | 1.04 | ** | 1.07 | * | 1.16 | ** | 1.41 | *** | ||
rpl20 | 1.40 | * | 1.36 | *** | 1.33 | ** | 1.30 | ** | 1.12 | ** | |||
ndhB | NADH-OR | 1.40 | ** | 1.08 | * | 1.09 | * | 1.28 | *** | ||||
ndhJ | 1.08 | ** | 1.02 | ** | 1.08 | ** | 1.04 | ** | |||||
ndhB | 1.34 | ** | 1.10 | * | 1.23 | *** | |||||||
ndhH | −1.12 | * | |||||||||||
psaB | PSI | −1.09 | ** | −1.03 | ** | −1.16 | *** | −1.07 | * | −1.08 | * | −1.39 | *** |
psaA | −1.13 | ** | −1.23 | *** | −1.08 | ** | −1.01 | ** | −1.46 | *** | −1.52 | *** | |
psaJ | 1.02 | *** | 2.08 | *** | 1.63 | *** | |||||||
psbA | PSII | −1.13 | ** | −1.27 | ** | −1.04 | * | −1.58 | *** | −1.04 | * | −2.14 | *** |
psbI | 1.19 | ** | 1.00 | * | 1.82 | *** | |||||||
psbD | −1.16 | ** | −1.00 | * | −1.08 | * | −1.20 | *** | |||||
psbC | −1.05 | ** | −1.04 | * | −1.11 | * | −1.12 | *** | |||||
psbZ | −1.45 | ** | −1.37 | *** | |||||||||
psbE | −1.10 | * | −1.16 | * | |||||||||
rpoC2 | RNA-POL | −1.25 | ** | −1.10 | * | ||||||||
rbcL | RuBisCO | −1.18 | * | −1.09 | * | ||||||||
rps7 | SS-RP | 1.12 | ** | ||||||||||
rps16 | 1.26 | * | |||||||||||
rps18 | 1.51 | *** | 1.47 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Testone, G.; Lamprillo, M.; Gonnella, M.; Arnesi, G.; Sobolev, A.P.; Aiese Cigliano, R.; Giannino, D. The Chloroplast Genome of Endive (Cichorium endivia L.): Cultivar Structural Variants and Transcriptome Responses to Stress Due to Rain Extreme Events. Genes 2023, 14, 1829. https://doi.org/10.3390/genes14091829
Testone G, Lamprillo M, Gonnella M, Arnesi G, Sobolev AP, Aiese Cigliano R, Giannino D. The Chloroplast Genome of Endive (Cichorium endivia L.): Cultivar Structural Variants and Transcriptome Responses to Stress Due to Rain Extreme Events. Genes. 2023; 14(9):1829. https://doi.org/10.3390/genes14091829
Chicago/Turabian StyleTestone, Giulio, Michele Lamprillo, Maria Gonnella, Giuseppe Arnesi, Anatoly Petrovich Sobolev, Riccardo Aiese Cigliano, and Donato Giannino. 2023. "The Chloroplast Genome of Endive (Cichorium endivia L.): Cultivar Structural Variants and Transcriptome Responses to Stress Due to Rain Extreme Events" Genes 14, no. 9: 1829. https://doi.org/10.3390/genes14091829
APA StyleTestone, G., Lamprillo, M., Gonnella, M., Arnesi, G., Sobolev, A. P., Aiese Cigliano, R., & Giannino, D. (2023). The Chloroplast Genome of Endive (Cichorium endivia L.): Cultivar Structural Variants and Transcriptome Responses to Stress Due to Rain Extreme Events. Genes, 14(9), 1829. https://doi.org/10.3390/genes14091829