The Complete Chloroplast Genome of Meconopsis simplicifolia and Its Genetic Comparison to Other Meconopsis Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sequencing, Assembly, and Annotation of the M. simplicifolia cp Genome
2.3. SSRs and Repeated Sequences
2.4. Comparative Analysis of cp Genome Structure
2.5. Phylogenetic Analysis
3. Results
3.1. Features of the cp Genome of Meconopsis simplicifolia
3.2. SSRs and Long-Repeat Analysis
3.3. Comparative Analysis of cp Genomes of Meconopsis Species
3.4. Phylogenetic Analysis of M. simplicifolia and Related Meconopsis species cp Genomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, A.; Li, X.; Lu, C. The Role of Chloroplast Gene Expression in Plant Responses to Environmental Stress. Int. J. Mol. Sci. 2020, 21, 6082. [Google Scholar] [CrossRef] [PubMed]
- Lilly, J.W.; Havey, M.J.; Jackson, S.A.; Jiang, J. Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 2001, 13, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Bendich, A.J.; Smith, S.B. Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr. Genet. 1990, 17, 421–425. [Google Scholar] [CrossRef]
- Shaver, J.M.; Oldenburg, D.J.; Bendich, A.J. The structure of chloroplast DNA molecules and the effects of light on the amount of chloroplast DNA during development in Medicago truncatula. Plant Physiol. 2008, 146, 1064–1074. [Google Scholar] [CrossRef]
- Scharff, L.B.; Koop, H.-U. Linear molecules of tobacco ptDNA end at known replication origins and additional loci. Plant Mol. Biol. 2006, 62, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Mower, J.P.; Vickrey, T.L. Structural Diversity Among Plastid Genomes of Land Plants. Plastid Genome Evolution; Elsevier: Amsterdam, The Netherlands, 2018; pp. 263–292. ISBN 9780128134573. [Google Scholar]
- Dobrogojski, J.; Adamiec, M.; Luciński, R. The chloroplast genome: A review. Acta Physiol. Plant 2020, 42, 155. [Google Scholar] [CrossRef]
- Qu, X.-J.; Zou, D.; Zhang, R.-Y.; Stull, G.W.; Yi, T.-S. Progress, challenge and prospect of plant plastome annotation. Front. Plant Sci. 2023, 14, 1166140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, M.; Zhu, X.; Li, S.; Guo, M.; Guo, C.; Shu, Y. Comparative Chloroplast Genomes Analysis Provided Adaptive Evolution Insights in Medicago ruthenica. Int. J. Mol. Sci. 2024, 25, 8689. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-C.; Ha, Y.-H.; Park, B.K.; Jang, J.E.; Kang, E.S.; Kim, Y.-S.; Kimspe, T.-H.; Kim, H.-J. Comparative analysis of the complete chloroplast genome of Papaveraceae to identify rearrangements within the Corydalis chloroplast genome. PLoS ONE 2023, 18, e0289625. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.K.; Ruhlman, T.A. Plastid Genomes of Seed Plants. In Genomics of Chloroplasts and Mitochondria; Bock, R., Knoop, V., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 103–126. ISBN 978-94-007-2919-3. [Google Scholar]
- Wicke, S.; Schneeweiss, G.M.; Depamphilis, C.W.; Müller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol. 2011, 76, 273–297. [Google Scholar] [CrossRef]
- Cao, Z.; Zhao, W.; Xin, Y.; Shen, W.; Wang, F.; Li, Q.; Tu, Y.; Zhang, H.; Dong, Z.; Xin, P. Characteristics of the Complete Chloroplast Genome of Pourthiaea (Rosaceae) and Its Comparative Analysis. Horticulturae 2022, 8, 1144. [Google Scholar] [CrossRef]
- Lan, Z.; Shi, Y.; Yin, Q.; Gao, R.; Liu, C.; Wang, W.; Tian, X.; Liu, J.; Nong, Y.; Xiang, L.; et al. Comparative and phylogenetic analysis of complete chloroplast genomes from five Artemisia species. Front. Plant Sci. 2022, 13, 1049209. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Xu, P.; Deng, Y.; Dai, X.; Zhao, L.; Heider, B.; Zhang, A.; Zhou, Z.; Cao, Q. Comparative analysis of chloroplast genomes of cultivars and wild species of sweetpotato (Ipomoea batatas L. Lam). BMC Genom. 2021, 22, 262. [Google Scholar] [CrossRef]
- Cao, Z.; Yang, L.; Xin, Y.; Xu, W.; Li, Q.; Zhang, H.; Tu, Y.; Song, Y.; Xin, P. Comparative and phylogenetic analysis of complete chloroplast genomes from seven Neocinnamomum taxa (Lauraceae). Front. Plant Sci. 2023, 14, 1205051. [Google Scholar] [CrossRef]
- Wang, J.; Liao, X.; Gu, C.; Xiang, K.; Li, S.; Tembrock, L.R.; Wu, Z.; He, W. The Asian lotus (Nelumbo nucifera) pan-plastome: Diversity and divergence in a living fossil grown for seed, rhizome, and aesthetics. Ornam. Plant Res. 2022, 2, 1–10. [Google Scholar] [CrossRef]
- Zhan, Q.; Huang, Y.; Xue, X.; Chen, Y. Comparative chloroplast genomics and phylogenetic analysis of Oreomecon nudicaulis (Papaveraceae). BMC Genom. Data 2024, 25, 49. [Google Scholar] [CrossRef]
- Mano, H.; Boltenkov, E.V.; Marchuk, E.A.; Nakamura, K.; Yoichi, W. The complete chloroplast genome sequence of Hypecoum erectum L. (Papaveraceae). Mitochondrial DNA B Resour. 2024, 9, 1010–1014. [Google Scholar] [CrossRef]
- Ren, F.; Wang, L.; Li, Y.; Zhuo, W.; Xu, Z.; Guo, H.; Liu, Y.; Gao, R.; Song, J. Highly variable chloroplast genome from two endangered Papaveraceae lithophytes Corydalis tomentella and Corydalis saxicola. Ecol. Evol. 2021, 11, 4158–4171. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, F.; Wang, N.; Gao, Y.; Liu, K.; Zhang, G.; Sun, J. Characterization of the Dicranostigma leptopodum chloroplast genome and comparative analysis within subfamily Papaveroideae. BMC Genom. 2022, 23, 794. [Google Scholar] [CrossRef] [PubMed]
- Grierson, A.J.C.; Long, D.G. Flora of Bhutan, Including a Record of Plants from Sikkim. Royal Botanic Gardens Edinburgh: Edinburgh, UK; Volume 1, Parts 1 and 2; 1983. [Google Scholar]
- Shi, N.; Naudiyal, N.; Wang, J.; Gaire, N.P.; Wu, Y.; Wei, Y.; He, J.; Wang, C. Assessing the Impact of Climate Change on Potential Distribution of Meconopsis punicea and Its Influence on Ecosystem Services Supply in the Southeastern Margin of Qinghai-Tibet Plateau. Front. Plant Sci. 2022, 12, 830119–830135. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Gao, X.; Yu, X.; Yuan, T.; Zhang, G.; Liu, C.; Li, X.; Wei, P.; Li, X.; Liu, X. Comparative Analysis of Chloroplast Genome of Meconopsis (Papaveraceae) Provides Insights into Their Genomic Evolution and Adaptation to High Elevation. Int. J. Mol. Sci. 2024, 25, 2193. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, Y.; Wang, Z.; Shrestha, N.; Liu, J. Species divergence with gene flow and hybrid speciation on the Qinghai-Tibet Plateau. New Phytol. 2022, 234, 392–404. [Google Scholar] [CrossRef]
- Shi, W.; Song, W.; Chen, Z.; Cai, H.; Gong, Q.; Liu, J.; Shi, C.; Wang, S. Comparative chloroplast genome analyses of diverse Phoebe (Lauraceae) species endemic to China provide insight into their phylogeographical origin. PeerJ 2023, 11, e14573. [Google Scholar] [CrossRef]
- Nicolas, D.; Patrick, M.; Guillaume, S. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, e18–e26. [Google Scholar] [CrossRef]
- Huang, D.L.; Cronk, Q.C. Plann: A command-line application for annotating plastome sequences. Appl. Plant Sci. 2015, 3, 1500026–1500028. [Google Scholar] [CrossRef]
- Li, X.; Tan, W.; Sun, J.; Du, J.; Zheng, C.; Tian, X.; Zheng, M.; Xiang, B.; Wang, Y. Comparison of four complete chloroplast genomes of medicinal and ornamental Meconopsis species: Genome organization and species discrimination. Sci. Rep. 2019, 9, 10567–10578. [Google Scholar] [CrossRef] [PubMed]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, D. Complete chloroplast genome sequences of two species used for Tibetan medicines, Meconopsis punicea vig. and M. henrici vig. (Papaveraceae). Mitochondrial DNA Part B 2020, 5, 48–50. [Google Scholar] [CrossRef]
- Xu, B.; Kang, H.; Luo, S.; Yang, Q.; Liu, Z.L. Complete chloroplast genome of the Meconopsis quintuplinervia (Papaveraceae), a traditional medicine of Tibetan. Mitochondrial DNA Part B 2019, 4, 2335–2336. [Google Scholar] [CrossRef] [PubMed]
- Alikhan, N.-F.; Petty, N.K.; Ben Zakour, N.L.; Beatson, S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011, 12, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Frazer, K.A.; Lior, P.; Alexander, P.; Rubin, E.M.; Inna, D. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, 273–279. [Google Scholar] [CrossRef]
- Amiryousefi, A.; Hyvönen, J.; Poczai, P. IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 2018, 34, 3030–3031. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cui, Y.; Chen, X.; Li, Y.; Xu, Z.; Duan, B.; Li, Y.; Song, J.; Yao, H. Complete Chloroplast Genomes of Papaver rhoeas and Papaver orientale: Molecular Structures, Comparative Analysis, and Phylogenetic Analysis. Molecules 2018, 23, 437. [Google Scholar] [CrossRef]
- Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML-VI-HPC: Maximum Likelihood-Based Phylogenetic Analyses with Thousands of Taxa and Mixed Models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
- Ellis, J.R.; Burke, J.M. EST-SSRs as a resource for population genetic analyses. Heredity 2007, 99, 125–132. [Google Scholar] [CrossRef]
- Bock, R. Engineering plastid genomes: Methods, tools, and applications in basic research and biotechnology. Annu. Rev. Plant Biol. 2015, 66, 211–241. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Cai, X.; Gong, M.; Xia, M.; Xing, H.; Dong, S.; Tian, S.; Li, J.; Lin, J.; Liu, Y.; et al. Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC Genom. 2023, 24, 30. [Google Scholar] [CrossRef]
- Lan, J.; Lin, Q.; Zhou, C.; Liu, X.; Miao, R.; Ma, T.; Chen, Y.; Mou, C.; Jing, R.; Feng, M. Young Leaf White Stripe encodes a P-type PPR protein required for chloroplast development. J. Integr. Plant Biol. 2023, 67, 1687–1720. [Google Scholar] [CrossRef] [PubMed]
- Chiapella, J.O.; Barfuss, M.H.J.; Xue, Z.-Q.; Greimler, J. The plastid genome of Deschampsia cespitosa (Poaceae). Molecules 2019, 24, 216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; An, M.; Miao, J.; Gu, Z.; Liu, C.; Zhong, B. The Antarctic sea ice alga Chlamydomonas sp. ICE-L provides insights into adaptive patterns of chloroplast evolution. Bmc Plant Biol. 2018, 18, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Wei, X. Active. Molecular Systematics of Meconopsis Vig. (Papaveraceae): Taxonomy, Polyploidy Evolution, and Historical Biogeography from a Phylogenetic Insight. Ph.D. Thesis, University of Texas at Austin, Austin, TX, USA, December 2013. [Google Scholar]
- Xiao, W.; Simpson, B.B. A New Infrageneric Classification of Meconopsis (Papaveraceae) Based on a Well-Supported Molecular Phylogeny. Syst. Bot. 2017, 42, 226–233. [Google Scholar] [CrossRef]
- Valtuea, F.J.; Preston, C.D.; Kadereit, J.W. Evolutionary significance of the invasion of introduced populations into the native range of Meconopsis cambrica. Mol. Ecol. 2011, 20, 4318–4331. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-M.; Zhao, C.-Y.; Liu, X.-F. Complete chloroplast genome sequences of Kaempferia galanga and Kaempferia elegans: Molecular structures and comparative analysis. Molecules 2019, 24, 474. [Google Scholar] [CrossRef]
Feature | M. simplicifolia | M. horridula | M. integrifolia | M. punicea | M. racemosa | M. henrici | M. quintuplinervia |
---|---|---|---|---|---|---|---|
Accession number | NC_070211 | MK533646 | MK533647 | MK533648 | MK533649 | MN488591 | MK801686 |
Genome size (bp) | 152,772 | 153,785 | 151,864 | 153,259 | 153,816 | 153,388 | 154,997 |
IR length (bp) | 25,651 | 51,988 | 51,306 | 51,548 | 51,988 | 26,107 | 25,984 |
SSC length (bp) | 17,646 | 17,898 | 17,749 | 17,729 | 17,898 | 17,822 | 17,876 |
LSC length (bp) | 83,824 | 83,899 | 82,809 | 83,982 | 83,930 | 83,698 | 85,153 |
No. of total genes | 131 | 127 | 127 | 127 | 127 | 112 | 129 |
No. of protein-coding genes | 84 | 90 | 90 | 90 | 90 | 78 | 84 |
No. of tRNA genes | 39 | 37 | 37 | 37 | 37 | 30 | 37 |
No. of rRNA genes | 8 | 8 | 8 | 8 | 8 | 3 | 8 |
Overall GC content (%) | 38.7 | 38.8 | 38.8 | 38.5 | 38.7 | 38.5 | 38.5 |
Category | Gene Group | Gene Name |
---|---|---|
Self-replication | Ribosomal protein (large subunit) (9) | rpl14, rpl16 a, rpl20, rpl22, rpl23 b, rpl32, rpl33, rpl36 |
Ribosomal protein (small subunit) (16) | rps2, rps3, rps4, rps7 b, rps8, rps11, rps12 a,b, rps14, rps15, rps16 a, rps18, rps19 | |
DNA-dependent RNA polymerase (4) | rpoA, rpoB, rpoC1 a, rpoC2 | |
rRNA genes (8) | rrn16 b, rrn23 b, rrn4.5 b, rrn5 b, | |
tRNA genes (37) | trnH-GUG, trnK-UUU a, trnQ-UUG, trnS-GCU, trnG-UCC a, trnR-UCU, trnC-GCA, trnD-GUC, trnY-GUA, trnE-UUC, trnT-GGU, trnS-UGA, trnG-GCC, trnS-GGA, trnT-UGU, trnL-UAA a, trnF-GAA, trnV-UAC a, trnfM-CAU b, trnW-CCA, trnP-UGG, trnI-CAU b, trnL-CAA b, trnV-GAC b, trnI-GAU a,b, trnA-UGC a,b, trnR-ACG b, trnN-GUU b, trnL-UAG | |
Photosynthesis | Photosystem I (5) | psaA, psaB, psaC, psaI, psaJ |
Photosystem II (15) | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ | |
NADH dehydrogenase (11) | ndhA a, ndhB a,b, ndhC, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | |
Cytochrome b/f complex (6) | petA, petB a, petD a, petG, petL, petN | |
ATP synthase (6) | atpA, atpB, atpE, atpF a, atpH, atpI | |
Large subunit of rubisco (1) | rbcL | |
Other genes | Translational initiation factor (1) | infA |
ATP-dependent protease subunit p gene (1) | clpP a | |
Maturase (1) | matK | |
Envelope membrane protein (1) | cemA | |
Unknown | Subunit of acetyl-CoA-carboxylase (1) | accD |
C-type cytochrome synthesis gene (1) | ccsA | |
Conserved hypothetical chloroplast ORF (7) | ycf1 b, ycf2 b, ycf3 a, ycf4, ycf15, | |
Pseudogene (2) | rps15, rps19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Zhu, Z.; Li, R. The Complete Chloroplast Genome of Meconopsis simplicifolia and Its Genetic Comparison to Other Meconopsis Species. Genes 2024, 15, 1301. https://doi.org/10.3390/genes15101301
Sun M, Zhu Z, Li R. The Complete Chloroplast Genome of Meconopsis simplicifolia and Its Genetic Comparison to Other Meconopsis Species. Genes. 2024; 15(10):1301. https://doi.org/10.3390/genes15101301
Chicago/Turabian StyleSun, Min, Zhidan Zhu, and Rui Li. 2024. "The Complete Chloroplast Genome of Meconopsis simplicifolia and Its Genetic Comparison to Other Meconopsis Species" Genes 15, no. 10: 1301. https://doi.org/10.3390/genes15101301
APA StyleSun, M., Zhu, Z., & Li, R. (2024). The Complete Chloroplast Genome of Meconopsis simplicifolia and Its Genetic Comparison to Other Meconopsis Species. Genes, 15(10), 1301. https://doi.org/10.3390/genes15101301