APOBR Is Downregulated in EBV+ Tonsils of Children with Obstructive Sleep-Disordered Breathing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Profile of the Pediatric oSDB Cohort
3.2. Sleep Study Results in the Pediatric oSDB Cohort
3.3. EBV Prevalence in Pediatric Tonsils
3.4. Differentially Expressed Genes from Bulk mRNA-Seq of Pediatric Tonsils
3.5. Network Analysis Using DEGs
3.6. Replication of EBV-APOBR Association in Pediatric Tonsils
3.7. APOBR Expression in Tonsils from Adult Patients with oSDB
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gueye-Ndiaye, S.; Williamson, A.A.; Redline, S. Disparities in sleep-disordered breathing: Upstream risk factors, mechanisms, and implications. Clin. Chest Med. 2023, 44, 585–603. [Google Scholar] [CrossRef]
- Chang, J.L.; Goldberg, A.N.; Alt, J.A.; Mohammed, A.; Ashbrook, L.; Auckley, D.; Ayappa, I.; Bakhtiar, H.; Barrera, J.E.; Bartley, B.L.; et al. International Consensus Statement on Obstructive Sleep Apnea. Int. Forum Allergy Rhinol. 2023, 13, 1061–1482. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tan, S.; Liu, D.; Zhang, K.; Zhang, Y.; Wang, B.; Zuo, H. Comorbidities are associated with self-reported sleep-disordered breathing and insomnia: A cross-sectional study from China. Sleep Breath. 2023, 27, 2407–2413. [Google Scholar] [CrossRef]
- Chervin, R.D.; Hedger, K.; Dillon, E.; Pituch, K.J. Pediatric sleep questionnaire (PSQ): Validity and reliability of scales for sleep-disordered breathing, snoring, sleepiness, and behavioral problems. Sleep Med. 2000, 1, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.B.; Archer, S.M.; Ishman, S.L.; Rosenfeld, R.M.; Coles, S.; Finestone, S.A.; Friedman, N.R.; Giordano, T.; Hildrew, D.M.; Kim, T.W.; et al. Clinical Practice Guideline: Tonsillectomy in children (update)—Executive summary. Otolaryngol. Head. Neck Surg. 2019, 160, 187–205. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.B.; Archer, S.M.; Ishman, S.L.; Rosenfeld, R.M.; Coles, S.; Finestone, S.A.; Friedman, N.R.; Giordano, T.; Hildrew, D.M.; Kim, T.W.; et al. Clinical Practice Guideline: Tonsillectomy in children (update). Otolaryngol. Head. Neck Surg. 2019, 160 (Suppl. 1), S1–S42. [Google Scholar] [CrossRef] [PubMed]
- Benedek, P.; Balakrishnan, K.; Cunningham, M.J.; Friedman, N.R.; Goudy, S.L.; Ishman, S.L.; Katona, G.; Kirkham, E.M.; Lam, D.J.; Leboulanger, N.; et al. International Pediatric Otolaryngology Group (IPOG) consensus on the diagnosis and management of pediatric obstructive sleep apnea (OSA). Int. J. Pediatr. Otorhinolaryngol. 2020, 138, 110276. [Google Scholar] [CrossRef]
- Sawunyavisuth, B.; Ngamjarus, C.; Sawanyawisuth, K. Adherence to continuous positive airway pressure therapy in patients with obstructive sleep apnea: A meta-analysis. Ther. Clin. Risk Manag. 2023, 19, 143–162. [Google Scholar] [CrossRef]
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; Kimoff, R.J.; Patel, S.R.; Harrod, C.G. Treatment of adult obstructive sleep apnea with positive airway pressure: An American Academy of Sleep Medicine Clinical Practice Guideline. J. Clin. Sleep Med. 2019, 15, 335–343. [Google Scholar] [CrossRef]
- Suurna, M.V.; Steffen, A.; Boon, M.; Chio, E.; Copper, M.; Patil, R.D.; Green, K.K.; Hanson, R.; Heiser, C.; Huntley, C.; et al. Impact of body mass index and discomfort on upper airway stimulation: ADHERE Registry 2020 update. Laryngoscope 2021, 131, 2616–2624. [Google Scholar] [CrossRef]
- Huyett, P.; Kent, D.T.; D’Agostino, M.A.; Green, K.K.; Soose, R.J.; Kaffenberger, T.M.; Woodson, B.T.; Huntley, C.; Boon, M.S.; Heiser, C.; et al. Drug-induced sleep endoscopy and hypoglossal stimulation outcomes: A multicenter cohort study. Laryngoscope 2021, 131, 1676–1682. [Google Scholar] [CrossRef] [PubMed]
- Sands, S.A.; Edwards, B.A.; Terrill, P.I.; Taranto-Montemurro, L.; Azarbarzin, A.; Marques, M.; Hess, L.B.; White, D.P.; Wellman, A. Phenotyping pharyngeal pathophysiology using polysomnography in patients with obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2018, 197, 1187–1197. [Google Scholar] [CrossRef]
- Dutta, R.; Delaney, G.; Toson, B.; Jordan, A.S.; White, D.P.; Wellman, A.; Eckert, D.J. A novel model to estimate key obstructive sleep apnea endotypes from standard polysomnography and clinical data and their contribution to obstructive sleep apnea severity. Ann. Am. Thorac. Soc. 2020, 18, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Khalyfa, A.; Gharib, S.A.; Kim, J.; Dayyat, E.; Snow, A.B.; Bhattacharjee, R.; Kheirandish-Gozal, L.; Goldman, J.L.; Gozal, D. Transcriptomic analysis identifies phosphatases as novel targets for adenotonsillar hypertrophy of pediatric obstructive sleep apnea. Am. J. Respir. Crit. Care Med. 2010, 181, 1114–1120. [Google Scholar] [CrossRef]
- Hanif, T.; Ivaska, L.E.; Ahmad, F.; Tan, G.; Mikola, E.; Puhakka, T.; Palomares, O.; Akdis, C.A.; Toppila-Salmi, S.; Jartti, T. Tonsillar transcriptional profiles in atopic and non-atopic subjects. Allergy 2023, 78, 522–536. [Google Scholar] [CrossRef]
- Faden, H.; Callanan, V.; Pizzuto, M.; Nagy, M.; Wilby, M.; Lamson, D.; Wrotniak, B.; Juretschko, S.; St George, K. The ubiquity of asymptomatic respiratory viral infections in the tonsils and adenoids of children and their impact on airway obstruction. Int. J. Pediatr. Otorhinolaryngol. 2016, 90, 128–132. [Google Scholar] [CrossRef]
- Bushnell, B.; Rood, J.; Singer, E. BBMerge—Accurate paired shotgun read merging via overlap. PLoS ONE 2017, 12, e0185056. [Google Scholar] [CrossRef] [PubMed]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Xia, J.; Benner, M.J.; Hancock, R.E.W. NetworkAnalyst—Integrative approaches for protein–protein interaction network analysis and visual exploration. Nucleic Acids Res. 2014, 42, W167–W174. [Google Scholar] [CrossRef]
- Liu, Z.P.; Wu, C.; Miao, H.; Wu, H. RegNetwork: An integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford) 2015, 2015, bav095. [Google Scholar] [CrossRef] [PubMed]
- Redline, S.; Cook, K.; Chervin, R.D.; Ishman, S.; Baldassari, C.M.; Mitchell, R.B.; Tapia, I.E.; Amin, R.; Hassan, F.; Ibrahim, S.; et al. Adenotonsillectomy for Snoring and Mild Sleep Apnea in Children: A Randomized Clinical Trial. JAMA 2023, 330, 2084–2095. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Lucano, L.R.; Vasquez-Armenta, G.V.; Pereira-Suarez, A.L.; Ramirez-de Arellano, A.; Ramirez-de los Santos, S.; Lopez-Pulido, E.I. Prevalence of Epstein-Barr virus DNA in tonsillar tissue from patients with chronic tonsillitis in Mexican population. J. Infect. Dis. Ctries. 2019, 13, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Ivaska, L.E.; Silvoniemi, A.; Mikola, E.; Puhakka, T.; Waris, M.; Vuorinen, T.; Jartti, T. Herpesvirus infections in adenoids in patients with chronic adenotonsillar disease. J. Med. Virol. 2022, 94, 4470–4477. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Jansen, P.R.; Savage, J.E.; Nandakumar, P.; Wang, X.; 23andMe Research Team; Hinds, D.A.; Gelernter, J.; Levey, D.F.; Polimanti, R.; et al. Genome-wide meta-analysis of insomnia prioritizes genes associated with metabolic and psychiatric traits. Nat. Genet. 2022, 54, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Sofer, T.; Kurniansyah, N.; Murray, M.; Ho, Y.L.; Abner, E.; Esko, T.; Estonian Biobank Research Team; Huffman, J.E.; Cho, K.; Wilson, P.W.F.; et al. Genome-wide association study of obstructive sleep apnoea in the Million Veteran Program uncovers genetic heterogeneity by sex. eBioMedicine 2023, 90, 104536. [Google Scholar] [CrossRef] [PubMed]
- GWAS Catalog. Available online: https://www.ebi.ac.uk/gwas/ (accessed on 10 May 2024).
- Green, K.K.; Kent, D.T.; D’Agostino, M.A.; Hoff, P.T.; Lin, H.S.; Soose, R.J.; Gillespie, M.B.; Yaremchuk, K.L.; Carrasco-Llatas, M.; Woodson, B.T.; et al. Drug-induced sleep endoscopy and surgical outcomes: A multicenter cohort study. Laryngoscope 2019, 129, 761–770. [Google Scholar] [CrossRef]
- Freiser, M.E.; Schell, A.E.; Soose, R.J. DISE-PAP: A method for troubleshooting residual AHI elevation despite positive pressure therapy. J. Clin. Sleep Med. 2020, 16, 631–633. [Google Scholar] [CrossRef]
- Kedarisetty, S.; Sharma, A.; Commesso, E.A.; Woodson, B.T.; Huyett, P.; Kent, D.T.; D’Agostino, M.; Green, K.K.; Kezirian, E.J. Palate shape is associated with unilateral hypoglossal nerve stimulation outcomes. Laryngoscope 2024, 134, 981–986. [Google Scholar] [CrossRef]
- Seishima, N.; Kondo, S.; Wakisaka, N.; Kobayashi, E.; Imoto, T.; Moriyama-Kita, M.; Nakanishi, Y.; Endo, K.; Murono, S.; Sugimoto, H.; et al. EBV infection is prevalent in the adenoid and palatine tonsils in adults. J. Med. Virol. 2017, 89, 1088–1095. [Google Scholar] [CrossRef]
- Kourieh, A.; Gheit, T.; Tommasino, M.; Dalstein, V.; Clifford, G.M.; St Guily, J.L.; Clavel, C.; Franceschi, S.; Combes, J.D.; SPLIT study group. Prevalence of human herpesvirus infections in nonmalignant tonsils: The SPLIT study. J. Med. Virol. 2018, 91, 688–697. [Google Scholar]
- Nosetti, L.; Zaffanello, M.; Katz, E.S.; Vitali, M.; Agosti, M.; Ferrante, G.; Cilluffo, G.; Placentini, G.; La Grutta, S. Twenty-year follow-up of children with obstructive sleep apnea. J. Clin. Sleep Med. 2022, 18, 1573–1581. [Google Scholar] [CrossRef] [PubMed]
- Guilleminault, C.; Mondini, S. Mononucleosis and chronic daytime sleepiness. A long-term follow-up study. Arch. Intern. Med. 1986, 146, 1333–1335. [Google Scholar] [CrossRef]
- Buchwald, D.; Sullivan, J.L.; Leddy, S.; Komaroff, A.L. “Chronic Epstein-Barr virus infection” syndrome and polymyalgia rheumatica. J. Rheumatol. 1988, 15, 479–482. [Google Scholar] [PubMed]
- Lambore, S.; McSherry, J.; Kraus, A.S. Acute and chronic symptoms of mononucleosis. J. Fam. Pract. 1991, 33, 33–37. [Google Scholar] [PubMed]
- Anagnostopoulos, I.; Hummel, M.; Kreschel, C.; Stein, H. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: Implications for the interindividual infection route of Epstein-Barr virus. Blood 1995, 85, 744–750. [Google Scholar] [CrossRef]
- Huang, Y.; Katz, B.Z.; Mears, C.; Kielhofner, G.W.; Taylor, R. Postinfectious fatigue in adolescents and physical activity. Arch. Pediatr. Adolesc. Med. 2010, 164, 803–809. [Google Scholar] [CrossRef]
- Cheng, J. Obstructive sleep apnea (OSA): A complication of acute infectious mononucleosis infection in a child. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 561–562. [Google Scholar] [CrossRef]
- Moyano, A.; Gerpe, N.M.F.; De Matteo, E.; Preciado, M.V.; Chabay, P. M1 macrophage polarization prevails in Epstein-Barr virus-infected children in an immunoregulatory environment. J. Virol. 2022, 96, e0143421. [Google Scholar] [CrossRef]
- Brown, M.L.; Ramprasad, M.P.; Umeda, P.K.; Tanaka, A.; Kobayashi, Y.; Watanabe, T.; Shimoyamada, H.; Kuo, W.L.; Li, R.; Song, R.; et al. A macrophage receptor for apolipoprotein B48: Cloning, expression, and atherosclerosis. Proc. Natl. Acad. Sci. USA 2000, 97, 7488–7493. [Google Scholar] [CrossRef]
- The Human Protein Atlas. Available online: https://www.proteinatlas.org (accessed on 31 January 2024).
- Voisin, S.; Almen, M.S.; Zheleznyakova, G.Y.; Lundberg, L.; Zarei, S.; Castillo, S.; Eriksson, F.E.; Nilsson, E.K.; Bluher, M.; Bottcher, Y.; et al. Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers. Genome Med. 2015, 7, 103. [Google Scholar] [CrossRef] [PubMed]
- Salas, A.; Pardo-Seco, J.; Barral-Arca, R.; Cebey-Lopez, M.; Gomez-Carballa, A.; Rivero-Calle, I.; Pischedda, S.; Curras-Tuala, M.J.; Amigo, J.; Gomez-Rial, J.; et al. Whole exome sequencing identifies new host genomic susceptibility factors in empyema caused by Streptococcus pneumoniae in children: A pilot study. Genes (Basel) 2018, 9, 240. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.A.R.; Vonk, J.M.; Baurecht, H.; Marenholz, I.; Tian, C.; Hoffman, J.D.; Helmer, Q.; Tillander, A.; Ullemar, V.; Lu, Y.; et al. Eleven loci with new reproducible genetic associations with allergic disease risk. J. Allergy Clin. Immunol. 2019, 143, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.I.; Kho, P.; Vazquez-Prada, K.X.; Garcia-Marin, L.M.; Martin, N.G.; Cuellar-Partida, G.; Renteria, M.E. Genetic susceptibility to pneumonia: A GWAS meta-analysis between the UK Biobank and FinnGen. Twin Res. Hum. Genet. 2021, 24, 145–154. [Google Scholar] [CrossRef] [PubMed]
- International Mouse Phenotyping Consortium. Available online: https://www.mousephenotype.org (accessed on 10 May 2024).
Gene | Fold Change | False Discovery Rate Adjusted p-Value |
---|---|---|
A. EBV+ | ||
PTP4A1 1 | +29.04 | 2.25 × 10−17 |
APOBR 1 | −25.14 | 5.63 × 10−13 |
MYH2 1 | −25.63 | 5.63 × 10−13 |
GUSBP3 1,2 | −7.88 | 5.62 × 10−6 |
PPIAP46 2 | −2.54 | 0.0026 |
BMS1P4-AGAP5 2 | −7.31 | 0.004 |
MAPK8IP1P1 2 | −6.31 | 0.028 |
B. CPAP | ||
GYS2 1 | −24.69 | 1.97 × 10−10 |
FAM25C | −29.89 | 2.14 × 10−10 |
PTP4A1 1 | −26.26 | 1.13 × 10−7 |
RGPD6 1 | −23.28 | 8.11 × 10−7 |
APOBR 1 | −23.50 | 4.36 × 10−6 |
NPIPA8 | −23.55 | 4.36 × 10−6 |
NPIPA3 | −23.36 | 5.92 × 10−6 |
TRIM39 1 | −3.75 | 0.0015 |
WNT7A 1 | −7.17 | 0.0031 |
LINC02595 2 | −3.66 | 0.0047 |
GK5 1 | −0.88 | 0.022 |
DCAKD 1 | +15.96 | 0.028 |
KRT76 1 | −2.31 | 0.039 |
TCF7L2 1 | −1.78 | 0.039 |
Gene | n | Classifier | Log2 Fold-Change | p-Value |
---|---|---|---|---|
APOBR | 32 | EBV± | 0.31 | 0.026 |
TRIM39 | 18 | CPAP± | 0.95 | 0.83 |
WNT7A | 18 | CPAP± | 0.58 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos-Cortez, R.L.P.; Gomez, H.Z.; Elling, C.L.; Mayher, L.; Diala, O.R.; Gardner, C.; Willford, K.; Zamora, V.C.; Agyepong, A.; Lee, N.K.; et al. APOBR Is Downregulated in EBV+ Tonsils of Children with Obstructive Sleep-Disordered Breathing. Genes 2024, 15, 1324. https://doi.org/10.3390/genes15101324
Santos-Cortez RLP, Gomez HZ, Elling CL, Mayher L, Diala OR, Gardner C, Willford K, Zamora VC, Agyepong A, Lee NK, et al. APOBR Is Downregulated in EBV+ Tonsils of Children with Obstructive Sleep-Disordered Breathing. Genes. 2024; 15(10):1324. https://doi.org/10.3390/genes15101324
Chicago/Turabian StyleSantos-Cortez, Regie Lyn P., Helen Z. Gomez, Christina L. Elling, Landen Mayher, Obinna R. Diala, Colin Gardner, Kiera Willford, Valerie C. Zamora, Ashley Agyepong, Nam K. Lee, and et al. 2024. "APOBR Is Downregulated in EBV+ Tonsils of Children with Obstructive Sleep-Disordered Breathing" Genes 15, no. 10: 1324. https://doi.org/10.3390/genes15101324
APA StyleSantos-Cortez, R. L. P., Gomez, H. Z., Elling, C. L., Mayher, L., Diala, O. R., Gardner, C., Willford, K., Zamora, V. C., Agyepong, A., Lee, N. K., Green, K. K., Darr, O. A., Wine, T. M., Francom, C. R., Larson, E. D., Gitomer, S. A., Schell, A. E., Frank, D. N., Friedman, N. R., & Herrmann, B. W. (2024). APOBR Is Downregulated in EBV+ Tonsils of Children with Obstructive Sleep-Disordered Breathing. Genes, 15(10), 1324. https://doi.org/10.3390/genes15101324