Sleep Abnormalities in SLC13A5 Citrate Transporter Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment and Consent
2.2. Sleep Disturbances Scale for Children (SDSC)
2.3. Animals
2.4. Telemetry Devices and Recordings
2.5. EEG and EMG Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Overall Sleep Scores
3.3. Sleep Disorder Sub-Scores
3.4. Abnormal Sleep Structure in SLC13A5 KO Mice
3.5. Decreased Power Spectra during Sleep in SLC13A5 KO Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thevenon, J.; Milh, M.; Feillet, F.; St-Onge, J.; Duffourd, Y.; Juge, C.; Roubertie, A.; Heron, D.; Mignot, C.; Raffo, E.; et al. Mutations in SLC13A5 cause autosomal-recessive epileptic encephalopathy with seizure onset in the first days of life. Am. J. Hum. Genet. 2014, 95, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Goodspeed, K.; Liu, J.S.; Nye, K.L.; Prasad, S.; Sadhu, C.; Tavakkoli, F.; Bilder, D.A.; Minassian, B.A.; Bailey, R.M. SLC13A5 Deficiency Disorder: From Genetics to Gene Therapy. Genes 2022, 13, 1655. [Google Scholar] [CrossRef] [PubMed]
- Matricardi, S.; De Liso, P.; Freri, E.; Costa, P.; Castellotti, B.; Magri, S.; Gellera, C.; Granata, T.; Musante, L.; Lesca, G.; et al. Neonatal developmental and epileptic encephalopathy due to autosomal recessive variants in SLC13A5 gene. Epilepsia 2020, 61, 2474–2485. [Google Scholar] [CrossRef] [PubMed]
- Beltran, A.S. Novel Approaches to Studying SLC13A5 Disease. Metabolites 2024, 14, 84. [Google Scholar] [CrossRef]
- Gopal, E.; Miyauchi, S.; Martin, P.M.; Ananth, S.; Srinivas, S.R.; Smith, S.B.; Prasad, P.D.; Ganapathy, V. Expression and functional features of NaCT, a sodium-coupled citrate transporter, in human and rat livers and cell lines. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G402–G408. [Google Scholar] [CrossRef]
- Kumar, A.; Cordes, T.; Thalacker-Mercer, A.E.; Pajor, A.M.; Murphy, A.N.; Metallo, C.M. NaCT/SLC13A5 facilitates citrate import and metabolism under nutrient-limited conditions. Cell Rep. 2021, 36, 109701. [Google Scholar] [CrossRef]
- Hardies, K.; de Kovel, C.G.; Weckhuysen, S.; Asselbergh, B.; Geuens, T.; Deconinck, T.; Azmi, A.; May, P.; Brilstra, E.; Becker, F.; et al. Recessive mutations in SLC13A5 result in a loss of citrate transport and cause neonatal epilepsy, developmental delay and teeth hypoplasia. Brain 2015, 138, 3238–3250. [Google Scholar] [CrossRef]
- Pajor, A.M.; de Oliveira, C.A.; Song, K.; Huard, K.; Shanmugasundaram, V.; Erion, D.M. Molecular Basis for Inhibition of the Na+/Citrate Transporter NaCT (SLC13A5) by Dicarboxylate Inhibitors. Mol. Pharmacol. 2016, 90, 755–765. [Google Scholar] [CrossRef]
- Klotz, J.; Porter, B.E.; Colas, C.; Schlessinger, A.; Pajor, A.M. Mutations in the Na(+)/citrate cotransporter NaCT (SLC13A5) in pediatric patients with epilepsy and developmental delay. Mol. Med. 2016, 22, 310–321. [Google Scholar] [CrossRef]
- Bainbridge, M.N.; Cooney, E.; Miller, M.; Kennedy, A.D.; Wulff, J.E.; Donti, T.; Jhangiani, S.N.; Gibbs, R.A.; Elsea, S.H.; Porter, B.E.; et al. Analyses of SLC13A5-epilepsy patients reveal perturbations of TCA cycle. Mol. Genet. Metab. 2017, 121, 314–319. [Google Scholar] [CrossRef]
- Brown, T.L.; Bainbridge, M.N.; Zahn, G.; Nye, K.L.; Porter, B.E. The growing research toolbox for SLC13A5 citrate transporter disorder: A rare disease with animal models, cell lines, an ongoing Natural History Study and an engaged patient advocacy organization. Ther. Adv. Rare Dis. 2024, 5, 26330040241263972. [Google Scholar] [CrossRef] [PubMed]
- Ho, N.T.; Kroner, B.; Grinspan, Z.; Fureman, B.; Farrell, K.; Zhang, J.; Buelow, J.; Hesdorffer, D.C.; Rare Epilepsy Network Steering Committee. Comorbidities of Rare Epilepsies: Results from the Rare Epilepsy Network. J. Pediatr. 2018, 203, 249–258.e5. [Google Scholar] [CrossRef] [PubMed]
- Esbensen, A.J.; Schwichtenberg, A.J. Sleep in Neurodevelopmental Disorders. Int. Rev. Res. Dev. Disabil. 2016, 51, 153–191. [Google Scholar] [CrossRef] [PubMed]
- Cilliler, A.E.; Guven, B. Sleep quality and related clinical features in patients with epilepsy: A preliminary report. Epilepsy Behav. 2020, 102, 106661. [Google Scholar] [CrossRef]
- Agar, G.; Brown, C.; Sutherland, D.; Coulborn, S.; Oliver, C.; Richards, C. Sleep disorders in rare genetic syndromes: A meta-analysis of prevalence and profile. Mol. Autism 2021, 12, 18. [Google Scholar] [CrossRef]
- Xu, L.; Guo, D.; Liu, Y.Y.; Qiao, D.D.; Ye, J.Y.; Xue, R. Juvenile myoclonic epilepsy and sleep. Epilepsy Behav. 2018, 80, 326–330. [Google Scholar] [CrossRef]
- Lawthom, C.; Didelot, A.; Coppola, A.; Aledo-Serrano, A.; Fazekas, B.; Sainz-Fuertes, R.; Strzelczyk, A. The impact of epilepsy and antiseizure medications on sleep: Findings from a large European survey in adults with epilepsy and matched controls. Epilepsy Behav. 2023, 148, 109481. [Google Scholar] [CrossRef]
- Dell’Aquila, J.T.; Soti, V. Sleep deprivation: A risk for epileptic seizures. Sleep Sci. 2022, 15, 245–249. [Google Scholar] [CrossRef]
- Brown, T.L.; Nye, K.L.; Porter, B.E. Growth and Overall Health of Patients with SLC13A5 Citrate Transporter Disorder. Metabolites 2021, 11, 746. [Google Scholar] [CrossRef]
- Bruni, O.; Ottaviano, S.; Guidetti, V.; Romoli, M.; Innocenzi, M.; Cortesi, F.; Giannotti, F. The Sleep Disturbance Scale for Children (SDSC). Construction and validation of an instrument to evaluate sleep disturbances in childhood and adolescence. J. Sleep Res. 1996, 5, 251–261. [Google Scholar] [CrossRef]
- Romeo, D.M.; Bruni, O.; Brogna, C.; Ferri, R.; Galluccio, C.; De Clemente, V.; Di Jorio, M.; Quintiliani, M.; Ricci, D.; Mercuri, E. Application of the sleep disturbance scale for children (SDSC) in preschool age. Eur. J. Paediatr. Neurol. 2013, 17, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Romeo, D.M.; Cordaro, G.; Macchione, E.; Venezia, I.; Brogna, C.; Mercuri, E.; Bruni, O. Application of the Sleep Disturbance Scale for Children (SDSC) in infants and toddlers (6–36 months). Sleep Med. 2021, 81, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Lecuelle, F.; Gustin, M.P.; Leslie, W.; Mindell, J.A.; Franco, P.; Putois, B. French validation of the sleep disturbance scale for children (SDSC) in young children (aged 6 months to 4 years). Sleep Med. 2020, 67, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, P.; Chen, Y.; Chen, S.; Yao, Y.; Lin, X. Validation of the sleep disturbance scale for children (SDSC) in infants and toddlers from mainland China. Front. Psychiatry 2022, 13, 987304. [Google Scholar] [CrossRef] [PubMed]
- Birkenfeld, A.L.; Lee, H.Y.; Guebre-Egziabher, F.; Alves, T.C.; Jurczak, M.J.; Jornayvaz, F.R.; Zhang, D.; Hsiao, J.J.; Martin-Montalvo, A.; Fischer-Rosinsky, A.; et al. Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab. 2011, 14, 184–195. [Google Scholar] [CrossRef]
- Copping, N.A.; Silverman, J.L. Abnormal electrophysiological phenotypes and sleep deficits in a mouse model of Angelman Syndrome. Mol. Autism 2021, 12, 9. [Google Scholar] [CrossRef]
- Moavero, R.; Voci, A.; Romigi, A.; Bisulli, F.; Luisi, C.; Matricardi, S.; La Briola, F.; Mazzone, L.; Valeriani, M.; Curatolo, P.; et al. Questionnaire-based assessment of sleep disorders in an adult population of Tuberous Sclerosis Complex. Sleep Med. 2022, 92, 81–87. [Google Scholar] [CrossRef]
- Liguori, C.; Toledo, M.; Kothare, S. Effects of anti-seizure medications on sleep architecture and daytime sleepiness in patients with epilepsy: A literature review. Sleep Med. Rev. 2021, 60, 101559. [Google Scholar] [CrossRef]
- Yang, Q.Z.; Spelbrink, E.M.; Nye, K.L.; Hsu, E.R.; Porter, B.E. Epilepsy and EEG Phenotype of SLC13A5 Citrate Transporter Disorder. Child Neurol. Open 2020, 7, 2329048X20931361. [Google Scholar] [CrossRef]
- Peever, J.; Fuller, P.M. The Biology of REM Sleep. Curr. Biol. 2017, 27, R1237–R1248. [Google Scholar] [CrossRef]
- Miano, S.; Bruni, O.; Leuzzi, V.; Elia, M.; Verrillo, E.; Ferri, R. Sleep polygraphy in Angelman syndrome. Clin. Neurophysiol. 2004, 115, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Buckley, A.W.; Rodriguez, A.J.; Jennison, K.; Buckley, J.; Thurm, A.; Sato, S.; Swedo, S. Rapid eye movement sleep percentage in children with autism compared with children with developmental delay and typical development. Arch. Pediatr. Adolesc. Med. 2010, 164, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, I.C.; Rathore, S. The role of REM sleep theta activity in emotional memory. Front. Psychol. 2015, 6, 1439. [Google Scholar] [CrossRef] [PubMed]
- Adamantidis, A.R.; Gutierrez Herrera, C.; Gent, T.C. Oscillating circuitries in the sleeping brain. Nat. Rev. Neurosci. 2019, 20, 746–762. [Google Scholar] [CrossRef]
- Cobb, S.R.; Buhl, E.H.; Halasy, K.; Paulsen, O.; Somogyi, P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 1995, 378, 75–78. [Google Scholar] [CrossRef]
- Soltesz, I.; Deschenes, M. Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine-xylazine anesthesia. J. Neurophysiol. 1993, 70, 97–116. [Google Scholar] [CrossRef]
- Yoder, R.M.; Pang, K.C. Involvement of GABAergic and cholinergic medial septal neurons in hippocampal theta rhythm. Hippocampus 2005, 15, 381–392. [Google Scholar] [CrossRef]
- Li, S.; Topchiy, I.; Kocsis, B. The effect of atropine administered in the medial septum or hippocampus on high- and low-frequency theta rhythms in the hippocampus of urethane anesthetized rats. Synapse 2007, 61, 412–419. [Google Scholar] [CrossRef]
- Henke, C.; Tollner, K.; van Dijk, R.M.; Miljanovic, N.; Cordes, T.; Twele, F.; Broer, S.; Ziesak, V.; Rohde, M.; Hauck, S.M.; et al. Disruption of the sodium-dependent citrate transporter SLC13A5 in mice causes alterations in brain citrate levels and neuronal network excitability in the hippocampus. Neurobiol. Dis. 2020, 143, 105018. [Google Scholar] [CrossRef]
- Milosavljevic, S.; Glinton, K.E.; Li, X.; Medeiros, C.; Gillespie, P.; Seavitt, J.R.; Graham, B.H.; Elsea, S.H. Untargeted Metabolomics of SLC13A5 Deficiency Reveal Critical Liver-Brain Axis for Lipid Homeostasis. Metabolites 2022, 12, 351. [Google Scholar] [CrossRef]
- Kopel, J.J.; Bhutia, Y.D.; Sivaprakasam, S.; Ganapathy, V. Consequences of NaCT/SLC13A5/mINDY deficiency: Good versus evil, separated only by the blood-brain barrier. Biochem. J. 2021, 478, 463–486. [Google Scholar] [CrossRef]
- Schwabedal, J.T.; Riedl, M.; Penzel, T.; Wessel, N. Alpha-wave frequency characteristics in health and insomnia during sleep. J. Sleep Res. 2016, 25, 278–286. [Google Scholar] [CrossRef]
In-Person Cohort | Remote Cohort | |
---|---|---|
Age in Years (mean ± SD) Range | 10.0 ± 5.7 3.3–18.5 | 9.8 ± 10.0 0.4–30.2 |
Gender (M, F) | 7 M, 5 F | 8 M, 6 F |
Baseline: 100% (12/12) | Baseline: 100% (14/14) | |
Visit Completion Rate | 6 Months: 75.0% (9/12) | 6 Months: 78.6% (11/14) |
12 Months: 58.3% (7/12) | 12 Months: 57.1% (8/14) | |
Sleep Aids | 16.7% (2/12) | 28.6% (4/14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, R.M.; Ozlu, C.; Bailey, L.E.; Solidum, R.M.; Cooper, S.; Best, C.R.; Elacio, J.; Kavanaugh, B.C.; Brown, T.L.; Nye, K.; et al. Sleep Abnormalities in SLC13A5 Citrate Transporter Disorder. Genes 2024, 15, 1338. https://doi.org/10.3390/genes15101338
Adams RM, Ozlu C, Bailey LE, Solidum RM, Cooper S, Best CR, Elacio J, Kavanaugh BC, Brown TL, Nye K, et al. Sleep Abnormalities in SLC13A5 Citrate Transporter Disorder. Genes. 2024; 15(10):1338. https://doi.org/10.3390/genes15101338
Chicago/Turabian StyleAdams, Raegan M., Can Ozlu, Lauren E. Bailey, Rayann M. Solidum, Sydney Cooper, Carrie R. Best, Jennifer Elacio, Brian C. Kavanaugh, Tanya L. Brown, Kimberly Nye, and et al. 2024. "Sleep Abnormalities in SLC13A5 Citrate Transporter Disorder" Genes 15, no. 10: 1338. https://doi.org/10.3390/genes15101338
APA StyleAdams, R. M., Ozlu, C., Bailey, L. E., Solidum, R. M., Cooper, S., Best, C. R., Elacio, J., Kavanaugh, B. C., Brown, T. L., Nye, K., Liu, J., Porter, B. E., Goodspeed, K., & Bailey, R. M. (2024). Sleep Abnormalities in SLC13A5 Citrate Transporter Disorder. Genes, 15(10), 1338. https://doi.org/10.3390/genes15101338