Two Novel Variants in the CHRNA2 and SCN2A Genes in Italian Patients with Febrile Seizures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Clinical Characteristic
3.1.1. Family 1
3.1.2. Family 2
3.2. Genetic Data
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, N.; Ram, D.; Swiderska, N.; Mewasingh, L.D.; Newton, R.W.; Offringa, M. Febrile seizures. BMJ 2015, 351, h4240. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A. Febrile Seizures. Continuum 2016, 22, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Subcommittee on Febrile Seizures; American Academy of Pediatrics. Neurodiagnostic evaluation of the child with a simple febrile seizure. Pediatrics 2011, 127, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Eilbert, W.; Chan, C. Febrile seizures: A review. J. Am. Coll. Emerg. Physicians Open 2022, 3, e12769. [Google Scholar] [CrossRef]
- Laina, D.; Mencaroni, E.; Esposito, S. Management of pediatric febrile seizures. Int. J. Environ. Res. Public Health 2018, 15, 2232. [Google Scholar] [CrossRef]
- Veisani, Y.; Delpisheh, A.; Sayehmiri, K. Familial history and recurrence of febrile seizures; a systematic review and meta-analysis. Iran J. Pediatr. 2013, 23, 389–395. [Google Scholar]
- Mantegazza, M.; Gambardella, A.; Rusconi, R.; Schiavon, E.; Annesi, F.; Cassulini, R.R.; Labate, A.; Carrideo, S.; Chifari, R.; Canevini, M.P.; et al. Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc. Natl. Acad. Sci. USA 2005, 102, 18177–18182. [Google Scholar] [CrossRef]
- Han, J.Y.; Lee, H.J.; Lee, Y.M.; Park, J. Identification of Missense ADGRV1 Mutation as a Candidate Genetic Cause of Familial Febrile Seizure 4. Children 2020, 7, 144. [Google Scholar] [CrossRef]
- Audenaert, D.; Schwartz, E.; Claeys, K.G.; Claes, L.; Deprez, L.; Suls, A.; Van Dyck, T.; Lagae, L.; Van Broeckhoven, C.; Macdonald, R.L.; et al. A novel GABRG2 mutation associated with febrile seizures. Neurology 2006, 67, 687–690. [Google Scholar] [CrossRef]
- Becchetti, A.; Grandi, L.C.; Cerina, M.; Amadeo, A. Nicotinic acetylcholine receptors and epilepsy. Pharmacol. Res. 2023, 189, 106698. [Google Scholar] [CrossRef]
- Gharpure, A.; Noviello, C.M.; Hibbs, R.E. Progress in nicotinic receptor structural biology. Neuropharmacology 2020, 171, 108086. [Google Scholar] [CrossRef] [PubMed]
- Kouvatsos, N.; Giastas, P.; Chroni-Tzartou, D.; Poulopoulou, C.; Tzartos, S.J. Crystal structure of a human neuronal nAChR extracellular domain in pentameric assembly: Ligand-bound alpha2 homopentamer. Proc. Natl. Acad. Sci. USA 2016, 113, 9635–9640. [Google Scholar] [CrossRef]
- Zoli, M.; Pucci, S.; Vilella, A.; Gotti, C. Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr. Neuropharmacol. 2018, 16, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Steinlein, O.K.; Bertrand, D. Neuronal nicotinic acetylcholine receptors: From the genetic analysis to neurological diseases. Biochem. Pharmacol. 2008, 76, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.Y.; Le Novère, N.; Zoli, M.; Hill, J.A., Jr.; Champtiaux, N.; Changeux, J.P. Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur. J. Neurosci. 2000, 12, 3664–3674. [Google Scholar] [CrossRef]
- Steinlein, O.K.; Mulley, J.C.; Propping, P.; Wallace, R.H.; Phillips, H.A.; Sutherland, G.R.; Scheffer, I.E.; Berkovic, S.F. A missense mutation in the neuronal nicotinic acetylcholine receptor alpha 4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 1995, 11, 201–203. [Google Scholar] [CrossRef]
- De Fusco, M.; Becchetti, A.; Patrignani, A.; Annesi, G.; Gambardella, A.; Quattrone, A.; Ballabio, A.; Wanke, E.; Casari, G. The nicotinic receptor beta 2 subunit is mutant in nocturnal frontal lobe epilepsy. Nat. Genet. 2000, 26, 275–276. [Google Scholar] [CrossRef] [PubMed]
- Aridon, P.; Marini, C.; Di Resta, C.; Brilli, E.; De Fusco, M.; Politi, F.; Parrini, E.; Manfredi, I.; Pisano, T.; Pruna, D.; et al. Increased sensitivity of the neuronal nicotinic receptor alpha 2 subunit causes familial epilepsy with nocturnal wandering and ictal fear. Am. J. Hum. Genet. 2006, 79, 342–350. [Google Scholar] [CrossRef]
- Conti, V.; Aracri, P.; Chiti, L.; Brusco, S.; Mari, F.; Marini, C.; Albanese, M.; Marchi, A.; Liguori, C.; Placidi, F.; et al. Nocturnal frontal lobe epilepsy with paroxysmal arousals due to CHRNA2 loss of function. Neurology 2015, 84, 1520–1528. [Google Scholar] [CrossRef]
- Villa, C.; Colombo, G.; Meneghini, S.; Gotti, C.; Moretti, M.; Ferini-Strambi, L.; Chisci, E.; Giovannoni, R.; Becchetti, A.; Combi, R. CHRNA2 and Nocturnal Frontal Lobe Epilepsy: Identification and Characterization of a Novel Loss of Function Mutation. Front. Mol. Neurosci. 2019, 12, 17. [Google Scholar] [CrossRef]
- Trivisano, M.; Terracciano, A.; Milano, T.; Cappelletti, S.; Pietrafusa, N.; Bertini, E.S.; Vigevano, F.; Specchio, N. Mutation of CHRNA2 in a family with benign familial infantile seizures: Potential role of nicotinic acetylcholine receptor in various phenotypes of epilepsy. Epilepsia 2015, 56, e53–e57. [Google Scholar] [CrossRef] [PubMed]
- Sansoni, V.; Forcella, M.; Mozzi, A.; Fusi, P.; Ambrosini, R.; Ferini-Strambi, L.; Combi, R. Functional characterization of a CRH missense mutation identified in an ADNFLE family. PLoS ONE 2013, 8, e61306. [Google Scholar] [CrossRef] [PubMed]
- Catterall, W.A. Forty Years of Sodium Channels: Structure, Function, Pharmacology, and Epilepsy. Neurochem. Res. 2017, 42, 2495–2504. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, H.A.; Isom, L.L. Sodium channel beta subunits: Emerging targets in channelopathies. Annu. Rev. Physiol. 2015, 77, 481–504. [Google Scholar] [CrossRef]
- Golding, A.L. Diversity of mammalian voltage-gated sodium channels. Ann. N. Y. Acad. Sci. 1999, 868, 38–50. [Google Scholar] [CrossRef]
- Sanders, S.J.; Campbell, A.J.; Cottrell, J.R.; Moller, R.S.; Wagner, F.F.; Auldridge, A.L.; Bernier, R.A.; Catterall, W.A.; Chung, W.K.; Empfield, J.R.; et al. Progress in Understanding and Treating SCN2A-Mediated Disorders. Trends Neurosci. 2018, 41, 442–456. [Google Scholar] [CrossRef]
- Sugawara, T.; Tsurubuchi, Y.; Agarwala, K.L.; Ito, M.; Fukuma, G.; Mazaki-Miyazaki, E.; Nagafuji, H.; Noda, M.; Imoto, K.; Wada, K.; et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc. Natl. Acad. Sci. USA 2001, 98, 6384–6389. [Google Scholar] [CrossRef]
- Heron, S.E.; Crossland, K.M.; Andermann, E.; Phillips, H.A.; Hall, A.J.; Bleasel, A.; Shevell, M.; Mercho, S.; Seni, M.H.; Guiot, M.C.; et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 2002, 360, 851–852. [Google Scholar] [CrossRef]
- Wolff, M.; Brunklaus, A.; Zuberi, S.M. Phenotypic spectrum and genetics of SCN2A-related disorders, treatment options, and outcomes in epilepsy and beyond. Epilepsia 2019, 60 (Suppl. S3), S59–S67. [Google Scholar] [CrossRef]
- Perucca, P.; Perucca, E. identifying mutations in epilepsy genes: Impact on treatment selection. Epilepsy Res. 2019, 152, 18–30. [Google Scholar] [CrossRef]
- Liu, X.W.; Li, W.; Han, T.; Wei, K.; Qiao, S.; Su, L.; Chi, Z. The finding of a new heterozygous mutation site of the SCN2A gene in a monozygotic twin family carrying and exhibiting genetic epilepsy with febrile seizures plus (GEFS+) using targeted next-generation sequencing. Clin. Neurol. Neurosurg. 2018, 169, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Nykamp, K.; Anderson, M.; Powers, M.; Garcia, J.; Herrera, B.; Ho, Y.Y.; Kobayashi, Y.; Patil, N.; Thusberg, J.; Westbrook, M.; et al. Sherloc: A comprehensive refinement of the ACMG-AMP variant classification criteria. Genet. Med. 2017, 19, 1105–1117. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed]
- Bienert, S.; Waterhouse, A.; de Beer, T.A.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef]
- Guex, N.; Peitsch, M.C.; Schwede, T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009, 30 (Suppl. S1), S162–S173. [Google Scholar] [CrossRef]
- Studer, G.; Rempfer, C.; Waterhouse, A.M.; Gumienny, R.; Haas, J.; Schwede, T. QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics 2020, 36, 1765–1771. [Google Scholar] [CrossRef]
- Bertoni, M.; Kiefer, F.; Biasini, M.; Bordoli, L.; Schwede, T. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci. Rep. 2017, 7, 10480. [Google Scholar] [CrossRef]
- Schrödinger, L.; DeLano, W. PyMOL. 2020. Available online: http://www.pymol.org/pymol (accessed on 15 August 2024).
- De Paolis, E.; Tilocca, B.; Inchingolo, R.; Lombardi, C.; Perrucci, A.; Maneri, G.; Roncada, P.; Varone, F.; Luca, R.; Urbani, A.; et al. The novel CFTR haplotype E583G/F508del in CFTR-related disorder. Mol. Biol. Rep. 2024, 51, 849. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Ascher, D.B.; Blundell, T.L. DUET: A server for predicting effects of mutations of protein stability using an integrated computational approach. Nucleic Acids Res. 2014, 42, W314–W319. [Google Scholar] [CrossRef]
- Leniger, T.; Kananura, C.; Hufnagel, A.; Bertrand, S.; Bertrand, D.; Steinlein, O.K. A new Chrna4 mutation with low penetrance in nocturnal frontal lobe epilepsy. Epilepsia 2003, 44, 981–985. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, L.; Fang, Y.; He, Z.; Peng, B.; Shen, Y.; Xu, Q. A novel mutation of the nicotinic acetylcholine receptor gene CHRNA4 in sporadic nocturnal frontal lobe epilepsy. Epilepsy Res. 2009, 83, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Unwin, N. Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett. 2003, 555, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, D.; Elmslie, F.; Hughes, E.; Trounce, J.; Sander, T.; Bertrand, S.; Steinlein, O.K. The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits. Neurobiol. Dis. 2005, 20, 799–804. [Google Scholar] [CrossRef]
- Hoda, J.C.; Gu, W.; Friedli, M.; Phillips, H.A.; Bertrand, S.; Antonarakis, S.E.; Goudie, D.; Roberts, R.; Scheffer, I.E.; Marini, C.; et al. Human nocturnal frontal lobe epilepsy: Pharmocogenomic profiles of pathogenic nicotinic acetylcholine receptor beta-subunit mutations outside the ion channel pore. Mol. Pharmacol. 2008, 74, 379–391. [Google Scholar] [CrossRef]
- Cho, Y.W.; Yi, S.D.; Lim, J.G.; Kim, D.K.; Motamedi, G.K. Autosomal dominant nocturnal frontal lobe epilepsy and mild memory impairment associated with CHRNB2 mutation I312M in the neuronal nicotinic acetylcholine receptor. Epilepsy Behav. 2008, 13, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Lugovskoy, A.A.; Maslennikov, I.V.; Utkin, Y.N.; Tsetlin, V.I.; Cohen, J.B.; Arseniev, A.S. Spatial structure of the M3 transmembrane segment of the nicotinic acetylcholine receptor alpha subunit. Eur. J. Biochem. 1998, 255, 455–461. [Google Scholar] [CrossRef]
- Le Novere, N.; Corringer, P.J.; Changeux, J.P. Improved secondary structure predictions for a nicotinic receptor subunit: Incorporation of solvent accessibility and experimental data into a two-dimensional representation. Biophys. J. 1999, 76, 2329–2345. [Google Scholar] [CrossRef]
- Miyazawa, A.; Fujiyoshi, Y.; Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 2003, 423, 949–955. [Google Scholar] [CrossRef]
- Reynolds, C.; King, M.D.; Gorman, K.M. The phenotypic spectrum of SCN2A-related epilepsy. Eur. J. Paediatr. Neurol. 2020, 24, 117–122. [Google Scholar] [CrossRef]
- Brunklaus, A.; Ellis, R.; Reavery, E.; Semsarian, C.; Zuberi, S.M. Genotype phenotype associations across the voltage-gated sodium channel family. J. Med. Genet. 2014, 51, 650–658. [Google Scholar] [CrossRef]
- Begemann, A.; Acuña, M.A.; Zweier, M.; Vincent, M.; Steindl, K.; Bachmann-Gagescu, R.; Hackenberg, A.; Abela, L.; Plecko, B.; Kroell-Seger, J.; et al. Further corroboration of distinct functional features in SCN2A variants causing intellectual disability or epileptic phenotypes. Mol. Med. 2019, 25, 6. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Tian, C.; Li, T.; Yang, M.; Hou, H.; Shu, Y. Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat. Neurosci. 2009, 12, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Skotte, L.; Fadista, J.; Bybjerg-Grauholm, J.; Appadurai, V.; Hildebrand, M.S.; Hansen, T.F.; Banasik, K.; Grove, J.; Albiñana, C.; Geller, F.; et al. Genome-wide association study of febrile seizures implicates fever response and neuronal excitability genes. Brain 2022, 145, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shalom, R.; Keeshen, C.M.; Berrios, K.N.; An, J.Y.; Sanders, S.J.; Bender, K.J. Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in Individuals with Autism Spectrum Disorder or Infantile Seizures. Biol. Psychiatry 2017, 82, 224–232. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Procopio, R.; Gagliardi, M.; Talarico, M.; Fortunato, F.; Sammarra, I.; Procopio, A.C.; Roncada, P.; Malanga, D.; Annesi, G.; Gambardella, A. Two Novel Variants in the CHRNA2 and SCN2A Genes in Italian Patients with Febrile Seizures. Genes 2024, 15, 1407. https://doi.org/10.3390/genes15111407
Procopio R, Gagliardi M, Talarico M, Fortunato F, Sammarra I, Procopio AC, Roncada P, Malanga D, Annesi G, Gambardella A. Two Novel Variants in the CHRNA2 and SCN2A Genes in Italian Patients with Febrile Seizures. Genes. 2024; 15(11):1407. https://doi.org/10.3390/genes15111407
Chicago/Turabian StyleProcopio, Radha, Monica Gagliardi, Mariagrazia Talarico, Francesco Fortunato, Ilaria Sammarra, Anna Caterina Procopio, Paola Roncada, Donatella Malanga, Grazia Annesi, and Antonio Gambardella. 2024. "Two Novel Variants in the CHRNA2 and SCN2A Genes in Italian Patients with Febrile Seizures" Genes 15, no. 11: 1407. https://doi.org/10.3390/genes15111407
APA StyleProcopio, R., Gagliardi, M., Talarico, M., Fortunato, F., Sammarra, I., Procopio, A. C., Roncada, P., Malanga, D., Annesi, G., & Gambardella, A. (2024). Two Novel Variants in the CHRNA2 and SCN2A Genes in Italian Patients with Febrile Seizures. Genes, 15(11), 1407. https://doi.org/10.3390/genes15111407