The Evolution of Complex Multicellularity in Land Plants
Abstract
:1. Introduction
2. Transitions in Structural Complexity
3. TSCs, Sex, and Multicellularity
3.1. Complex Multicellularity
3.2. Sex and Multicellularity
4. The Evolutionary Processes of TSC
4.1. Modularization in Land Plants
4.2. Subfunctionalization in Land Plants
4.3. Integration in Land Plants
5. Genomic Toolkits of Multicellularity in the TSC Context
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maynard Smith, J.; Szathmáry, E. The Major Transitions in Evolution; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Buss, L.W. The Evolution of Individuality; Princeton University Press: Princeton, NJ, USA, 1987. [Google Scholar]
- Bonner, J.T. The Evolution of Complexity by Means of Natural Selection; Princeton University Press: Princeton, NJ, USA, 1988. [Google Scholar]
- McShea, D.W. A Complexity Drain on Cells in the Evolution of Multicellularity. Evolution 2002, 56, 441–452. [Google Scholar] [PubMed]
- Michod, R.E. On the Transfer of Fitness from the Cell to the Multicellular Organism. Biol. Philos. 2005, 20, 967–987. [Google Scholar] [CrossRef]
- Rokas, A. The Origins of Multicellularity and the Early History of the Genetic Toolkit for Animal Development. Annu. Rev. Genet. 2008, 42, 235–251. [Google Scholar] [CrossRef] [PubMed]
- Bonner, J.T. First Signals; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Bourke, A.F. Principles of Social Evolution; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Nejad Kourki, A. The Evolution of Complex Multicellularity in Animals. Biol. Philos. 2022, 37, 43. [Google Scholar] [CrossRef]
- Rose, C.J.; Hammerschmidt, K.; Rainey, P.B. Experimental Evolution of Nascent Multicellularity: Recognizing a Darwinian Transition in Individuality. bioRxiv 2020. [Google Scholar] [CrossRef]
- Bozdag, G.O.; Zamani-Dahaj, S.A.; Day, T.C.; Kahn, P.C.; Burnetti, A.J.; Lac, D.T.; Tong, K.; Conlin, P.L.; Balwani, A.H.; Dyer, E.L. De Novo Evolution of Macroscopic Multicellularity. Nature 2023, 617, 747–754. [Google Scholar] [CrossRef]
- Pineau, R.M.; Libby, E.; Demory, D.; Lac, D.T.; Day, T.C.; Bravo, P.; Yunker, P.J.; Weitz, J.S.; Bozdag, G.O.; Ratcliff, W.C. Emergence and Maintenance of Stable Coexistence During a Long-Term Multicellular Evolution Experiment. Nat. Ecol. Evol. 2024, 8, 1010–1020. [Google Scholar] [CrossRef]
- Michod, R.E. Darwinian Dynamics: Evolutionary Transitions in Fitness and Individuality; Princeton University Press: Princeton, NJ, USA, 2000. [Google Scholar]
- Michod, R.E.; Herron, M.D. Cooperation and Conflict During Evolutionary Transitions in Individuality. J. Evol. Biol. 2006, 19, 1406–1409. [Google Scholar] [CrossRef]
- Estrela, S.; Kerr, B.; Morris, J.J. Transitions in Individuality through Symbiosis. Curr. Opin. Microbiol. 2016, 31, 191–198. [Google Scholar] [CrossRef]
- McShea, D.W.; Changizi, M.A. Three Puzzles in Hierarchical Evolution. Integr. Comp. Biol. 2003, 43, 74–81. [Google Scholar] [CrossRef]
- Marcot, J.D.; McShea, D.W. Increasing Hierarchical Complexity Throughout the History of Life: Phylogenetic Tests of Trend Mechanisms. Paleobiology 2007, 33, 182–200. [Google Scholar] [CrossRef]
- McShea, D.W. Hierarchy: The Source of Teleology in Evolution. In Evolutionary Theory; University of Chicago Press: Chicago, IL, USA, 2016; pp. 86–102. [Google Scholar]
- Kenrick, P.; Crane, P.R. The Origin and Early Evolution of Plants on Land. Nature 1997, 389, 33–39. [Google Scholar] [CrossRef]
- Niklas, K.J. The Evolution of Plant Body Plans—A Biomechanical Perspective. Ann. Bot. 2000, 85, 411–438. [Google Scholar] [CrossRef]
- Godfrey-Smith, P. Darwinian Populations and Natural Selection; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- McShea, D.W. Three Trends in the History of Life: An Evolutionary Syndrome. Evol. Biol. 2016, 43, 531–542. [Google Scholar] [CrossRef]
- Grosberg, R.K.; Strathmann, R.R. The Evolution of Multicellularity: A Minor Major Transition? Annu. Rev. Ecol. Evol. Syst. 2007, 38, 621–654. [Google Scholar] [CrossRef]
- Lindsey, C.R.; Rosenzweig, F.; Herron, M.D. Phylotranscriptomics Points to Multiple Independent Origins of Multicellularity and Cellular Differentiation in the Volvocine Algae. BMC Biol. 2021, 19, 182. [Google Scholar] [CrossRef]
- Lamża, Ł. Diversity of ‘Simple’ multicellular Eukaryotes: 45 Independent Cases and Six Types of Multicellularity. Biol. Rev. 2023, 98, 2188–2209. [Google Scholar] [CrossRef] [PubMed]
- Niklas, K.J.; Newman, S.A. The Many Roads to and from Multicellularity. J. Exp. Bot. 2020, 71, 3247–3253. [Google Scholar] [CrossRef] [PubMed]
- Niklas, K.J. The Evolutionary-Developmental Origins of Multicellularity. Am. J. Bot. 2014, 101, 6–25. [Google Scholar] [CrossRef]
- Niklas, K.J.; Newman, S.A. The Origins of Multicellular Organisms. Evol. Dev. 2013, 15, 41–52. [Google Scholar] [CrossRef]
- Grosberg, R.K.; Strathmann, R.R. One Cell, Two Cell, Red Cell, Blue Cell: The Persistence of a Unicellular Stage in Multicellular Life Histories. Trends Ecol. Evol. 1998, 13, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Michod, R.E.; Roze, D. Cooperation and Conflict in the Evolution of Multicellularity. Heredity 2001, 86, 1–7. [Google Scholar] [CrossRef]
- Radzvilavicius, A.L.; Blackstone, N.W. The Evolution of Individuality Revisited. Biol. Rev. 2018, 93, 1620–1633. [Google Scholar] [CrossRef]
- Niklas, K.J.; Kutschera, U. The Evolution of the Land Plant Life Cycle. New Phytol. 2010, 185, 27–41. [Google Scholar] [CrossRef]
- Delwiche, C.F.; Cooper, E.D. The Evolutionary Origin of a Terrestrial Flora. Curr. Biol. 2015, 25, R899–R910. [Google Scholar] [CrossRef] [PubMed]
- De Vries, J.; Archibald, J.M. Plant Evolution: Landmarks on the Path to Terrestrial Life. New Phytol. 2018, 217, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Bierenbroodspot, M.J.; Pröschold, T.; Fürst-Jansen, J.M.; de Vries, S.; Irisarri, I.; Darienko, T.; de Vries, J. Phylogeny and evolution of streptophyte algae. Ann. Bot. 2024, 134, 385–400. [Google Scholar] [CrossRef]
- Tang, Q.; Pang, K.; Yuan, X.; Xiao, S. A One-Billion-Year-Old Multicellular Chlorophyte. Nat. Ecol. Evol. 2020, 4, 543–549. [Google Scholar] [CrossRef]
- Bowles, A.M.; Williamson, C.J.; Williams, T.A.; Lenton, T.M.; Donoghue, P.C. The Origin and Early Evolution of Plants. Trends Plant Sci. 2023, 28, 312–329. [Google Scholar] [CrossRef]
- Li, L.; Wang, S.; Wang, H.; Sahu, S.K.; Marin, B.; Li, H.; Xu, Y.; Liang, H.; Li, Z.; Cheng, S. The Genome of Prasinoderma coloniale Unveils the Existence of a Third Phylum within Green Plants. Nat. Ecol. Evol. 2020, 4, 1220–1231. [Google Scholar] [CrossRef]
- Bower, F.O. The Origin of a Land Flora: A Theory Based Upon the Facts of Alternation; Macmillan: New York, NY, USA, 1908. [Google Scholar]
- Leebens-Mack, J.H.; Barker, M.S.; Carpenter, E.J.; Deyholos, M.K.; Gitzendanner, M.A.; Graham, S.W.; Grosse, I.; Li, Z.; Melkonian, M.; Mirarab, S.; et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 2019, 574, 679–685. [Google Scholar] [CrossRef]
- Jones, V.A.; Dolan, L. The Evolution of Root Hairs and Rhizoids. Ann. Bot. 2012, 110, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, W. Main Results of the “Telome Theory”. Palaeobotanist 1952, 19, 417–437. [Google Scholar] [CrossRef]
- Donoghue, M.J.; Kadereit, J.W. Walter Zimmermann and the Growth of Phylogenetic Theory. Syst. Biol. 1992, 41, 74–85. [Google Scholar] [CrossRef]
- Duckett, J.G.; Schmid, A.M.; Ligrone, R. Protonemal Morphogenesis. In Bryology for the Twenty-first Century; Routledge: London, UK, 2018; pp. 223–246. [Google Scholar]
- Cove, D.; Bezanilla, M.; Harries, P.; Quatrano, R. Mosses as Model Systems for the Study of Metabolism and Development. Annu. Rev. Plant Biol. 2006, 57, 497–520. [Google Scholar] [CrossRef]
- Bowman, J.L.; Briginshaw, L.N.; Florent, S.N. Evolution and Co-Option of Developmental Regulatory Networks in Early Land Plants. Curr. Top. Dev. Biol. 2019, 131, 35–53. [Google Scholar]
- Crane, P.R.; Kenrick, P. Problems in Cladistic Classification: Higher-Level Relationships in Land Plants. Aliso A J. Syst. Florist. Bot. 1997, 15, 87–104. [Google Scholar] [CrossRef]
- Harrison, C.J.; Corley, S.B.; Moylan, E.C.; Alexander, D.L.; Scotland, R.W.; Langdale, J.A. Independent Recruitment of a Conserved Developmental Mechanism During Leaf Evolution. Nature 2005, 434, 509–514. [Google Scholar] [CrossRef]
- Beerling, D.J.; Fleming, A.J. Zimmermann’s Telome Theory of Megaphyll Leaf Evolution: A Molecular and Cellular Critique. Curr. Opin. Plant Biol. 2007, 10, 4–12. [Google Scholar] [CrossRef]
- Floyd, S.K.; Bowman, J.L. Distinct Developmental Mechanisms Reflect the Independent Origins of Leaves in Vascular Plants. Curr. Biol. 2006, 16, 1911–1917. [Google Scholar] [CrossRef] [PubMed]
- Floyd, S.K.; Ryan, J.G.; Conway, S.J.; Brenner, E.; Burris, K.P.; Burris, J.N.; Chen, T.; Edger, P.P.; Graham, S.W.; Leebens-Mack, J.H. Origin of a Novel Regulatory Module by Duplication and Degeneration of an Ancient Plant Transcription Factor. Mol. Phylogenet. Evol. 2014, 81, 159–173. [Google Scholar] [CrossRef] [PubMed]
- von Goethe, J.W.; Miller, G.L. The Metamorphosis of Plants; MIT Press Cambridge: Cambridge, MA, USA, 1790. [Google Scholar]
- Pelaz, S.; Tapia-López, R.; Alvarez-Buylla, E.R.; Yanofsky, M.F. Conversion of Leaves into Petals in Arabidopsis. Curr. Biol. 2001, 11, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Bateman, R.M.; Dimichele, W.A. Heterospory: The Most Iterative Key Innovation in the Evolutionary History of the Plant Kingdom. Biol. Rev. 1994, 69, 345–417. [Google Scholar] [CrossRef]
- Taylor, E.L.; Taylor, T.N.; Krings, M. Paleobotany: The Biology and Evolution of Fossil Plants; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Petersen, K.B.; Burd, M. Why Did Heterospory Evolve? Biol. Rev. 2017, 92, 1739–1754. [Google Scholar] [CrossRef]
- Sachs, J. Lectures on the Physiology of Plants; Clarendon Press: Oxford, UK, 1887. [Google Scholar]
- Willis, K.J.; McElwain, J.C. The Evolution of Plants; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Gregory, T.R. Synergy between Sequence and Size in Large-Scale Genomics. Nat. Rev. Genet. 2005, 6, 699–708. [Google Scholar] [CrossRef]
- Davidson, E.H.; Erwin, D.H. Gene Regulatory Networks and the Evolution of Animal Body Plans. Science 2006, 311, 796–800. [Google Scholar] [CrossRef]
- de Mendoza, A.; Sebé-Pedrós, A.; Šestak, M.S.; Matejčić, M.; Torruella, G.; Domazet-Lošo, T.; Ruiz-Trillo, I. Transcription Factor Evolution in Eukaryotes and the Assembly of the Regulatory Toolkit in Multicellular Lineages. Proc. Natl. Acad. Sci. USA 2013, 110, E4858–E4866. [Google Scholar] [CrossRef]
- Sebé-Pedrós, A.; de Mendoza, A. Transcription Factors and the Origin of Animal Multicellularity. In Evolutionary Transitions to Multicellular Life. Advances in Marine Genomics; Springer: Dordrecht, The Netherlands, 2015; pp. 379–394. [Google Scholar]
- Shlyueva, D.; Stampfel, G.; Stark, A. Transcriptional Enhancers: From Properties to Genome-Wide Predictions. Nat. Rev. Genet. 2014, 15, 272–286. [Google Scholar] [CrossRef]
- Spitz, F.; Furlong, E.E. Transcription Factors: From Enhancer Binding to Developmental Control. Nat. Rev. Genet. 2012, 13, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S. The Enormous Diversity in Genome Sizes of Fish as a Reflection of Nature’s Extensive Experiments with Gene Duplication. Trans. Am. Fish. Soc. 1970, 99, 120–130. [Google Scholar] [CrossRef]
- McLysaght, A.; Hokamp, K.; Wolfe, K.H. Extensive Genomic Duplication During Early Chordate Evolution. Nat. Genet. 2002, 31, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.; Conery, J.S. The Evolutionary Fate and Consequences of Duplicate Genes. Science 2000, 290, 1151–1155. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.; Conery, J.S. The Origins of Genome Complexity. Science 2003, 302, 1401–1404. [Google Scholar] [CrossRef]
- Maere, S.; De Bodt, S.; Raes, J.; Casneuf, T.; Van Montagu, M.; Kuiper, M.; Van de Peer, Y. Modeling Gene and Genome Duplications in Eukaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 5454–5459. [Google Scholar] [CrossRef] [PubMed]
- Vanneste, K.; Baele, G.; Maere, S.; Van de Peer, Y. Analysis of 41 Plant Genomes Supports a Wave of Successful Genome Duplications in Association with the Cretaceous–Paleogene Boundary. Genome Res. 2014, 24, 1334–1347. [Google Scholar] [CrossRef]
- Birchler, J.A.; Yang, H. The Multiple Fates of Gene Duplications: Deletion, Hypofunctionalization, Subfunctionalization, Neofunctionalization, Dosage Balance Constraints, and Neutral Variation. Plant Cell 2022, 34, 2466–2474. [Google Scholar] [CrossRef]
- Dodsworth, S.; Chase, M.W.; Leitch, A.R. Is Post-Polyploidization Diploidization the Key to the Evolutionary Success of Angiosperms? Bot. J. Linn. Soc. 2016, 180, 1–5. [Google Scholar] [CrossRef]
- Blanc, G.; Wolfe, K.H. Widespread Paleopolyploidy in Model Plant Species Inferred from Age Distributions of Duplicate Genes. Plant Cell 2004, 16, 1667–1678. [Google Scholar] [CrossRef]
- Seoighe, C.; Gehring, C. Genome Duplication Led to Highly Selective Expansion of the Arabidopsis Thaliana Proteome. Trends Genet. 2004, 20, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Wood, T.E.; Takebayashi, N.; Barker, M.S.; Mayrose, I.; Greenspoon, P.B.; Rieseberg, L.H. The Frequency of Polyploid Speciation in Vascular Plants. Proc. Natl. Acad. Sci. USA 2009, 106, 13875–13879. [Google Scholar] [CrossRef]
- Hallinan, N.M.; Lindberg, D.R. Comparative Analysis of Chromosome Counts Infers Three Paleopolyploidies in the Mollusca. Genome Biol. Evol. 2011, 3, 1150–1163. [Google Scholar] [CrossRef]
- Nossa, C.W.; Havlak, P.; Yue, J.-X.; Lv, J.; Vincent, K.Y.; Brockmann, H.J.; Putnam, N.H. Joint Assembly and Genetic Mapping of the Atlantic Horseshoe Crab Genome Reveals Ancient Whole Genome Duplication. GigaScience 2014, 3, 2047-217X-3-9. [Google Scholar] [CrossRef]
- Clarke, T.H.; Garb, J.E.; Hayashi, C.Y.; Arensburger, P.; Ayoub, N.A. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution. Genome Biol. Evol. 2015, 7, 1856–1870. [Google Scholar] [CrossRef]
- Schwager, E.E.; Sharma, P.P.; Clarke, T.; Leite, D.J.; Wierschin, T.; Pechmann, M.; Akiyama-Oda, Y.; Esposito, L.; Bechsgaard, J.; Bilde, T. The House Spider Genome Reveals an Ancient Whole-Genome Duplication During Arachnid Evolution. BMC Biol. 2017, 15, 62. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tiley, G.P.; Galuska, S.R.; Reardon, C.R.; Kidder, T.I.; Rundell, R.J.; Barker, M.S. Multiple Large-Scale Gene and Genome Duplications During the Evolution of Hexapods. Proc. Natl. Acad. Sci. USA 2018, 115, 4713–4718. [Google Scholar] [CrossRef]
- Mondragón-Palomino, M.; Theißen, G. Conserved Differential Expression of Paralogous Deficiens-and Globosa-Like MADS-Box Genes in the Flowers of Orchidaceae: Refining the ‘Orchid Code’. Plant J. 2011, 66, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Vlad, D.; Kierzkowski, D.; Rast, M.I.; Vuolo, F.; Dello Ioio, R.; Galinha, C.; Gan, X.; Hajheidari, M.; Hay, A.; Smith, R.S. Leaf Shape Evolution Through Duplication, Regulatory Diversification, and Loss of a Homeobox Gene. Science 2014, 343, 780–783. [Google Scholar] [CrossRef]
- Sicard, A.; Thamm, A.; Marona, C.; Lee, Y.W.; Wahl, V.; Stinchcombe, J.R.; Wright, S.I.; Kappel, C.; Lenhard, M. Repeated Evolutionary Changes of Leaf Morphology Caused by Mutations to a Homeobox Gene. Curr. Biol. 2014, 24, 1880–1886. [Google Scholar] [CrossRef]
- Floyd, S.K.; Bowman, J.L. The Ancestral Developmental Tool Kit of Land Plants. Int. J. Plant Sci. 2007, 168, 1. [Google Scholar] [CrossRef]
- Harris, B.J.; Harrison, C.J.; Hetherington, A.M.; Williams, T.A. Phylogenomic Evidence for the Monophyly of Bryophytes and the Reductive Evolution of Stomata. Curr. Biol. 2020, 30, 2001–2012.e2. [Google Scholar] [CrossRef]
- Bowles, A.M.; Paps, J.; Bechtold, U. Water-Related Innovations in Land Plants Evolved by Different Patterns of Gene Cooption and Novelty. New Phytol. 2022, 235, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Nurse, P. Biology Must Generate Ideas as Well as Data. Nature 2021, 597, 305. [Google Scholar] [CrossRef] [PubMed]
- Brodribb, T.J.; McAdam, S.A. Evolution of the Stomatal Regulation of Plant Water Content. Plant Physiol. 2017, 174, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Brodribb, T.J.; McAdam, S.A. Passive Origins of Stomatal Control in Vascular Plants. Science 2011, 331, 582–585. [Google Scholar] [CrossRef]
- Brodribb, T.J.; McAdam, S.A.; Carins Murphy, M.R. Xylem and Stomata, Coordinated through Time and Space. Plant Cell Environ. 2017, 40, 872–880. [Google Scholar] [CrossRef]
Theoretical Approach | Explanatory Aim | Example Target Phenomena | Core Explanatory Tools |
---|---|---|---|
Evolutionary Transitions in Individuality (ETI) | Evolution of new units of selection (formation and maintenance) | Protocell
|
|
Transitions in Structural Complexity (TSC) | Evolution of new units of organization (transformation) | All of the above, and:
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madhani, H.; Nejad Kourki, A. The Evolution of Complex Multicellularity in Land Plants. Genes 2024, 15, 1472. https://doi.org/10.3390/genes15111472
Madhani H, Nejad Kourki A. The Evolution of Complex Multicellularity in Land Plants. Genes. 2024; 15(11):1472. https://doi.org/10.3390/genes15111472
Chicago/Turabian StyleMadhani, Hossein, and Arsham Nejad Kourki. 2024. "The Evolution of Complex Multicellularity in Land Plants" Genes 15, no. 11: 1472. https://doi.org/10.3390/genes15111472
APA StyleMadhani, H., & Nejad Kourki, A. (2024). The Evolution of Complex Multicellularity in Land Plants. Genes, 15(11), 1472. https://doi.org/10.3390/genes15111472