Genome Insights and Identification of Sex Determination Region and Sex Markers in Argyrosomus japonicus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Species Identification of A. japonicus
2.3. Genome Sequencing, RNA Sequencing and Hi-C
2.4. Genome Assembly and Evaluation
2.5. Annotation of Repeat Elements and Gene Annotation
2.6. Mapping Sex Determination Region and Development of Sex Markers
3. Results
3.1. Species Identification Results of A. japonicus
3.2. Results of Genome Assembly, Quality Evaluation and Functional Annotations
3.3. Mapping the Sex Determination Region and Possible Candidate Genes
3.4. Development of Sex Markers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lv, J.L. DNA Barcoding and Molecular Phylogenetic Studies on the Fishes of the Family Sciaenidae Offshore China. Master’s Thesis, Jinan University, Guangzhou, China, 2018. (In Chinese). [Google Scholar]
- Li, Z.; Gao, T.; Han, Z. RNA-Seq and Analysis of Argyrosomus japonicus under Different Salinities. Front. Mar. Sci. 2021, 8, 790065. [Google Scholar] [CrossRef]
- Ferguson, G.J.; Ward, T.M.; Ivey, A.; Barnes, T. Life History of Argyrosomus japonicus, a Large Sciaenid at the Southern Part of Its Global Distribution: Implications for Fisheries Management. Fish. Res. 2014, 151, 148–157. [Google Scholar] [CrossRef]
- Nicolle, P.; Hughes, J.; Fowler, A.; Schilling, H.T. Long-Term Increase in Growth of an Estuarine Predator, Mulloway Argyrosomus japonicus, Predicted to Continue under Future Warming Scenarios. Mar. Ecol. Prog. Ser. 2022, 688, 1–17. [Google Scholar] [CrossRef]
- Rhode, C.; Jackson, T.K.; le Cordeur, N.S.; Jenkins, S.F.; Sampson, J.E.; Vervalle, J. Performance, Heritability, and Candidate Genes for Growth in Dusky Kob (Argyrosomus japonicus): Implications for Genetic Improvement during Early Phase Domestication. Aquaculture 2023, 577, 739971. [Google Scholar] [CrossRef]
- Mirimin, L.; Macey, B.; Kerwath, S.; Lamberth, S.; Bester-Van Der Merwe, A.; Cowley, P.; Bloomer, P.; Roodt-Wilding, R. Genetic Analyses Reveal Declining Trends and Low Effective Population Size in an Overfished South African Sciaenid Species, the Dusky Kob (Argyrosomus japonicus). Mar. Freshw. Res. 2016, 67, 266–276. [Google Scholar] [CrossRef]
- Fitzgibbon, Q.P.; Strawbridge, A.; Seymour, R.S. Metabolic Scope, Swimming Performance and the Effects of Hypoxia in the Mulloway, Argyrosomus japonicus (Pisces: Sciaenidae). Aquaculture 2007, 270, 358–368. [Google Scholar] [CrossRef]
- Bernatzeder, A.; Britz, P. Temperature preference of juvenile dusky kob Argyrosomus japonicus (Pisces: Sciaenidae). Afr. J. Mar. Sci. 2007, 29, 539–543. [Google Scholar] [CrossRef]
- Ballagh, D.A.; Pankhurst, P.M.; Fielder, D.S. Photoperiod and Feeding Interval Requirements of Juvenile Mulloway, Argyrosomus japonicus. Aquaculture 2008, 277, 52–57. [Google Scholar] [CrossRef]
- Kaiser, H.; Collett, P.D.; Vine, N.G. The effect of feeding regimen on growth, food conversion ratio and size variation in juvenile dusky kob Argyrosomus japonicus (Teleostei: Sciaenidae). Afr. J. Aquat. Sci. 2011, 36, 83–88. [Google Scholar] [CrossRef]
- Jackson, T.K.; Rhode, C. A High-Density Genetic Linkage Map and QTL Identification for Growth Traits in Dusky Kob (Argyrosomus japonicus). Aquaculture 2024, 586, 740786. [Google Scholar] [CrossRef]
- McGrath, S.P.; Reichelt-Brushett, A.J.; Butcher, P.A.; Cairns, S.C. Absorption of Metals in Mulloway (Argyrosomus japonicus) after Ingesting Nickel-Plated Carbon-Steel Hooks. Mar. Environ. Res. 2014, 99, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Silberschneider, V.; Gray, C.A.; Stewart, J. Age, Growth, Maturity and the Overfishing of the Iconic Sciaenid, Argyrosomus japonicus, in South-Eastern, Australia. Fish. Res. 2009, 95, 220–229. [Google Scholar] [CrossRef]
- Archangi, B.; Chand, V.; Mather, P.B. Isolation and Characterization of 15 Polymorphic Microsatellite DNA Loci from Argyrosomus japonicus (Mulloway), a New Aquaculture Species in Australia. Mol. Ecol. Resour. 2009, 9, 412–414. [Google Scholar] [CrossRef]
- Russell, A.; Taylor, M.D.; Barnes, T.C.; Johnson, D.D.; Gillanders, B.M. Habitat Transitions by a Large Coastal Sciaenid across Life History Stages, Resolved Using Otolith Chemistry. Mar. Environ. Res. 2022, 176, 105614. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, S.; Han, Z.; Liu, Q.; Ke, W.; Liu, A.; Gao, T. Chromosome-Level Genome Assembly and Annotation of a Sciaenid Fish, Argyrosomus japonicus. Genome Biol. Evol. 2021, 13, evaa246. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.K.; Rhode, C. Comparative genomics of dusky kob (Argyrosomus japonicus, Sciaenidae) conspecifics: Evidence for speciation and the genetic mechanisms underlying traits. J. Fish. Biol. 2024, 105, 841–857. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Marçais, G.; Kingsford, C. A Fast, Lock-Free Approach for Efficient Parallel Counting of Occurrences of k-Mers. Bioinformatics 2011, 27, 764–770. [Google Scholar] [CrossRef]
- Ranallo-Benavidez, T.R.; Jaron, K.S.; Schatz, M.C. GenomeScope 2.0 and Smudgeplot for Reference-Free Profiling of Polyploid Genomes. Nat. Commun. 2020, 11, 1432. [Google Scholar] [CrossRef]
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat. Methods 2021, 18, 170–175. [Google Scholar] [CrossRef]
- Durand, N.C.; Shamim, M.S.; Machol, I.; Rao, S.S.P.; Huntley, M.H.; Lander, E.S.; Aiden, E.L. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst. 2016, 3, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Dudchenko, O.; Batra, S.S.; Omer, A.D.; Nyquist, S.K.; Hoeger, M.; Durand, N.C.; Shamim, M.S.; Machol, I.; Lander, E.S.; Aiden, A.P.; et al. De Novo Assembly of the Aedes Aegypti Genome Using Hi-C Yields Chromosome-Length Scaffolds. Science 2017, 356, 92–95. [Google Scholar] [CrossRef]
- Robinson, J.T.; Turner, D.; Durand, N.C.; Thorvaldsdóttir, H.; Mesirov, J.P.; Aiden, E.L. Juicebox.Js Provides a Cloud-Based Visualization System for Hi-C Data. Cell Syst. 2018, 6, 256–258.e1. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Rhie, A.; Walenz, B.P.; Koren, S.; Phillippy, A.M. Merqury: Reference-Free Quality, Completeness, and Phasing Assessment for Genome Assemblies. Genome Biol. 2020, 21, 245. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. RepeatModeler2 for Automated Genomic Discovery of Transposable Element Families. Proc. Natl. Acad. Sci. USA 2020, 117, 9451–9457. [Google Scholar] [CrossRef]
- Tarailo-Graovac, M.; Chen, N. Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. Curr. Protoc. Bioinform. 2009, 25, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Trinity: Reconstructing a Full-Length Transcriptome without a Genome from RNA-Seq Data. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Hoff, K.J.; Lange, S.; Lomsadze, A.; Borodovsky, M.; Stanke, M. BRAKER1: Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS. Bioinformatics 2016, 32, 767–769. [Google Scholar] [CrossRef]
- Haas, B.J.; Delcher, A.L.; Mount, S.M.; Wortman, J.R.; Smith, R.K.; Hannick, L.I.; Maiti, R.; Ronning, C.M.; Rusch, D.B.; Town, C.D.; et al. Improving the Arabidopsis Genome Annotation Using Maximal Transcript Alignment Assemblies. Nucleic Acids Res. 2003, 31, 5654–5666. [Google Scholar] [CrossRef]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential Gene and Transcript Expression Analysis of RNA-Seq Experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Haas, B.J.; Salzberg, S.L.; Zhu, W.; Pertea, M.; Allen, J.E.; Orvis, J.; White, O.; Buell, C.R.; Wortman, J.R. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008, 9, R7. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Zhou, Y.; Kathiresan, N.; Yu, Z.; Rivera, L.F.; Yang, Y.; Thimma, M.; Manickam, K.; Chebotarov, D.; Mauleon, R.; Chougule, K.; et al. A High-Performance Computational Workflow to Accelerate GATK SNP Detection across a 25-Genome Dataset. BMC Biol. 2024, 22, 13. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira MA, R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker PI, W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Hebert, P.D.N.; Ratnasingham, S.; De Waard, J.R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B Boil. Sci. 2003, 270, S96–S99. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, Z.; Hu, W. Progress in Research on Fish Sex Determining Genes. Water Biol. Secur. 2022, 1, 100008. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, Z.; Ke, Q.; Wu, Y.; Bai, H.; Pu, F.; Xu, P. The Sequencing and de Novo Assembly of the Larimichthys crocea Genome Using PacBio and Hi-C Technologies. Sci. Data 2019, 6, 188. [Google Scholar] [CrossRef]
- Xie, Q.P.; Zhan, W.; Shi, J.Z.; Liu, F.; Niu, B.L.; He, X.; Liu, M.; Wang, J.; Liang, Q.-Q.; Xie, Y.; et al. Whole-genome Assembly and Annotation for the Little Yellow Croaker (Larimichthys polyactis) Provide Insights into the Evolution of Hermaphroditism and Gonochorism. Mol. Ecol. Resour. 2023, 23, 632–658. [Google Scholar] [CrossRef]
- Cai, M.; Zou, Y.; Xiao, S.; Li, W.; Han, Z.; Han, F.; Xiao, J.; Liu, F.; Wong, Z. Chromosome assembly of Collichthys lucidus, a fish of Sciaenidae with a multiple sex chromosome system. Sci. Data 2019, 6, 132. [Google Scholar] [CrossRef]
- Xu, T.; Li, Y.; Zheng, W.; Sun, Y. A Chromosome-Level Genome Assembly of the Miiuy Croaker (Miichthys miiuy) Using Nanopore Sequencing and Hi-C. Aquac. Fish. 2024, 9, 218–225. [Google Scholar] [CrossRef]
- Xu, T.; Li, Y.; Chu, Q.; Zheng, W. A Chromosome-Level Genome Assembly of the Red Drum, Sciaenops ocellatus. Aquac. Fish. 2021, 6, 178–185. [Google Scholar] [CrossRef]
- Yekefenhazi, D.; He, Q.; Wang, X.; Han, W.; Song, C.; Li, W. Chromosome-Level Genome Assembly of Nibea coibor Using PacBio HiFi Reads and Hi-C Technologies. Sci. Data 2022, 9, 670. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Song, C.; Han, F.; He, Q.; Liu, J.; Zhang, S.; Han, W.; Ye, K.; Han, Z.; Wang, Z.; et al. Study on Sex-Linked Region and Sex Determination Candidate Gene Using a High-Quality Genome Assembly in Yellow Drum. Aquaculture 2023, 563, 738987. [Google Scholar] [CrossRef]
- Papadogiannis, V.; Manousaki, T.; Nousias, O.; Tsakogiannis, A.; Kristoffersen, J.B.; Mylonas, C.C.; Batargias, C.; Chatziplis, D.; Tsigenopoulos, C.S. Chromosome genome assembly for the meagre, Argyrosomus regius, reveals spcies adaptations and sciaenid sex-related locus evolution. Front. Genet. 2023, 13, 1081760. [Google Scholar] [CrossRef]
- Feng, Y.; You, F.; Liu, J. Study on the Karyotype in the Red Drum, Sciaenops ocellatus. Mar. Sci. 1998, 2, 53–59. [Google Scholar]
- Liao, M.; Zheng, J.; Wang, Z. Comparison of Chromosome Mapping of rDNA between Argyrosomus amoyensis and Larimichthys crocea. ResearchGate 2017, 41, 1338–1344. [Google Scholar] [CrossRef]
- Cao, K. Transcriptomic s Study of Gonadal Sex Differentiation in Larimichthys crocea. Master’s Thesis, Jimei University, Xiamen, China, 2019. (In Chinese). [Google Scholar]
- Lin, A.Q.; Xie, Y.J.; Xu, S.B. Cloning and expression profiling of gsdf and amh genes in large yellow croaker (Larimichthys crocea). S. China Fish. Sci. 2017, 13, 1–13. [Google Scholar] [CrossRef]
- Han, Z.F. Whole Genome Fine Map Construction and Sex-Determining Genes Mapping in Nibea albiflora. Ph.D. Thesis, Jimei University, Xiamen, China, 2019. (In Chinese). [Google Scholar]
- Smith, C.A.; McClive, P.J.; Western, P.S.; Reed, K.J. Conservation of a Sex-Determining Gene. Nature 1999, 402, 601–602. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, G.; Shao, C.; Huang, Q.; Liu, G.; Zhang, P.; Song, W.; An, N.; Chalopin, D.; Volff, J.-N.; et al. Whole-Genome Sequence of a Flatfish Provides Insights into ZW Sex Chromosome Evolution and Adaptation to a Benthic Lifestyle. Nat. Genet. 2014, 46, 253–260. [Google Scholar] [CrossRef]
- Matsuda, M.; Nagahama, Y.; Shinomiya, A.; Sato, T.; Matsuda, C.; Kobayashi, T.; Morrey, C.E.; Shibata, N.; Asakawa, S.; Shimizu, N.; et al. DMY Is a Y-Specific DM-Domain Gene Required for Male Development in the Medaka Fish. Nature 2002, 417, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Lambeth, L.S.; Raymond, C.S.; Roeszler, K.N.; Kuroiwa, A.; Nakata, T.; Zarkower, D.; Smith, C.A. Over-Expression of DMRT1 Induces the Male Pathway in Embryonic Chicken Gonads. Dev. Biol. 2014, 389, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, S.; Okada, E.; Umemoto, H.; Tamura, K.; Uno, Y.; Nishida-Umehara, C.; Matsuda, Y.; Takamatsu, N.; Shiba, T.; Ito, M. A W-Linked DM-Domain Gene, DM-W, Participates in Primary Ovary Development in Xenopus laevis. Proc. Natl. Acad. Sci. USA 2008, 105, 2469–2474. [Google Scholar] [CrossRef] [PubMed]
- Nakata, T.; Ishiguro, M.; Aduma, N.; Izumi, H.; Kuroiwa, A. Chicken Hemogen Homolog Is Involved in the Chicken-Specific Sex-Determining Mechanism. Proc. Natl. Acad. Sci. USA 2013, 110, 3417–3422. [Google Scholar] [CrossRef] [PubMed]
K-mer Length | 19 | 23 | 27 | 31 |
---|---|---|---|---|
Total No. of fields | 9386 | 9138 | 8834 | 8679 |
Peak | 16 | 14 | 13 | 12 |
Total k-mers | 11,246,682,729 | 10,458,199,060 | 9,733,006,649 | 9,067,661,088 |
Genome size | 702,917,671 | 747,014,219 | 748,692,819 | 755,638,424 |
Single-copy | 576,367,348 | 643,631,200 | 656,287,655 | 642,843,474 |
Proportion | 0.820 | 0.862 | 0.877 | 0.851 |
Type | Contig (bp) | Scaffold (bp) |
---|---|---|
Number | 181 | 109 |
N10 | 33,144,857 | 34,698,277 |
N50 | 30,007,843 | 30,008,023 |
N90 | 22,543,259 | 22,559,432 |
Max length | 33,623,154 | 37,222,054 |
Total length | 708,806,976 | 708,029,149 |
Repeat Element | Fragments | Total Length (bp) | % of Genome |
---|---|---|---|
LINE | 78,183 | 19,481,765 | 2.75 |
SINE | 29,084 | 4,236,640 | 0.60 |
LTR element | 22,210 | 7,111,927 | 1.00 |
DNA element | 147,730 | 22,987,630 | 3.43 |
RC element | 5967 | 4,046,474 | 0.57 |
Simple_repeat | 458,403 | 23,061,626 | 3.26 |
Small RNA | 861 | 106,456 | 0.02 |
Satellite | 2882 | 818,415 | 0.12 |
Other | 109,790 | 15,331,373 | 2.16 |
Unclassified | 416,610 | 87,700,519 | 12.38 |
Total | 1,271,720 | 174,573,389 | 24.64 |
Primers | Primer Sequence (5′-3′) | Product Size (bp) |
---|---|---|
MFS-1 | F: TATGTCTGGAGGTCACTG R: GCTTATTTGGAGGATTGT | 364 bp/346 bp |
MFS-2 | F: TGTGAATGGGTGAATGAG R: TAGCTTTGTACTTTGTTCC | 426 bp/412 bp |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Li, W.; Yekefenhazi, D.; Yang, X.; Zhu, Q.; Ye, K.; Han, F.; Xu, D. Genome Insights and Identification of Sex Determination Region and Sex Markers in Argyrosomus japonicus. Genes 2024, 15, 1493. https://doi.org/10.3390/genes15121493
Liu Y, Li W, Yekefenhazi D, Yang X, Zhu Q, Ye K, Han F, Xu D. Genome Insights and Identification of Sex Determination Region and Sex Markers in Argyrosomus japonicus. Genes. 2024; 15(12):1493. https://doi.org/10.3390/genes15121493
Chicago/Turabian StyleLiu, Yike, Wanbo Li, Dinaer Yekefenhazi, Xianfeng Yang, Qihui Zhu, Kun Ye, Fang Han, and Dongdong Xu. 2024. "Genome Insights and Identification of Sex Determination Region and Sex Markers in Argyrosomus japonicus" Genes 15, no. 12: 1493. https://doi.org/10.3390/genes15121493
APA StyleLiu, Y., Li, W., Yekefenhazi, D., Yang, X., Zhu, Q., Ye, K., Han, F., & Xu, D. (2024). Genome Insights and Identification of Sex Determination Region and Sex Markers in Argyrosomus japonicus. Genes, 15(12), 1493. https://doi.org/10.3390/genes15121493