Tailoring Genomic Selection for Bos taurus indicus: A Comprehensive Review of SNP Arrays and Reference Genomes
Abstract
:1. Introduction
2. The Rise of B. t. indicus
3. DNA and the Development of Molecular Markers
3.1. Hybridization-Based Markers
Restriction Fragment Length Polymorphism (RFLP)
3.2. Polymerase Chain Reaction-Based Markers
3.2.1. Random Amplified Polymorphic DNA (RAPD)
3.2.2. Amplified Fragment Length Polymorphism (AFLP)
3.2.3. Simple Sequence Repeat Markers (SSR) or Microsatellites
3.3. Sequencing-Based Markers
Single-Nucleotide Polymorphisms (SNPs)
4. History of SNP Arrays
SNP Arrays Specific to Zebu Cattle
5. Reference Genome Assemblies
Reference Genome Assemblies for Zebu Cattle
6. Studies Using SNP Arrays and/or Genome Assemblies Specific to Zebu Cattle
7. Future Directions and Limitations in SNP Genotyping for Zebu Cattle
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Utsunomiya, Y.T.; Carmo, A.S.; Neves, H.H.R.; Carvalheiro, R.; Matos, M.C.; Zavarez, L.B.; Ito, P.K.R.K.; Pérez O’Brien, A.M.; Sölkner, J.; Porto-Neto, L.R.; et al. Genome-Wide Mapping of Loci Explaining Variance in Scrotal Circumference in Nellore Cattle. PLoS ONE 2014, 9, e88561. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.; Huerta-Sanchez, E.; Casey, F.; Bradley, D.G. Cattle Demographic History Modelled from Autosomal Sequence Variation. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2531–2539. [Google Scholar] [CrossRef] [PubMed]
- Achilli, A.; Olivieri, A.; Pellecchia, M.; Uboldi, C.; Colli, L.; Al-Zahery, N.; Accetturo, M.; Pala, M.; Kashani, B.H.; Perego, U.A.; et al. Mitochondrial Genomes of Extinct Aurochs Survive in Domestic Cattle. Curr. Biol. 2008, 18, R157–R158. [Google Scholar] [CrossRef]
- Montaldo, H.H.; Casas, E.; Ferraz, J.B.S.; Vega-Murillo, V.E.; Román-Ponce, S.I. Opportunities and Challenges from the Use of Genomic Selection for Beef Cattle Breeding in Latin America. Anim. Front. 2012, 2, 23–29. [Google Scholar] [CrossRef]
- Zhang, K.; Lenstra, J.A.; Zhang, S.; Liu, W.; Liu, J. Evolution and Domestication of the Bovini Species. Anim. Genet. 2020, 51, 637–657. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.; Hayes, B.; Goddard, M. Genomic Selection: A Paradigm Shift in Animal Breeding. Anim. Front. 2016, 6, 6–14. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longman: Essex, UK, 1996; ISBN 0582243025. [Google Scholar]
- Henderson, C.R. Best Linear Unbiased Estimation and Prediction under a Selection Model. Biometrics 1975, 31, 423. [Google Scholar] [CrossRef]
- Quaas, R.L.; Pollak, E.J. Mixed Model Methodology for Farm and Ranch Beef Cattle Testing Programs. J. Anim. Sci. 1980, 51, 1277–1287. [Google Scholar] [CrossRef]
- Boichard, D.; Ducrocq, V.; Croiseau, P.; Fritz, S. Genomic Selection in Domestic Animals: Principles, Applications and Perspectives. C. R. Biol. 2016, 339, 274–277. [Google Scholar] [CrossRef]
- Arruda, M.P.; Lipka, A.E.; Brown, P.J.; Krill, A.M.; Thurber, C.; Brown-Guedira, G.; Dong, Y.; Foresman, B.J.; Kolb, F.L. Comparing Genomic Selection and Marker-Assisted Selection for Fusarium Head Blight Resistance in Wheat (Triticum aestivum L.). Mol. Breed. 2016, 36, 84. [Google Scholar] [CrossRef]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef] [PubMed]
- Nejati-Javaremi, A.; Smith, C.; Gibson, J.P. Effect of Total Allelic Relationship on Accuracy of Evaluation and Response to Selection. J. Anim. Sci. 1997, 75, 1738. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, J.S.; Soller, M. Restriction Fragment Length Polymorphisms in Genetic Improvement: Methodologies, Mapping and Costs. Theor. Appl. Genet. 1983, 67, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Microsatellites: Evolution and Applications; Goldstein, D.B.; SchlÖtterer, C. (Eds.) Oxford University Press: Oxford, UK, 1999; ISBN 9780198504085. [Google Scholar]
- Pérez O’Brien, A.M.; Mészáros, G.; Utsunomiya, Y.T.; Sonstegard, T.S.; Garcia, J.F.; Van Tassell, C.P.; Carvalheiro, R.; da Silva, M.V.B.; Sölkner, J. Linkage Disequilibrium Levels in Bos Indicus and Bos Taurus Cattle Using Medium and High Density SNP Chip Data and Different Minor Allele Frequency Distributions. Livest. Sci. 2014, 166, 121–132. [Google Scholar] [CrossRef]
- Utsunomiya, Y.T.; Milanesi, M.; Fortes, M.R.S.; Porto-Neto, L.R.; Utsunomiya, A.T.H.; Silva, M.V.G.B.; Garcia, J.F.; Ajmone-Marsan, P. Genomic Clues of the Evolutionary History of Bos indicus Cattle. Anim. Genet. 2019, 50, 557–568. [Google Scholar] [CrossRef]
- Abeygunawardena, H.; Dematawewa, C.M.B. Pre-Pubertal and Postpartum Anestrus in Tropical Zebu Cattle. Anim. Reprod. Sci. 2004, 82–83, 373–387. [Google Scholar] [CrossRef]
- Hiendleder, S.; Lewalski, H.; Janke, A. Complete mitochondrial genomes of Bos taurus and Bos indicus provide new insights into intra-species variation, taxonomy and domestication. Cytogenet. Genome Res. 2008, 120, 150–156. [Google Scholar] [CrossRef]
- Hansen, P.J. Physiological and Cellular Adaptations of Zebu Cattle to Thermal Stress. Anim. Reprod. Sci. 2004, 82–83, 349–360. [Google Scholar] [CrossRef]
- CHENOWETH, P. Aspects of Reproduction in Female Bos indicus Cattle: A Review. Aust. Vet. J. 1994, 71, 422–426. [Google Scholar] [CrossRef]
- Blackburn, H.D.; Krehbiel, B.; Ericsson, S.A.; Wilson, C.; Caetano, A.R.; Paiva, S.R. A Fine Structure Genetic Analysis Evaluating Ecoregional Adaptability of a Bos Taurus Breed (Hereford). PLoS ONE 2017, 12, e0176474. [Google Scholar] [CrossRef]
- Galvão De Albuquerque, L.; Alves, G.; Júnior, F.; Carvalheiro, R. Beef cattle genomic selection in tropical environments. Proc. Assoc. Advmt. Anim. Breed. Genet. 2017, 22, 255–263. [Google Scholar]
- Sanders, J.O. History and Development of Zebu Cattle in the United States. J. Anim. Sci. 1980, 50, 1188–1200. [Google Scholar] [CrossRef]
- Grigson, C. The Craniology and Relationships of Four Species of Bos 5 Bos iudicus L. J. Archaeol. Sci. 1980, 7, 3–32. [Google Scholar] [CrossRef]
- Randel, R.D. Unique Reproductive Traits of Brahman and Brahman Based Cows. In Factors Affecting Calf Crop; CRC Press: Boca Raton, FL, USA, 2021; pp. 23–44. [Google Scholar]
- Turner, J.W. Genetic and Biological Aspects of Zebu Adaptability. J. Anim. Sci. 1980, 50, 1201–1205. [Google Scholar] [CrossRef]
- Paschal, J.C.; Sanders, J.O.; Kerr, J.L.; Lunt, D.K.; Herring, A.D. Postweaning and Feedlot Growth and Carcass Characteristics of Angus-, Gray Brahman-, Gir-, Indu-Brazil-, Nellore-, and Red Brahman-Sired F1 Calves. J. Anim. Sci. 1995, 73, 373–380. [Google Scholar] [CrossRef]
- Favero, R.; Menezes, G.R.O.; Torres, R.A.A.; Silva, L.O.C.; Bonin, M.N.; Feijó, G.L.D.; Altrak, G.; Niwa, M.V.G.; Kazama, R.; Mizubuti, I.Y.; et al. Crossbreeding Applied to Systems of Beef Cattle Production to Improve Performance Traits and Carcass Quality. Animal 2019, 13, 2679–2686. [Google Scholar] [CrossRef]
- Utsunomiya, Y.T.; Fortunato, A.A.A.D.; Milanesi, M.; Trigo, B.B.; Alves, N.F.; Sonstegard, T.S.; Garcia, J.F. Bos Taurus Haplotypes Segregating in Nellore (Bos indicus) Cattle. Anim. Genet. 2022, 53, 58–67. [Google Scholar] [CrossRef]
- Medrado, J. The Indian Zebu in Brazilian Lands. Hist. Agraria. Rev. Agric. Hist. Rural. 2018, 75, 115–138. [Google Scholar] [CrossRef]
- Brito, F.V.; Sargolzaei, M.; Braccini Neto, J.; Cobuci, J.A.; Pimentel, C.M.; Barcellos, J.; Schenkel, F.S. In-Depth Pedigree Analysis in a Large Brazilian Nellore Herd. Genet. Mol. Res. 2013, 12, 5758–5765. [Google Scholar] [CrossRef]
- Fernandes Júnior, G.A.; Rosa, G.J.M.; Valente, B.D.; Carvalheiro, R.; Baldi, F.; Garcia, D.A.; Gordo, D.G.M.; Espigolan, R.; Takada, L.; Tonussi, R.L.; et al. Genomic Prediction of Breeding Values for Carcass Traits in Nellore Cattle. Genet. Sel. Evol. 2016, 48, 7. [Google Scholar] [CrossRef]
- Irano, N.; de Camargo, G.M.F.; Costa, R.B.; Terakado, A.P.N.; Magalhães, A.F.B.; de Silva, R.M.O.; Dias, M.M.; Bignardi, A.B.; Baldi, F.; Carvalheiro, R.; et al. Genome-Wide Association Study for Indicator Traits of Sexual Precocity in Nellore Cattle. PLoS ONE 2016, 11, e0159502. [Google Scholar] [CrossRef]
- Dahm, R. Discovering DNA: Friedrich Miescher and the Early Years of Nucleic Acid Research. Hum. Genet. 2008, 122, 565–581. [Google Scholar] [CrossRef]
- Filho, K.E. Cross-Breeding Strategies for Beef Cattle Production in Brazil. In Proceedings of the Workshop on Developing Breeding Strategies for Lower Input Animal Production Environments, Bella, Italy, 22–25 September 2000; Galal, S., Boyazoglu, J., Hammond, K., Eds.; ICAR Technical Series 3. ICAR: Utrecht, The Netherlands; Volume 3, pp. 355–364. [Google Scholar]
- WATSON, J.D.; CRICK, F.H.C. Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Bansal, M. A Glossary of DNA Structures from A to Z. Acta Crystallogr. Biol. Crystallogr. 2003, 59, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, G.R. The nucleic acids of some insect viruses. J. Gen. Physiol. 1952, 36, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Zhu, W.; Zhou, J.; Li, H.; Xu, X.; Zhang, B.; Gao, X. Repetitive DNA Sequence Detection and Its Role in the Human Genome. Commun. Biol. 2023, 6, 954. [Google Scholar] [CrossRef]
- Singh, U.; Deb, R.; Alyethodi, R.R.; Alex, R.; Kumar, S.; Chakraborty, S.; Dhama, K.; Sharma, A. Molecular Markers and Their Applications in Cattle Genetic Research: A Review. Biomark. Genom. Med. 2014, 6, 49–58. [Google Scholar] [CrossRef]
- Reshma, R.S.; Das, D.N. Molecular Markers and Its Application in Animal Breeding. In Advances in Animal Genomics; Elsevier: Amsterdam, The Netherlands, 2021; pp. 123–140. [Google Scholar]
- Dhutmal, R.R.; Mundhe, A.G.; More, A.W. Molecular Marker Techniques: A Review. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 816–825. [Google Scholar]
- Alexander, L.M.; Kirigwi, F.M.; Fritz, A.K.; Fellers, J.P. Mapping and Quantitative Trait Loci Analysis of Drought Tolerance in a Spring Wheat Population Using Amplified Fragment Length Polymorphism and Diversity Array Technology Markers. Crop Sci. 2012, 52, 253–261. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. Am. J. Hum. Genet. 1980, 32, 314. [Google Scholar]
- Grover, A.; Sharma, P.C. Development and Use of Molecular Markers: Past and Present. Crit. Rev. Biotechnol. 2016, 36, 290–302. [Google Scholar] [CrossRef]
- Chardon, P.; Vaiman, M.; Kirszenbaum, M.; Geffrotin, C.; Renard, C.; Cohen, D. Restriction Fragment Length Polymorphism of the Major Histocompatibility Complex of the Pig. Immunogenetics 1985, 21, 161–171. [Google Scholar] [CrossRef] [PubMed]
- BECKMANN, J.S.; KASHI, Y.; HALLERMAN, E.M.; NAVE, A.; SOLLER, M. Restriction Fragment Length Polymorphism among Israeli Holstein-Friesian Dairy Bulls*. Anim. Genet. 1986, 17, 25–38. [Google Scholar] [CrossRef] [PubMed]
- GEORGES, M.; LEQUARRÉ, A.S.; HANSET, R.; VASSART, G. Genetic Variation of the Bovine Thyroglobulin Gene Studied at the DNA Level. Anim. Genet. 1987, 18, 41–50. [Google Scholar] [CrossRef]
- Michelmore, R.W.; Paran, I.; Kesseli, R.V. Identification of Markers Linked to Disease-Resistance Genes by Bulked Segregant Analysis: A Rapid Method to Detect Markers in Specific Genomic Regions by Using Segregating Populations. Proc. Natl. Acad. Sci. USA 1991, 88, 9828–9832. [Google Scholar] [CrossRef]
- Riedy, M.F.; Hamilton, W.J.; Aquadro, C.F. Excess of Non-Parental Bands in Offspring from Known Primate Pedigrees Assayed Using RAPD PCR. Nucleic Acids Res. 1992, 20, 918. [Google Scholar] [CrossRef] [PubMed]
- Penner, G.A.; Bush, A.; Wise, R.; Kim, W.; Domier, L.; Kasha, K.; Laroche, A.; Scoles, G.; Molnar, S.J.; Fedak, G. Reproducibility of Random Amplified Polymorphic DNA (RAPD) Analysis among Laboratories. Genome Res. 1993, 2, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Skroch, P.; Nienhuis, J. Impact of Scoring Error and Reproducibility RAPD Data on RAPD Based Estimates of Genetic Distance. Theor. Appl. Genet. 1995, 91, 1086–1091. [Google Scholar] [CrossRef]
- Reiter, R.S.; Williams, J.G.; Feldmann, K.A.; Rafalski, J.A.; Tingey, S.V.; Scolnik, P.A. Global and Local Genome Mapping in Arabidopsis Thaliana by Using Recombinant Inbred Lines and Random Amplified Polymorphic DNAs. Proc. Natl. Acad. Sci. USA 1992, 89, 1477–1481. [Google Scholar] [CrossRef]
- Tingey, S.V.; del Tufo, J.P. Genetic Analysis with Random Amplified Polymorphic DNA Markers. Plant Physiol. 1993, 101, 349–352. [Google Scholar] [CrossRef]
- Vos, P.G.; Uitdewilligen, J.G.A.M.L.; Voorrips, R.E.; Visser, R.G.F.; van Eck, H.J. Development and Analysis of a 20K SNP Array for Potato (Solanum tuberosum): An Insight into the Breeding History. Theor. Appl. Genet. 2015, 128, 2387–2401. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.; Heun, M. Mapping of Digested and Undigested Random Amplified Microsatellite Polymorphisms in Barley. Genome 1995, 38, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Mackill, D.J.; Zhang, Z.; Redoña, E.D.; Colowit, P.M. Level of Polymorphism and Genetic Mapping of AFLP Markers in Rice. Genome 1996, 39, 969–977. [Google Scholar] [CrossRef]
- Litt, M.; Luty, J.A. A Hypervariable Microsatellite Revealed by in Vitro Amplification of a Dinucleotide Repeat within the Cardiac Muscle Actin Gene. Am. J. Hum. Genet. 1989, 44, 397–401. [Google Scholar]
- Abdelkrim, J.; Robertson, B.C.; Stanton, J.-A.L.; Gemmell, N.J. Fast, Cost-Effective Development of Species-Specific Microsatellite Markers by Genomic Sequencing. Biotechniques 2009, 46, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Zane, L.; Bargelloni, L.; Patarnello, T. Strategies for Microsatellite Isolation: A Review. Mol. Ecol. 2002, 11, 1–16. [Google Scholar] [CrossRef]
- Adamov, N.; Mickov, L.; Petkov, V.; Adamov, M. Microsatellite markers for pedigree verification in cattle. Maced. J. Anim. Sci. 2011, 1, 9–15. [Google Scholar] [CrossRef]
- Butler, J.M. Single Nucleotide Polymorphisms and Applications. In Advanced Topics in Forensic DNA Typing; Elsevier: Amsterdam, The Netherlands, 2012; pp. 347–369. [Google Scholar]
- Daetwyler, H.D.; Capitan, A.; Pausch, H.; Stothard, P.; van Binsbergen, R.; Brøndum, R.F.; Liao, X.; Djari, A.; Rodriguez, S.C.; Grohs, C.; et al. Whole-Genome Sequencing of 234 Bulls Facilitates Mapping of Monogenic and Complex Traits in Cattle. Nat. Genet. 2014, 46, 858–865. [Google Scholar] [CrossRef]
- Sun, T.; Pei, S.; Liu, Y.; Hanif, Q.; Xu, H.; Chen, N.; Lei, C.; Yue, X. Whole Genome Sequencing of Simmental Cattle for SNP and CNV Discovery. BMC Genom. 2023, 24, 179. [Google Scholar] [CrossRef]
- Eck, S.H.; Benet-Pagès, A.; Flisikowski, K.; Meitinger, T.; Fries, R.; Strom, T.M. Whole Genome Sequencing of a Single Bos Taurusanimal for Single Nucleotide Polymorphism Discovery. Genom. Biol. 2009, 10, R82. [Google Scholar] [CrossRef]
- Weldenegodguad, M.; Popov, R.; Pokharel, K.; Ammosov, I.; Ming, Y.; Ivanova, Z.; Kantanen, J. Whole-Genome Sequencing of Three Native Cattle Breeds Originating From the Northernmost Cattle Farming Regions. Front. Genet. 2019, 9, 728. [Google Scholar] [CrossRef]
- Gibbs, R.A.; Taylor, J.F.; Van Tassell, C.P.; Barendse, W.; Eversole, K.A.; Gill, C.A.; Green, R.D.; Hamernik, D.L.; Kappes, S.M.; Lien, S.; et al. Genome-Wide Survey of SNP Variation Uncovers the Genetic Structure of Cattle Breeds. Science (1979) 2009, 324, 528–532. [Google Scholar] [CrossRef]
- Van Tassell, C.P.; Smith, T.P.L.; Matukumalli, L.K.; Taylor, J.F.; Schnabel, R.D.; Lawley, C.T.; Haudenschild, C.D.; Moore, S.S.; Warren, W.C.; Sonstegard, T.S. SNP Discovery and Allele Frequency Estimation by Deep Sequencing of Reduced Representation Libraries. Nat. Methods 2008, 5, 247–252. [Google Scholar] [CrossRef]
- Mao, X.; Young, B.D.; Lu, Y.-J. The Application of Single Nucleotide Polymorphism Microarrays in Cancer Research. Curr. Genom. 2007, 8, 219–228. [Google Scholar] [CrossRef]
- LaFramboise, T. Single Nucleotide Polymorphism Arrays: A Decade of Biological, Computational and Technological Advances. Nucleic Acids Res. 2009, 37, 4181–4193. [Google Scholar] [CrossRef]
- Matukumalli, L.K.; Lawley, C.T.; Schnabel, R.D.; Taylor, J.F.; Allan, M.F.; Heaton, M.P.; O’Connell, J.; Moore, S.S.; Smith, T.P.L.; Sonstegard, T.S.; et al. Development and Characterization of a High Density SNP Genotyping Assay for Cattle. PLoS ONE 2009, 4, e5350. [Google Scholar] [CrossRef]
- Rincon, G.; Weber, K.L.; Van Eenennaam, A.L.; Golden, B.L.; Medrano, J.F. Hot Topic: Performance of Bovine High-Density Genotyping Platforms in Holsteins and Jerseys. J. Dairy. Sci. 2011, 94, 6116–6121. [Google Scholar] [CrossRef]
- Marina, H.; Chitneedi, P.; Pelayo, R.; Suárez-Vega, A.; Esteban-Blanco, C.; Gutiérrez-Gil, B.; Arranz, J.J. Study on the Concordance between Different SNP-genotyping Platforms in Sheep. Anim. Genet. 2021, 52, 868–880. [Google Scholar] [CrossRef]
- Bickhart, D.M.; McClure, J.C.; Schnabel, R.D.; Rosen, B.D.; Medrano, J.F.; Smith, T.P.L. Symposium Review: Advances in Sequencing Technology Herald a New Frontier in Cattle Genomics and Genome-Enabled Selection. J. Dairy. Sci. 2020, 103, 5278–5290. [Google Scholar] [CrossRef] [PubMed]
- Wiggans, G.R.; Cooper, T.A.; VanRaden, P.M.; Olson, K.M.; Tooker, M.E. Use of the Illumina Bovine3K BeadChip in Dairy Genomic Evaluation. J. Dairy. Sci. 2012, 95, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Boichard, D.; Guillaume, F.; Baur, A.; Croiseau, P.; Rossignol, M.N.; Boscher, M.Y.; Druet, T.; Genestout, L.; Colleau, J.J.; Journaux, L.; et al. Genomic Selection in French Dairy Cattle. Anim. Prod. Sci. 2012, 52, 115. [Google Scholar] [CrossRef]
- Mateescu, R.G. Genetics and Breeding of Beef Cattle. In Animal Agriculture; Elsevier: Amsterdam, The Netherlands, 2020; pp. 21–35. [Google Scholar]
- Ramos, A.M.; Crooijmans, R.P.M.A.; Affara, N.A.; Amaral, A.J.; Archibald, A.L.; Beever, J.E.; Bendixen, C.; Churcher, C.; Clark, R.; Dehais, P.; et al. Design of a High Density SNP Genotyping Assay in the Pig Using SNPs Identified and Characterized by Next Generation Sequencing Technology. PLoS ONE 2009, 4, e6524. [Google Scholar] [CrossRef]
- Pérez-Enciso, M.; Rincón, J.C.; Legarra, A. Sequence- vs. Chip-Assisted Genomic Selection: Accurate Biological Information Is Advised. Genet. Sel. Evol. 2015, 47, 43. [Google Scholar] [CrossRef]
- Boichard, D.; Chung, H.; Dassonneville, R.; David, X.; Eggen, A.; Fritz, S.; Gietzen, K.J.; Hayes, B.J.; Lawley, C.T.; Sonstegard, T.S.; et al. Design of a Bovine Low-Density SNP Array Optimized for Imputation. PLoS ONE 2012, 7, e34130. [Google Scholar] [CrossRef]
- Prayaga, K.C.; Mariasegaram, M.; Harrison, B.; Tier, B.; Henshall, J.M.; Barendse, W. Genetic Markers for Polled Condition in Cattle—The Current Status and Future Plans. In Proceedings of the Association for the Advancement of Animal Breeding and Genetics 30th Anniversary Conference “Matching Genetics and Environment—A New Look at an Old Topic”, Barossa Valley, Australia, 28 September–1 October 2009; AAABG: Adelaide, Australia, 2009. [Google Scholar]
- Taylor, J.F.; McKay, S.D.; Rolf, M.M.; Ramey, H.R.; Decker, J.E.; Schnabel, R.D. Genomic Selection in Beef Cattle. In Bovine Genomics; Wiley: Hoboken, NJ, USA, 2012; pp. 211–233. [Google Scholar]
- Carvalheiro, R.; Boison, S.A.; Neves, H.H.R.; Sargolzaei, M.; Schenkel, F.S.; Utsunomiya, Y.T.; O’Brien, A.M.P.; Sölkner, J.; McEwan, J.C.; Van Tassell, C.P.; et al. Accuracy of Genotype Imputation in Nelore Cattle. Genet. Sel. Evol. 2014, 46, 69. [Google Scholar] [CrossRef]
- Boison, S.A.; Santos, D.J.A.; Utsunomiya, A.H.T.; Carvalheiro, R.; Neves, H.H.R.; O’Brien, A.M.P.; Garcia, J.F.; Sölkner, J.; da Silva, M.V.G.B. Strategies for Single Nucleotide Polymorphism (SNP) Genotyping to Enhance Genotype Imputation in Gyr (Bos Indicus) Dairy Cattle: Comparison of Commercially Available SNP Chips. J. Dairy. Sci. 2015, 98, 4969–4989. [Google Scholar] [CrossRef]
- Chud, T.C.S.; Ventura, R.V.; Schenkel, F.S.; Carvalheiro, R.; Buzanskas, M.E.; Rosa, J.O.; de Mudadu, M.A.; da Silva, M.V.G.B.; Mokry, F.B.; Marcondes, C.R.; et al. Strategies for Genotype Imputation in Composite Beef Cattle. BMC Genet. 2015, 16, 99. [Google Scholar] [CrossRef]
- Arisman, B.C.; Rowan, T.N.; Thomas, J.M.; Durbin, H.J.; Lamberson, W.R.; Patterson, D.J.; Decker, J.E. Evaluation of Zoetis GeneMax Advantage Genomic Predictions in Commercial Bos Taurus Angus Cattle. Livest. Sci. 2023, 274, 105266. [Google Scholar] [CrossRef]
- Vukasinovic, N.; Bacciu, N.; Przybyla, C.A.; Boddhireddy, P.; DeNise, S.K. Development of Genetic and Genomic Evaluation for Wellness Traits in US Holstein Cows. J. Dairy. Sci. 2017, 100, 428–438. [Google Scholar] [CrossRef]
- Saha, S.; Nayee, N.; Shah, H.A.; Gajjar, S.; Sudhakar, A.; Donthula, S.K.; Poojara, H.V. Efficiency of Imputing Missing Genotypes by INDUSCHIP v2 in HF Crossbred Cattle. Indian. J. Dairy. Sci. 2021, 74, 138–144. [Google Scholar] [CrossRef]
- Berry, D.P.; Garcia, J.F.; Garrick, D.J. Development and Implementation of Genomic Predictions in Beef Cattle. Anim. Front. 2016, 6, 32–38. [Google Scholar] [CrossRef]
- Lambert, G.; Tsinajinnie, D.; Duggan, D. Single Nucleotide Polymorphism Genotyping Using BeadChip Microarrays. Curr. Protoc. Hum. Genet. 2013, 78, 2.9.1–2.9.34. [Google Scholar] [CrossRef] [PubMed]
- Campos, B.M.; do Carmo, A.S.; do Egito, A.A.; da Mariante, A.S.; do Albuquerque, M.S.M.; de Gouveia, J.J.S.; Malhado, C.H.M.; Verardo, L.L.; da Silva, M.V.G.B.; Carneiro, P.L.S. Genetic Diversity, Population Structure, and Correlations between Locally Adapted Zebu and Taurine Breeds in Brazil Using SNP Markers. Trop. Anim. Health Prod. 2017, 49, 1677–1684. [Google Scholar] [CrossRef] [PubMed]
- Porto-Neto, L.R.; Kijas, J.W.; Reverter, A. The Extent of Linkage Disequilibrium in Beef Cattle Breeds Using High-Density SNP Genotypes. Genet. Sel. Evol. 2014, 46, 22. [Google Scholar] [CrossRef] [PubMed]
- McTavish, E.J.; Hillis, D.M. How Do SNP Ascertainment Schemes and Population Demographics Affect Inferences about Population History? BMC Genom. 2015, 16, 266. [Google Scholar] [CrossRef]
- Neumann, G.B.; Korkuć, P.; Arends, D.; Wolf, M.J.; May, K.; Reißmann, M.; Elzaki, S.; König, S.; Brockmann, G.A. Design and Performance of a Bovine 200 k SNP Chip Developed for Endangered German Black Pied Cattle (DSN). BMC Genom. 2021, 22, 905. [Google Scholar] [CrossRef]
- Wiggans, G.R.; Cooper, T.A.; Van Tassell, C.P.; Sonstegard, T.S.; Simpson, E.B. Technical Note: Characteristics and Use of the Illumina BovineLD and GeneSeek Genomic Profiler Low-Density Bead Chips for Genomic Evaluation. J. Dairy. Sci. 2013, 96, 1258–1263. [Google Scholar] [CrossRef]
- Nayee, N.; Sahana, G.; Gajjar, S.; Sudhakar, A.; Trivedi, K.; Lund, M.S.; Guldbrandtsen, B. Suitability of Existing Commercial Single Nucleotide Polymorphism Chips for Genomic Studies in Bos indicus Cattle Breeds and Their Bos taurus Crosses. J. Anim. Breed. Genet. 2018, 135, 432–441. [Google Scholar] [CrossRef]
- Ferraz, J.B.S.; Wu, X.-L.; Li, H.; Xu, J.; Ferretti, R.; Simpson, B.; Walker, J.; Silva, L.R.; Garcia, J.F.; Tait Jr, R.G.; et al. Development and Evaluation of a Low-Density Single-Nucleotide Polymorphism Chip Specific to Bos Indicus Cattle. Anim. Prod. Sci. 2020, 60, 1769. [Google Scholar] [CrossRef]
- Zimin, A.V.; Delcher, A.L.; Florea, L.; Kelley, D.R.; Schatz, M.C.; Puiu, D.; Hanrahan, F.; Pertea, G.; Van Tassell, C.P.; Sonstegard, T.S.; et al. A Whole-Genome Assembly of the Domestic Cow, Bos Taurus. Genom. Biol. 2009, 10, R42. [Google Scholar] [CrossRef]
- Rosen, B.D.; Bickhart, D.M.; Schnabel, R.D.; Koren, S.; Elsik, C.G.; Tseng, E.; Rowan, T.N.; Low, W.Y.; Zimin, A.; Couldrey, C.; et al. De Novo Assembly of the Cattle Reference Genome with Single-Molecule Sequencing. Gigascience 2020, 9, giaa021. [Google Scholar] [CrossRef] [PubMed]
- Talenti, A.; Powell, J.; Hemmink, J.D.; Cook, E.A.J.; Wragg, D.; Jayaraman, S.; Paxton, E.; Ezeasor, C.; Obishakin, E.T.; Agusi, E.R.; et al. A Cattle Graph Genome Incorporating Global Breed Diversity. Nat. Commun. 2022, 13, 910. [Google Scholar] [CrossRef] [PubMed]
- Heaton, M.P.; Smith, T.P.L.; Bickhart, D.M.; Vander Ley, B.L.; Kuehn, L.A.; Oppenheimer, J.; Shafer, W.R.; Schuetze, F.T.; Stroud, B.; McClure, J.C.; et al. A Reference Genome Assembly of Simmental Cattle, Bos taurus taurus. J. Hered. 2021, 112, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Lloret-Villas, A.; Bhati, M.; Kadri, N.K.; Fries, R.; Pausch, H. Investigating the Impact of Reference Assembly Choice on Genomic Analyses in a Cattle Breed. BMC Genom. 2021, 22, 363. [Google Scholar] [CrossRef]
- Rice, E.S.; Koren, S.; Rhie, A.; Heaton, M.P.; Kalbfleisch, T.S.; Hardy, T.; Hackett, P.H.; Bickhart, D.M.; Rosen, B.D.; Ley, B.V.; et al. Continuous Chromosome-Scale Haplotypes Assembled from a Single Interspecies F1 Hybrid of Yak and Cattle. Gigascience 2020, 9, giaa029. [Google Scholar] [CrossRef] [PubMed]
- Canavez, F.C.; Luche, D.D.; Stothard, P.; Leite, K.R.M.; Sousa-Canavez, J.M.; Plastow, G.; Meidanis, J.; Souza, M.A.; Feijao, P.; Moore, S.S.; et al. Genome Sequence and Assembly of Bos Indicus. J. Hered. 2012, 103, 342–348. [Google Scholar] [CrossRef]
- Zwane, A.A.; Schnabel, R.D.; Hoff, J.; Choudhury, A.; Makgahlela, M.L.; Maiwashe, A.; Van Marle-Koster, E.; Taylor, J.F. Genome-Wide SNP Discovery in Indigenous Cattle Breeds of South Africa. Front. Genet. 2019, 10, 273. [Google Scholar] [CrossRef]
- Silva, R.P.; Berton, M.P.; Grigoletto, L.; Carvalho, F.E.; Silva, R.M.O.; Peripolli, E.; Castro, L.M.; Ferraz, J.B.S.; Eler, J.P.; Lôbo, R.B.; et al. Genomic Regions and Enrichment Analyses Associated with Carcass Composition Indicator Traits in Nellore Cattle. J. Anim. Breed. Genet. 2019, 136, 118–133. [Google Scholar] [CrossRef]
- Silva, R.P.; Espigolan, R.; Berton, M.P.; Stafuzza, N.B.; Santos, F.S.; Negreiros, M.P.; Schuchmann, R.K.; Rodriguez, J.D.; Lôbo, R.B.; Banchero, G.; et al. Genetic Parameters and Genomic Regions Associated with Calving Ease in Primiparous Nellore Heifers. Livest. Sci. 2020, 240, 104183. [Google Scholar] [CrossRef]
- Stafuzza, N.B.; de Silva, R.M.O.; Peripolli, E.; Bezerra, L.A.F.; Lôbo, R.B.; Magnabosco, C.d.U.; Di Croce, F.A.; Osterstock, J.B.; Munari, D.P.; Lourenco, D.A.L.; et al. Genome-Wide Association Study Provides Insights into Genes Related with Horn Development in Nelore Beef Cattle. PLoS ONE 2018, 13, e0202978. [Google Scholar] [CrossRef]
- Kluska, S.; Olivieri, B.F.; Bonamy, M.; Chiaia, H.L.J.; Feitosa, F.L.B.; Berton, M.P.; Peripolli, E.; Lemos, M.V.A.; Tonussi, R.L.; Lôbo, R.B.; et al. Estimates of Genetic Parameters for Growth, Reproductive, and Carcass Traits in Nelore Cattle Using the Single Step Genomic BLUP Procedure. Livest. Sci. 2018, 216, 203–209. [Google Scholar] [CrossRef]
- Carvalho, F.E.; Espigolan, R.; Berton, M.P.; Neto, J.B.S.; Silva, R.P.; Grigoletto, L.; Silva, R.M.O.; Ferraz, J.B.S.; Eler, J.P.; Aguilar, I.; et al. Genome-Wide Association Study and Predictive Ability for Growth Traits in Nellore Cattle. Livest. Sci. 2020, 231, 103861. [Google Scholar] [CrossRef]
- Brunes, L.C.; Baldi, F.; Lopes, F.B.; Narciso, M.G.; Lobo, R.B.; Espigolan, R.; Costa, M.F.O.; Magnabosco, C.U. Genomic Prediction Ability for Feed Efficiency Traits Using Different Models and Pseudo-Phenotypes under Several Validation Strategies in Nelore Cattle. Animal 2021, 15, 100085. [Google Scholar] [CrossRef] [PubMed]
- Boison, S.A.; Utsunomiya, A.T.H.; Santos, D.J.A.; Neves, H.H.R.; Carvalheiro, R.; Mészáros, G.; Utsunomiya, Y.T.; do Carmo, A.S.; Verneque, R.S.; Machado, M.A.; et al. Accuracy of Genomic Predictions in Gyr (Bos indicus) Dairy Cattle. J. Dairy. Sci. 2017, 100, 5479–5490. [Google Scholar] [CrossRef] [PubMed]
- Reverter, A.; Porto-Neto, L.R.; Fortes, M.R.S.; McCulloch, R.; Lyons, R.E.; Moore, S.; Nicol, D.; Henshall, J.; Lehnert, S.A. Genomic Analyses of Tropical Beef Cattle Fertility Based on Genotyping Pools of Brahman Cows with Unknown Pedigree1. J. Anim. Sci. 2016, 94, 4096–4108. [Google Scholar] [CrossRef] [PubMed]
- Mulim, H.A.; Brito, L.F.; Pinto, L.F.B.; Ferraz, J.B.S.; Grigoletto, L.; Silva, M.R.; Pedrosa, V.B. Characterization of Runs of Homozygosity, Heterozygosity-Enriched Regions, and Population Structure in Cattle Populations Selected for Different Breeding Goals. BMC Genom. 2022, 23, 209. [Google Scholar] [CrossRef]
- Chen, N.; Xia, X.; Hanif, Q.; Zhang, F.; Dang, R.; Huang, B.; Lyu, Y.; Luo, X.; Zhang, H.; Yan, H.; et al. Global Genetic Diversity, Introgression, and Evolutionary Adaptation of Indicine Cattle Revealed by Whole Genome Sequencing. Nat. Commun. 2023, 14, 7803. [Google Scholar] [CrossRef]
- Smith, T.P.L.; Bickhart, D.M.; Boichard, D.; Chamberlain, A.J.; Djikeng, A.; Jiang, Y.; Low, W.Y.; Pausch, H.; Demyda-Peyrás, S.; Prendergast, J.; et al. The Bovine Pangenome Consortium: Democratizing Production and Accessibility of Genome Assemblies for Global Cattle Breeds and Other Bovine Species. Genom. Biol. 2023, 24, 139. [Google Scholar] [CrossRef]
- Low, W.Y.; Tearle, R.; Liu, R.; Koren, S.; Rhie, A.; Bickhart, D.M.; Rosen, B.D.; Kronenberg, Z.N.; Kingan, S.B.; Tseng, E.; et al. Haplotype-Resolved Genomes Provide Insights into Structural Variation and Gene Content in Angus and Brahman Cattle. Nat. Commun. 2020, 11, 2071. [Google Scholar] [CrossRef]
Genotyping Arrays | Label | Genotyping Technology | Number of SNPs | Genotyping Company | Year | Reference |
---|---|---|---|---|---|---|
GeneChip Bovine Mapping 10K | Affy 10K | Synthetic oligonucleotide microarrays | 9919 | Affymetrix | 2004 | [75] |
GeneChip Bovine Mapping 25k | 25K | Molecular inversion probe | 25,000 | Affymetrix | 2007 | [82,83] |
Illumina Bovine SNP50 | 50K | Infinium high-throughput screening | 54,001 | Illumina | 2007 | [76,84] |
GoldenGate Bovine 3K | 3K | GoldenGate assay chemistry | 2900 | Illumina | 2010 | [76,77] |
Illumina Bovine HD Genotyping | HD | Infinium HD assay | 777,962 | Illumina | 2010 | [76] |
Illumina Bovine Low Density | 7K | Infinium high-throughput screening | 6909 | Illumina | 2011 | [81] |
Axiom Genome-Wide BOS 1 Array | BOS 1 | Axiom genotyping assay | 648,874 | Affymetrix | 2011 | [73] |
Geneseek Genomic Profiler (GGP) | GGP | Illumina Bovine LD genotyping beadchip | 8654 | Neogen 1 | 2012 | [76] |
Geneseek 75k indicus chip | GGP 75Ki | Illumina platform | 74,677 | Neogen 1 | 2013 4 | [85,86] |
Genemax Advantage | GMX | Illumina platform | ~50,000 | Zoetis and AGInc 2 | 2016 | [87] |
CLARIFIDE Plus | 50k | Illumina platform | 45,245 | Zoetis 3 | 2016 | [88] |
GGP indicus 35k micro array | GGP 35Ki | Illumina platform | 35,339 | Neogen 1 | 2017 4 | [89] |
CLARIFIDE Nelore | ZBU | Illumina platform | ~12,000 | Zoetis 3 | 2018 | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogunbawo, A.R.; Mulim, H.A.; Campos, G.S.; Schinckel, A.P.; Oliveira, H.R.d. Tailoring Genomic Selection for Bos taurus indicus: A Comprehensive Review of SNP Arrays and Reference Genomes. Genes 2024, 15, 1495. https://doi.org/10.3390/genes15121495
Ogunbawo AR, Mulim HA, Campos GS, Schinckel AP, Oliveira HRd. Tailoring Genomic Selection for Bos taurus indicus: A Comprehensive Review of SNP Arrays and Reference Genomes. Genes. 2024; 15(12):1495. https://doi.org/10.3390/genes15121495
Chicago/Turabian StyleOgunbawo, Adebisi R., Henrique A. Mulim, Gabriel S. Campos, Allan P. Schinckel, and Hinayah Rojas de Oliveira. 2024. "Tailoring Genomic Selection for Bos taurus indicus: A Comprehensive Review of SNP Arrays and Reference Genomes" Genes 15, no. 12: 1495. https://doi.org/10.3390/genes15121495
APA StyleOgunbawo, A. R., Mulim, H. A., Campos, G. S., Schinckel, A. P., & Oliveira, H. R. d. (2024). Tailoring Genomic Selection for Bos taurus indicus: A Comprehensive Review of SNP Arrays and Reference Genomes. Genes, 15(12), 1495. https://doi.org/10.3390/genes15121495