CXCL10, SCGN, and H2BC5 as Potential Key Genes Regulated by HCV Infection
Abstract
:1. Background
2. Materials and Methods
2.1. Detection of Differentially Expressed Genes (DEGs)
2.2. Protein–Protein Interaction Analysis
2.3. Enrichment Analysis of DEGs
2.4. Identification of Potential miRNAs Predictively Targeting DEGs
3. Results
3.1. DEGs and Ovarlapping DEGs
3.2. Protein–Protein Interaction
3.3. Pathways, Biological Processes, and Diseases in Which DEGs Are Enriched
Term | Library | p-Value | q-Value | z-Score | Combined Score |
---|---|---|---|---|---|
Cytosolic DNA-sensing pathway | KEGG_2021_Human | 0.00315 | 0.0112 | 19,937 | 114,800 |
RIG-I-like receptor signaling pathway | KEGG_2021_Human | 0.0035 | 0.0112 | 19,930 | 112,700 |
IL-17 signaling pathway | KEGG_2021_Human | 0.0047 | 0.0112 | 19,906 | 106,700 |
Viral protein interaction with cytokine and cytokine receptor | KEGG_2021_Human | 0.005 | 0.0112 | 19,900 | 105,400 |
Toll-like receptor signaling pathway | KEGG_2021_Human | 0.0052 | 0.0112 | 19,896 | 104,600 |
TNF signaling pathway | KEGG_2021_Human | 0.0056 | 0.0112 | 19,888 | 103,100 |
Hepatitis C | KEGG_2021_Human | 0.00785 | 0.01212 | 19,843 | 96,180 |
Influenza A | KEGG_2021_Human | 0.0086 | 0.01212 | 19,828 | 94,300 |
Chemokine signaling pathway | KEGG_2021_Human | 0.0096 | 0.01212 | 19,808 | 92,030 |
Epstein–Barr virus infection | KEGG_2021_Human | 0.0101 | 0.01212 | 19,798 | 90,980 |
Coronavirus disease | KEGG_2021_Human | 0.0116 | 0.01265 | 19,768 | 88,100 |
Cytokine–cytokine receptor interaction | KEGG_2021_Human | 0.01475 | 0.01475 | 19,705 | 83,090 |
Cryoglobulinemia | Jensen_DISEASES | 0.0007 | 0.004 | 19,986 | 145,200 |
Dengue disease | Jensen_DISEASES | 0.00095 | 0.004 | 19,981 | 139,000 |
Severe acute respiratory syndrome | Jensen_DISEASES | 0.0012 | 0.004 | 19,976 | 134,300 |
Periodontal disease | Jensen_DISEASES | 0.00185 | 0.004083 | 19,963 | 125,600 |
Hepatitis | Jensen_DISEASES | 0.0023 | 0.004083 | 19,954 | 121,200 |
Encephalitis | Jensen_DISEASES | 0.00245 | 0.004083 | 19,951 | 119,900 |
Human immunodeficiency virus infectious disease | Jensen_DISEASES | 0.00345 | 0.004928 | 19,931 | 113,000 |
Influenza | Jensen_DISEASES | 0.00495 | 0.006187 | 19,901 | 105,600 |
Lung disease | Jensen_DISEASES | 0.00595 | 0.006611 | 19,881 | 101,900 |
Arthritis | Jensen_DISEASES | 0.0093 | 0.0093 | 19,814 | 92,680 |
Regulation of endothelial tube morphogenesis (GO:1901509) | GO_Biological_Process_2021 | 0.00025 | 0.00525 | 19,995 | 165,800 |
Regulation of morphogenesis of an epithelium (GO:1905330) | GO_Biological_Process_2021 | 0.00035 | 0.00525 | 19,993 | 159,100 |
T cell chemotaxis (GO:0010818) | GO_Biological_Process_2021 | 0.00055 | 0.00525 | 19,989 | 150,000 |
Positive regulation of lymphocyte migration (GO:2000403) | GO_Biological_Process_2021 | 0.0007 | 0.00525 | 19,986 | 145,200 |
Antiviral innate immune response (GO:0140374) | GO_Biological_Process_2021 | 0.0007 | 0.00525 | 19,986 | 145,200 |
Regulation of T cell chemotaxis (GO:0010819) | GO_Biological_Process_2021 | 0.00075 | 0.00525 | 19,985 | 143,800 |
T cell migration (GO:0072678) | GO_Biological_Process_2021 | 0.0009 | 0.00525 | 19,982 | 140,100 |
Positive regulation of monocyte chemotaxis (GO:0090026) | GO_Biological_Process_2021 | 0.00095 | 0.00525 | 19,981 | 139,000 |
Regulation of T cell migration (GO:2000404) | GO_Biological_Process_2021 | 0.001 | 0.00525 | 19,980 | 138,000 |
Positive regulation of T cell migration (GO:2000406) | GO_Biological_Process_2021 | 0.00125 | 0.00525 | 19,975 | 133,500 |
Regulation of monocyte chemotaxis (GO:0090025) | GO_Biological_Process_2021 | 0.0013 | 0.00525 | 19,974 | 132,700 |
Positive regulation of calcium ion transmembrane transport (GO:1904427) | GO_Biological_Process_2021 | 0.00135 | 0.00525 | 19,973 | 132,000 |
Positive regulation of mononuclear cell migration (GO:0071677) | GO_Biological_Process_2021 | 0.00155 | 0.00525 | 19,969 | 129,200 |
Positive regulation of release of sequestered calcium ion into cytosol (GO:0051281) | GO_Biological_Process_2021 | 0.0017 | 0.00525 | 19,966 | 127,300 |
Positive regulation of calcium ion transport into cytosol (GO:0010524) | GO_Biological_Process_2021 | 0.0017 | 0.00525 | 19,966 | 127,300 |
Cellular response to virus (GO:0098586) | GO_Biological_Process_2021 | 0.00175 | 0.00525 | 19,965 | 126,700 |
Lymphocyte chemotaxis (GO:0048247) | GO_Biological_Process_2021 | 0.0022 | 0.006212 | 19,956 | 122,100 |
Blood circulation (GO:0008015) | GO_Biological_Process_2021 | 0.00255 | 0.006261 | 19,949 | 119,100 |
Regulation of release of sequestered calcium ion into cytosol (GO:0051279) | GO_Biological_Process_2021 | 0.0026 | 0.006261 | 19,948 | 118,700 |
Positive regulation of leukocyte chemotaxis (GO:0002690) | GO_Biological_Process_2021 | 0.0027 | 0.006261 | 19,946 | 118,000 |
Histiocytic Necrotizing Lymphadenitis | DisGeNET | 0.0003 | 0.01002 | 19,994 | 162,200 |
Fetid chronic bronchitis | DisGeNET | 0.00035 | 0.01002 | 19,993 | 159,100 |
Adenitis | DisGeNET | 0.00035 | 0.01002 | 19,993 | 159,100 |
Intestinal Graft Versus Host Disease | DisGeNET | 0.0004 | 0.01002 | 19,992 | 156,400 |
Cytomegalovirus encephalitis | DisGeNET | 0.0004 | 0.01002 | 19,992 | 156,400 |
Arthritis, Bacterial | DisGeNET | 0.00045 | 0.01002 | 19,991 | 154,100 |
Cutaneous Candidiasis | DisGeNET | 0.00045 | 0.01002 | 19,991 | 154,100 |
Capillary Leak Syndrome | DisGeNET | 0.00045 | 0.01002 | 19,991 | 154,100 |
Proliferative glomerulonephritis | DisGeNET | 0.0005 | 0.01002 | 19,990 | 151,900 |
Arthritis, Infectious | DisGeNET | 0.0006 | 0.01002 | 19,988 | 148,300 |
Lysinuric Protein Intolerance | DisGeNET | 0.00065 | 0.01002 | 19,987 | 146,700 |
Mucocutaneous leishmaniasis | DisGeNET | 0.0007 | 0.01002 | 19,986 | 145,200 |
Inflammatory neuropathy | DisGeNET | 0.0007 | 0.01002 | 19,986 | 145,200 |
Lymphoid interstitial pneumonia | DisGeNET | 0.0007 | 0.01002 | 19,986 | 145,200 |
Enterovirus 71 infection | DisGeNET | 0.0007 | 0.01002 | 19,986 | 145,200 |
Stage 0 Breast Carcinoma | DisGeNET | 0.00075 | 0.01002 | 19,985 | 143,800 |
Stromal keratitis | DisGeNET | 0.00075 | 0.01002 | 19,985 | 143,800 |
Common Cold | DisGeNET | 0.0008 | 0.01002 | 19,984 | 142,500 |
Auricular swelling | DisGeNET | 0.0008 | 0.01002 | 19,984 | 142,500 |
RETINOSCHISIS 1, X-LINKED, JUVENILE | DisGeNET | 0.0008 | 0.01002 | 19,984 | 142,500 |
Term | Library | p-Value | q-Value | z-Score | Combined Score |
---|---|---|---|---|---|
Iron metabolism disease | Jensen_DISEASES | 0.00085 | 0.0017 | 19,983 | 141,300 |
Carcinoma | Jensen_DISEASES | 0.5659 | 0.5659 | 8682 | 4943 |
Regulation of long-term synaptic potentiation (GO:1900271) | GO_Biological_Process_2021 | 0.0015 | 0.0045 | 19,970 | 129,900 |
Cellular calcium ion homeostasis (GO:0006874) | GO_Biological_Process_2021 | 0.0068 | 0.0074 | 19,864 | 99,140 |
Regulation of cytosolic calcium ion concentration (GO:0051480) | GO_Biological_Process_2021 | 0.0074 | 0.0074 | 19,852 | 97,400 |
Serum iron measurement | DisGeNET | 0.0007 | 0.0091 | 19,986 | 145,200 |
Mean corpuscular hemoglobin concentration determination | DisGeNET | 0.00505 | 0.02427 | 19,899 | 105,200 |
Uric acid measurement (procedure) | DisGeNET | 0.0056 | 0.02427 | 19,888 | 103,100 |
Squamous cell carcinoma of lung | DisGeNET | 0.01415 | 0.03144 | 19,717 | 83,960 |
Pituitary Adenoma | DisGeNET | 0.0147 | 0.03144 | 19,706 | 83,160 |
Pituitary Neoplasms | DisGeNET | 0.0148 | 0.03144 | 19,704 | 83,020 |
Erythrocyte Mean Corpuscular Hemoglobin Test | DisGeNET | 0.01935 | 0.03144 | 19,613 | 77,370 |
Finding of Mean Corpuscular Hemoglobin | DisGeNET | 0.01935 | 0.03144 | 19,613 | 77,370 |
Small-cell carcinoma of lung | DisGeNET | 0.03365 | 0.04861 | 19,327 | 65,550 |
Diabetes Mellitus, Non-Insulin-Dependent | DisGeNET | 0.0836 | 0.1087 | 18,328 | 45,480 |
Carcinoma of lung | DisGeNET | 0.1238 | 0.1463 | 17,524 | 36,610 |
Colorectal Carcinoma | DisGeNET | 0.1465 | 0.1588 | 17,069 | 32,780 |
Colorectal Cancer | DisGeNET | 0.1649 | 0.1649 | 16,702 | 30,100 |
Term | Library | p-Value | q-Value | z-Score | Combined Score |
---|---|---|---|---|---|
Systemic lupus erythematosus | KEGG_2021_Human | 0.00675 | 0.01015 | 19,865 | 99,290 |
Alcoholism | KEGG_2021_Human | 0.0093 | 0.01015 | 19,814 | 92,680 |
Neutrophil extracellular trap formation | KEGG_2021_Human | 0.00945 | 0.01015 | 19,811 | 92,350 |
Viral carcinogenesis | KEGG_2021_Human | 0.01015 | 0.01015 | 19,797 | 90,870 |
Nucleosome assembly (GO:0006334) | GO_Biological_Process_2021 | 0.0029 | 0.0094 | 19,942 | 116,500 |
Chromatin assembly (GO:0031497) | GO_Biological_Process_2021 | 0.00365 | 0.0094 | 19,927 | 111,900 |
Nucleosome organization (GO:0034728) | GO_Biological_Process_2021 | 0.0047 | 0.0094 | 19,906 | 106,700 |
Protein-DNA complex assembly (GO:0065004) | GO_Biological_Process_2021 | 0.00715 | 0.01072 | 19,857 | 98,110 |
Protein modification by small protein conjugation (GO:0032446) | GO_Biological_Process_2021 | 0.02045 | 0.02454 | 19,591 | 76,200 |
Protein ubiquitination (GO:0016567) | GO_Biological_Process_2021 | 0.02625 | 0.02625 | 19,475 | 70,890 |
3.4. miRNAs Predictively Targeting DEGs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omata, M.; Kanda, T.; Wei, L.; Yu, M.-L.; Chuang, W.-L.; Ibrahim, A.; Lesmana, C.R.A.; Sollano, J.; Kumar, M.; Jindal, A. APASL consensus statements and recommendations for hepatitis C prevention, epidemiology, and laboratory testing. Hepatol. Int. 2016, 10, 681–701. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Hepatitis Report 2017; World Health Organization: Geneva, Switzerland, 2017.
- de la Santé, O.M. World Health Statistics 2020: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2020.
- Poynard, T.; Leroy, V.; Cohard, M.; Thevenot, T.; Mathurin, P.; Opolon, P.; Zarski, J.P. Meta—Analysis of Interferon Randomized Trials in the Treatment of Viral Hepatitis C: Effects of Dose and Duration. Hepatology 1996, 24, 778–789. [Google Scholar] [PubMed]
- Dietz, C.; Maasoumy, B. Direct-acting antiviral agents for hepatitis C virus infection—From drug discovery to successful implementation in clinical practice. Viruses 2022, 14, 1325. [Google Scholar] [CrossRef] [PubMed]
- Krassenburg, L.A.; Maan, R.; Ramji, A.; Manns, M.P.; Cornberg, M.; Wedemeyer, H.; de Knegt, R.J.; Hansen, B.E.; Janssen, H.L.; de Man, R.A. Clinical outcomes following DAA therapy in patients with HCV-related cirrhosis depend on disease severity. J. Hepatol. 2021, 74, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Carrat, F.; Fontaine, H.; Dorival, C.; Simony, M.; Hezode, C.; De Ledinghen, V.; Larrey, D.; Haour, G.; Bronowicki, J.-P.; Zoulim, F. Clinical outcomes in patients with chronic hepatitis C after direct-acting antiviral treatment: A prospective cohort study. Lancet 2019, 393, 1453–1464. [Google Scholar] [CrossRef]
- Miao, Z.; Xie, Z.; Miao, J.; Ran, J.; Feng, Y.; Xia, X. Regulated entry of hepatitis C virus into hepatocytes. Viruses 2017, 9, 100. [Google Scholar] [CrossRef]
- Helbig, K.J.; Lau, D.T.Y.; Semendric, L.; Harley, H.A.; Beard, M.R. Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector. Hepatology 2005, 42, 702–710. [Google Scholar] [CrossRef]
- Asselah, T.; Bieche, I.; Sabbagh, A.; Bedossa, P.; Moreau, R.; Valla, D.; Vidaud, M.; Marcellin, P. Gene expression and hepatitis C virus infection. Gut 2009, 58, 846–858. [Google Scholar] [CrossRef]
- Jopling, C.L.; Yi, M.; Lancaster, A.M.; Lemon, S.M.; Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005, 309, 1577–1581. [Google Scholar] [CrossRef]
- Franck, M.; Schütte, K.; Malfertheiner, P.; Link, A. Prognostic value of serum microRNA-122 in hepatocellular carcinoma is dependent on coexisting clinical and laboratory factors. World J. Gastroenterol. 2020, 26, 86. [Google Scholar] [CrossRef]
- Badami, E.; Busà, R.; Douradinha, B.; Russelli, G.; Miceli, V.; Gallo, A.; Zito, G.; Conaldi, P.G.; Iannolo, G. Hepatocellular carcinoma, hepatitis C virus infection and miRNA involvement: Perspectives for new therapeutic approaches. World J. Gastroenterol. 2022, 28, 2417. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Aydin, Y.; Widmer, K.E.; Nayak, L. Hepatocellular carcinoma mechanisms associated with chronic HCV infection and the impact of direct-acting antiviral treatment. J. Hepatocell. Carcinoma 2020, 7, 45–76. [Google Scholar] [CrossRef]
- Yıldırım, H.Ç.; Kavgaci, G.; Chalabiyev, E.; Dizdar, O. Advances in the early detection of hepatobiliary cancers. Cancers 2023, 15, 3880. [Google Scholar] [CrossRef] [PubMed]
- Crouchet, E.; Bandiera, S.; Fujiwara, N.; Li, S.; El Saghire, H.; Fernández-Vaquero, M.; Riedl, T.; Sun, X.; Hirschfield, H.; Jühling, F. A human liver cell-based system modeling a clinical prognostic liver signature for therapeutic discovery. Nat. Commun. 2021, 12, 5525. [Google Scholar] [CrossRef]
- Levy, G.; Habib, N.; Guzzardi, M.A.; Kitsberg, D.; Bomze, D.; Ezra, E.; Uygun, B.E.; Uygun, K.; Trippler, M.; Schlaak, J.F. Nuclear receptors control pro-viral and antiviral metabolic responses to hepatitis C virus infection. Nat. Chem. Biol. 2016, 12, 1037–1045. [Google Scholar] [CrossRef]
- Davis, S.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007, 23, 1846–1847. [Google Scholar] [CrossRef]
- Phipson, B.; Lee, S.; Majewski, I.J.; Alexander, W.S.; Smyth, G.K. Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat. 2016, 10, 946. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B. PubChem 2023 update. Nucleic Acids Res. 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Evangelista, J.E.; Xie, Z.; Marino, G.B.; Nguyen, N.; Clarke, D.J.; Ma’ayan, A. Enrichr-KG: Bridging enrichment analysis across multiple libraries. Nucleic Acids Res. 2023, 51, W168–W179. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [Google Scholar] [CrossRef] [PubMed]
- Pletscher-Frankild, S.; Pallejà, A.; Tsafou, K.; Binder, J.X.; Jensen, L.J. DISEASES: Text mining and data integration of disease-gene associations. Methods 2015, 74, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef]
- Agarwal, V.; Bell, G.W.; Nam, J.-W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Griffiths-Jones, S.; Saini, H.K.; Van Dongen, S.; Enright, A.J. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 2007, 36, D154–D158. [Google Scholar] [CrossRef]
- Bièche, I.; Asselah, T.; Laurendeau, I.; Vidaud, D.; Degot, C.; Paradis, V.; Bedossa, P.; Valla, D.-C.; Marcellin, P.; Vidaud, M. Molecular profiling of early stage liver fibrosis in patients with chronic hepatitis C virus infection. Virology 2005, 332, 130–144. [Google Scholar] [CrossRef]
- Pedersen, I.M.; Cheng, G.; Wieland, S.; Volinia, S.; Croce, C.M.; Chisari, F.V.; David, M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007, 449, 919–922. [Google Scholar] [CrossRef]
- Brownell, J.; Wagoner, J.; Lovelace, E.S.; Thirstrup, D.; Mohar, I.; Smith, W.; Giugliano, S.; Li, K.; Crispe, I.N.; Rosen, H.R. Independent, parallel pathways to CXCL10 induction in HCV-infected hepatocytes. J. Hepatol. 2013, 59, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, G.N.; Rosário, N.F.d.; Medeiros, T.; Leite, P.E.C.; Lacerda, G.d.S.; Andrade, T.G.d.; de Azeredo, E.L.; Ancuta, P.; Almeida, J.R.; Xavier, A.R. Restoring inflammatory mediator balance after sofosbuvir-induced viral clearance in patients with chronic hepatitis C. Mediat. Inflamm. 2018, 2018, 8578051. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Niloofar, R.; Rubbo, P.-A.; Nils, K.; Bollore, K.; Ducos, J.; Pageaux, G.-P.; Reynes, J.; Van de Perre, P.; Tuaillon, E. Cytokine response associated with Hepatitis C virus clearance in HIV coinfected patients initiating peg interferon-α based therapy. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016003. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, N.L.; Wei, D.; Pfeffer, S.R.; Fan, M.; Pfeffer, L.M. Activation of chemokine and inflammatory cytokine response in HCV-infected hepatocytes depends on TLR3 sensing of HCV dsRNA intermediates. Hepatology 2012, 55, 666. [Google Scholar] [CrossRef]
- Tokunaga, R.; Zhang, W.; Naseem, M.; Puccini, A.; Berger, M.D.; Soni, S.; McSkane, M.; Baba, H.; Lenz, H.-J. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation–a target for novel cancer therapy. Cancer Treat. Rev. 2018, 63, 40–47. [Google Scholar] [CrossRef]
- Wagner, L.; Oliyarnyk, O.; Gartner, W.; Nowotny, P.; Groeger, M.; Kaserer, K.; Waldhäusl, W.; Pasternack, M.S. Cloning and expression of secretagogin, a novel neuroendocrine-and pancreatic islet of Langerhans-specific Ca2+-binding protein. J. Biol. Chem. 2000, 275, 24740–24751. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Lee, J.-J.; Lee, J.-H.; Lee, K.; Oh, S.H.; Lim, Y.-M.; Lee, M.-S.; Lee, K.-J. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion. Biochem. J. 2016, 473, 1791–1803. [Google Scholar] [CrossRef]
- Malenczyk, K.; Girach, F.; Szodorai, E.; Storm, P.; Segerstolpe, Å.; Tortoriello, G.; Schnell, R.; Mulder, J.; Romanov, R.A.; Borók, E. A TRPV 1-to-secretagogin regulatory axis controls pancreatic β-cell survival by modulating protein turnover. EMBO J. 2017, 36, 2107–2125. [Google Scholar] [CrossRef]
- Ahmad, W.; Ijaz, B.; Hassan, S. Gene expression profiling of HCV genotype 3a initial liver fibrosis and cirrhosis patients using microarray. J. Transl. Med. 2012, 10, 41. [Google Scholar] [CrossRef]
- Zeng, Z.; Lu, J.; Wu, D.; Zuo, R.; Li, Y.; Huang, H.; Yuan, J.; Hu, Z. Poly (ADP-ribose) glycohydrolase silencing-mediated H2B expression inhibits benzo (a) pyrene-induced carcinogenesis. Environ. Toxicol. 2021, 36, 291–297. [Google Scholar] [CrossRef]
- Bai, H.; Cheng, L.; Liu, W.; Xu, W.-Y.; Huo, Y.; Diao, L.; Ji, H.; Xiong, L. Genetic alterations predict poor efficacy, outcomes and resistance to second-line osimertinib treatment in non-small cell lung cancer. Am. J. Cancer Res. 2024, 14, 33. [Google Scholar] [CrossRef] [PubMed]
Proteins that CXCL10 Interacts with | Combined Confidence of the Functional Interaction | Combined Confidence of the Physical (Co-Complex) Interaction |
---|---|---|
CCL13 | 0.999 (very high) | 0.734 (high) |
PF4V1 | 0.999 (very high) | 0.972 (very high) |
CCL21 | 0.999 (very high) | 0.817 (high) |
CCR5 | 0.999 (very high) | 0.995 (very high) |
PPBP | 0.999 (very high) | 0.834 (high) |
PF4 | 0.999 (very high) | 0.972 (very high) |
CCL11 | 0.999 (very high) | 0.747 (high) |
CXCL11 | 0.999 (very high) | 0.974 (very high) |
CXCL9 | 0.999 (very high) | 0.981 (very high) |
CXCR3 | 0.999 (very high) | 0.996 (very high) |
Proteins that SCGN Interacts with | Combined Confidence of the Functional Interaction | Combined Confidence of the Physical (Co-Complex) Interaction |
---|---|---|
SNAP25 | 0.897 (high) | 0.483 (medium) |
SNAP23 | 0.872 (high) | 0.674 (medium) |
DOC2A | 0.846 (high) | 0.658 (medium) |
CROCC | 0.832 (high) | 0.587 (medium) |
MLF2 | 0.726 (high) | 0.469 (medium) |
DDAH2 | 0.723 (high) | 0.546 (medium) |
TAC1 | 0.709 (high) | No evidence |
ARFGAP2 | 0.687 (medium) | 0.292 (exploratory) |
KIF5B | 0.636 (medium) | 0.452 (medium) |
CHGA | 0.634 (medium) | 0.245 (exploratory) |
Proteins that H2BC5 Interacts with | Combined Confidence of the Functional Interaction | Combined Confidence of the Physical (Co-Complex) Interaction |
---|---|---|
H2AC6 | 0.998 (very high) | 0.848 (high) |
H4C6 | 0.992 (very high) | 0.953 (very high) |
H3C13 | 0.985 (very high) | 0.940 (very high) |
CENPA | 0.983 (very high) | 0.861 (high) |
H2AC7 | 0.983 (very high) | 0.941 (very high) |
H2AJ | 0.979 (very high) | 0.956 (very high) |
H2AC8 | 0.977 (very high) | 0.737 (high) |
H2BC9 | 0.977 (very high) | 0.887 (high) |
H2AC18 | 0.975 (very high) | 0.668 (medium) |
H2BC4 | 0.972 (very high) | 0.903 (very high) |
Targeted Genes | Total Count | Predicted miRNAs |
---|---|---|
CXCL10 | 59 | hsa-miR-34c-5p hsa-miR-449b-5p hsa-miR-4789-3p hsa-miR-1276 hsa-miR-135b-5p hsa-let-7a-2-3p hsa-miR-4524a-5p hsa-miR-3689c hsa-miR-7106-5p hsa-miR-6739-5p hsa-miR-6771-3p hsa-miR-3667-3p hsa-miR-4742-3p hsa-miR-4524b-5p hsa-miR-6773-5p hsa-miR-449a hsa-miR-6733-5p hsa-miR-6505-5p hsa-miR-5584-5p hsa-miR-155-3p hsa-let-7g-3p hsa-miR-411-3p hsa-miR-27b-5p hsa-miR-5587-5p hsa-miR-6079 hsa-miR-548ax hsa-miR-34a-5p hsa-miR-466 hsa-miR-9500 hsa-miR-1273h-5p hsa-miR-6731-5p hsa-miR-30b-3p hsa-miR-135a-5p hsa-miR-297 hsa-miR-4291 hsa-miR-6830-3p hsa-miR-4451 hsa-miR-4251 hsa-miR-1250-3p hsa-miR-3689a-3p hsa-miR-379-3p hsa-miR-3153 hsa-miR-646 hsa-miR-6507-5p hsa-miR-3942-3p hsa-miR-570-3p hsa-miR-153-5p hsa-miR-135b-3p hsa-miR-7152-5p hsa-miR-548ao-5p hsa-miR-6780a-5p hsa-miR-6724-5p hsa-miR-296-5p hsa-miR-8085 hsa-miR-4252 hsa-miR-219a-2-3p hsa-miR-3689b-3p hsa-miR-4666a-5p hsa-miR-6779-5p |
SCGN | 22 | hsa-miR-8485 hsa-miR-3689c hsa-miR-3613-3p hsa-miR-7106-5p hsa-miR-4659a-5p hsa-miR-494-3p hsa-miR-634 hsa-miR-4659b-5p hsa-miR-548an hsa-miR-4670-3p hsa-miR-5584-5p hsa-miR-4700-5p hsa-miR-1273h-5p hsa-miR-30b-3p hsa-miR-3692-3p hsa-miR-1228-3p hsa-miR-887-5p hsa-miR-3689a-3p hsa-miR-6835-3p hsa-miR-6780a-5p hsa-miR-3689b-3p hsa-miR-6779-5p |
HIST1H2BD | 29 | hsa-miR-1248 hsa-miR-4652-3p hsa-miR-1255b-5p hsa-miR-361-5p hsa-miR-5004-3p hsa-miR-491-3p hsa-miR-571 hsa-miR-548ax hsa-miR-4514 hsa-miR-6734-3p hsa-miR-373-5p hsa-miR-499b-5p hsa-miR-888-5p hsa-miR-4778-5p hsa-miR-616-5p hsa-miR-548n hsa-miR-4713-3p hsa-miR-3944-5p hsa-miR-371b-5p hsa-miR-7107-3p hsa-miR-6753-3p hsa-miR-194-5p hsa-miR-148a-5p hsa-miR-1255a hsa-miR-6758-3p hsa-miR-4279 hsa-miR-376a-5p hsa-miR-4692 hsa-miR-548ao-5p |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yıldırım, Ç.; Yay, F.; İmre, A.; Soysal, O.; Yıldırım, H.Ç. CXCL10, SCGN, and H2BC5 as Potential Key Genes Regulated by HCV Infection. Genes 2024, 15, 1502. https://doi.org/10.3390/genes15121502
Yıldırım Ç, Yay F, İmre A, Soysal O, Yıldırım HÇ. CXCL10, SCGN, and H2BC5 as Potential Key Genes Regulated by HCV Infection. Genes. 2024; 15(12):1502. https://doi.org/10.3390/genes15121502
Chicago/Turabian StyleYıldırım, Çiğdem, Fatih Yay, Ayfer İmre, Orçun Soysal, and Hasan Çağrı Yıldırım. 2024. "CXCL10, SCGN, and H2BC5 as Potential Key Genes Regulated by HCV Infection" Genes 15, no. 12: 1502. https://doi.org/10.3390/genes15121502
APA StyleYıldırım, Ç., Yay, F., İmre, A., Soysal, O., & Yıldırım, H. Ç. (2024). CXCL10, SCGN, and H2BC5 as Potential Key Genes Regulated by HCV Infection. Genes, 15(12), 1502. https://doi.org/10.3390/genes15121502