Skin and Induced Pluripotent Stem Cells as Biomarkers for Neurodegenerative Diseases
Abstract
:1. Introduction
2. Alzheimer’s Disease
2.1. Genes Linked to AD in the Skin: The Role of APP, PSEN1, and PPA2
APP and PSEN1: Familial AD and Early Detection
2.2. PPA2 Gene: A New Player in Alzheimer’s Diagnosis
2.3. Protein Biomarkers in Skin: The Role of PKC and Amyloid
Protein Kinase C Epsilon (PKCε) as an Early Biomarker
2.4. Amyloid Protein, Not a Definite Biomarker for AD
2.5. Tau Protein in AD and Other Tauopathies
2.6. Other Diagnostic Biomarkers for Alzheimer’s Diseases Using Skin Fibroblasts as Diagnostic Tools
2.7. iPSCs
3. Parkinson’s Disease
3.1. Genes Linked to Parkinson’s Disease in the Skin: The Role of PINK1 and LRRK2
PINK1 and LRRK2 Genes Work Together
3.2. Protein Biomarkers in the Skin: The Role of LRRK2 and A-Synuclein in PD
LRRK2 Protein Therapeutic Potential
3.3. A-Synuclein Protein, Not a Definite Biomarker
3.4. Enzyme Biomarker in the Skin: The Role of GCase in PD
3.5. iPSCs
4. Huntington’s Disease
4.1. Genes Linked to HD in the Skin: The Role of PLCB4, UBE2D3, APC, and ROCK1
PLCB4, UBE2D3, APC, and ROCK1 Genes Upregulated in HD
4.2. Protein Biomarkers in Skin: The Role of Parkin in HD
Parkin Protein: Possible Protective Role
4.3. iPSCs
5. Sporadic Creutzfeldt–Jakob Disease
5.1. Protein Biomarkers in Skin: The Role of PrPSc and Prion Seeding Activity in CJD
PrPSc Protein
5.2. Prion Seeding Activity and Infectivity
6. Progressive Supranuclear Palsy (PSP) and Corticobasal Degeneration (CBD)
6.1. Gene Linked to PSP and CBD in Skin: The Role of MAPT
MAPT Gene Distinguishes Tauopathies from α-Synucleinopathies
6.2. Protein Biomarker in Skin: The Role of Tau in PSP and CBD
Tau Protein 2N4R Isoform in PSP and CBD
7. Amyotrophic Lateral Sclerosis (ALS) and Primary Lateral Sclerosis (PLS)
7.1. Genes Linked to ALS and PLS in the Skin
Several Genes
7.2. iPSCs
8. Hereditary Spastic Paraplegia (HSP)
8.1. Genes Linked to HSP in the Skin
SPAST and SPG7 Genes Affect Fibroblasts’ Morphology
9. Frontotemporal Dementia
iPSCs
10. Comparison of Fibroblasts and iPS Cells with Brain, Blood, and Retina as Biomarkers for Neurodegenerative Disease
11. Discussion
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Temple, S. Advancing cell therapy for neurodegenerative diseases. Cell Stem Cell 2023, 30, 512–529. [Google Scholar] [CrossRef] [PubMed]
- Jameson, C.; Boulton, K.A.; Silove, N.; Nanan, R.; Guastella, A.J. Ectodermal origins of the skin-brain axis: A novel model for the developing brain, inflammation, and neurodevelopmental conditions. Mol. Psychiatry 2023, 28, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, Y.; Dillner, K.; Ebise, H.; Teramoto, R.; Nakagawa, H.; Lilius, L.; Axelman, K.; Forsell, C.; Ito, A.; Winblad, B.; et al. A unique gene expression signature discriminates familial Alzheimer’s disease mutation carriers from their wild-type siblings. Proc. Natl. Acad. Sci. USA 2005, 102, 14854–14859. [Google Scholar] [CrossRef] [PubMed]
- Azkona, G.; López de Maturana, R.; Del Rio, P.; Sousa, A.; Vazquez, N.; Zubiarrain, A.; Jimenez-Blasco, D.; Bolaños, J.P.; Morales, B.; Auburger, G.; et al. LRRK2 Expression Is Deregulated in Fibroblasts and Neurons from Parkinson Patients with Mutations in PINK1. Mol. Neurobiol. 2018, 55, 506–516. [Google Scholar] [CrossRef]
- Marchina, E.; Misasi, S.; Bozzato, A.; Ferraboli, S.; Agosti, C.; Rozzini, L.; Borsani, G.; Barlati, S.; Padovani, A. Gene expression profile in fibroblasts of Huntington’s disease patients and controls. J. Neurol. Sci. 2014, 337, 42–46. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, L.; Gerasimenko, M.; Gilliland, T.; Gunzler, S.A.; Donadio, V.; Liguori, R.; Xu, B.; Zou, W.Q. Seeding Activity of Skin Misfolded Tau as a Biomarker for Tauopathies. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Gibbons, C.H.; Freeman, R.; Bellaire, B.; Adler, C.H.; Moore, D.; Levine, T. Synuclein-One study: Skin biopsy detection of phosphorylated alpha-synuclein for diagnosis of synucleinopathies. Biomark. Med. 2022, 16, 499–509. [Google Scholar] [CrossRef]
- Khan, T.K.; Sen, A.; Hongpaisan, J.; Lim, C.S.; Nelson, T.J.; Alkon, D.L. PKCepsilon deficits in Alzheimer’s disease brains and skin fibroblasts. J. Alzheimers Dis. 2015, 43, 491–509. [Google Scholar] [CrossRef]
- Khan, T.K.; Alkon, D.L. Peripheral biomarkers of Alzheimer’s disease. J. Alzheimers Dis. 2015, 44, 729–744. [Google Scholar] [CrossRef]
- Mammana, A.; Baiardi, S.; Rossi, M.; Franceschini, A.; Donadio, V.; Capellari, S.; Caughey, B.; Parchi, P. Detection of prions in skin punch biopsies of Creutzfeldt-Jakob disease patients. Ann. Clin. Transl. Neurol. 2020, 7, 559–564. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- McKinney, C.E. Using induced pluripotent stem cells derived neurons to model brain diseases. Neural Regen. Res. 2017, 12, 1062–1067. [Google Scholar] [CrossRef] [PubMed]
- Pitrez, P.R.; Monteiro, L.M.; Borgogno, O.; Nissan, X.; Mertens, J.; Ferreira, L. Cellular reprogramming as a tool to model human aging in a dish. Nat. Commun. 2024, 15, 1816. [Google Scholar] [CrossRef] [PubMed]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.Q.; Feng, C.; Alkon, D.L. Impairment of phosphatase 2A contributes to the prolonged MAP kinase phosphorylation in Alzheimer’s disease fibroblasts. Neurobiol. Dis. 2003, 14, 458–469. [Google Scholar] [CrossRef]
- Soininen, H.; Syrjanen, S.; Heinonen, O.; Neittaanmaki, H.; Miettinen, R.; Paljarvi, L.; Syrjanen, K.; Beyreuther, K.; Riekkinen, P. Amyloid beta-protein deposition in skin of patients with dementia. Lancet 1992, 339, 245. [Google Scholar] [CrossRef]
- Heinonen, O.; Soininen, H.; Syrjänen, S.; Neittaanmäki, H.; Paljärvi, L.; Kosunen, O.; Syrjänen, K.; Riekkinen, P., Sr. β-Amyloid Protein Immunoreactivity in Skin Is Not a Reliable Marker of Alzheimer’s Disease: An Autopsy-Controlled Study. Arch. Neurol. 1994, 51, 799–804. [Google Scholar] [CrossRef]
- Kvetnoĭ, I.M.; Kvetnaia, T.V.; Riadnova, I.; Fursov, B.B.; Ernandes-Jago, H.; Blesa, J.R. [Expression of beta-amyloid and tau-protein in mastocytes in Alzheimer disease]. Arkhiv Patologii 2003, 65, 36–39. [Google Scholar]
- Khalil, Z.; LoGiudice, D.; Khodr, B.; Maruff, P.; Masters, C. Impaired peripheral endothelial microvascular responsiveness in Alzheimer’s disease. J. Alzheimers Dis. 2007, 11, 25–32. [Google Scholar] [CrossRef]
- Peterson, C.; Ratan, R.R.; Shelanski, M.L.; Goldman, J.E. Cytosolic free calcium and cell spreading decrease in fibroblasts from aged and Alzheimer donors. Proc. Natl. Acad. Sci. USA 1986, 83, 7999–8001. [Google Scholar] [CrossRef]
- Kumar, U.; Dunlop, D.M.; Richardson, J.S. Mitochondria from Alzheimer’s fibroblasts show decreased uptake of calcium and increased sensitivity to free radicals. Life Sci. 1994, 54, 1855–1860. [Google Scholar] [CrossRef] [PubMed]
- Chirila, F.V.; Khan, T.K.; Alkon, D.L. Fibroblast aggregation rate converges with validated peripheral biomarkers for Alzheimer’s disease. J. Alzheimers Dis. 2014, 42, 1279–1294. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.K.; Alkon, D.L. Early diagnostic accuracy and pathophysiologic relevance of an autopsy-confirmed Alzheimer’s disease peripheral biomarker. Neurobiol. Aging 2010, 31, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, X.A.; Franco, A.; Fernández-Novoa, L.; Cacabelos, R. Blood levels of histamine, IL-1 beta, and TNF-alpha in patients with mild to moderate Alzheimer disease. Mol. Chem. Neuropathol. 1996, 29, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Khan, T.K.; Alkon, D.L. An internally controlled peripheral biomarker for Alzheimer’s disease: Erk1 and Erk2 responses to the inflammatory signal bradykinin. Proc. Natl. Acad. Sci. USA 2006, 103, 13203–13207. [Google Scholar] [CrossRef]
- Chirila, F.V.; Xu, G.; Fontaine, D.; Kern, G.; Khan, T.K.; Brandt, J.; Konishi, Y.; Nebe-von-Caron, G.; White, C.L., 3rd; Alkon, D.L. Morphometric imaging biomarker identifies Alzheimer’s disease even among mixed dementia patients. Sci. Rep. 2022, 12, 17675. [Google Scholar] [CrossRef]
- Wu, C.Y.; Ho, C.Y.; Yang, Y.H. Developing Biomarkers for the Skin: Biomarkers for the Diagnosis and Prediction of Treatment Outcomes of Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 8478. [Google Scholar] [CrossRef]
- Pani, A.; Dessì, S.; Diaz, G.; La Colla, P.; Abete, C.; Mulas, C.; Angius, F.; Cannas, M.D.; Orru, C.D.; Cocco, P.L.; et al. Altered cholesterol ester cycle in skin fibroblasts from patients with Alzheimer’s disease. J. Alzheimers Dis. 2009, 18, 829–841. [Google Scholar] [CrossRef]
- Etcheberrigaray, R.; Ito, E.; Kim, C.S.; Alkon, D.L. Soluble beta-amyloid induction of Alzheimer’s phenotype for human fibroblast K+ channels. Science 1994, 264, 276–279. [Google Scholar] [CrossRef]
- Cazzaniga, E.; Bulbarelli, A.; Lonati, E.; Re, F.; Galimberti, G.; Gatti, E.; Pitto, M.; Ferrarese, C.; Masserini, M. Enhanced folate binding of cultured fibroblasts from Alzheimer’s disease patients. Neurosci. Lett. 2008, 436, 317–320. [Google Scholar] [CrossRef]
- Armijo, E.; Gonzalez, C.; Shahnawaz, M.; Flores, A.; Davis, B.; Soto, C. Increased susceptibility to Abeta toxicity in neuronal cultures derived from familial Alzheimer’s disease (PSEN1-A246E) induced pluripotent stem cells. Neurosci. Lett. 2017, 639, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Htike, T.T.; Mishra, S.; Kumar, S.; Padmanabhan, P.; Gulyas, B. Peripheral Biomarkers for Early Detection of Alzheimer’s and Parkinson’s Diseases. Mol. Neurobiol. 2019, 56, 2256–2277. [Google Scholar] [CrossRef] [PubMed]
- Gopar-Cuevas, Y.; Duarte-Jurado, A.P.; Diaz-Perez, R.N.; Saucedo-Cardenas, O.; Loera-Arias, M.J.; Montes-de-Oca-Luna, R.; Rodriguez-Rocha, H.; Garcia-Garcia, A. Pursuing Multiple Biomarkers for Early Idiopathic Parkinson’s Disease Diagnosis. Mol. Neurobiol. 2021, 58, 5517–5532. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.A.; Jansson, J.; Rocha, E.M.; Osborn, T.; Hallett, P.J.; Isacson, O. Fibroblast Biomarkers of Sporadic Parkinson’s Disease and LRRK2 Kinase Inhibition. Mol. Neurobiol. 2016, 53, 5161–5177. [Google Scholar] [CrossRef]
- Flinkman, D.; Hong, Y.; Gnjatovic, J.; Deshpande, P.; Ortutay, Z.; Peltonen, S.; Kaasinen, V.; James, P.; Coffey, E. Regulators of proteostasis are translationally repressed in fibroblasts from patients with sporadic and LRRK2-G2019S Parkinson’s disease. NPJ Park. Dis. 2023, 9, 20. [Google Scholar] [CrossRef]
- Wang, Z.; Becker, K.; Donadio, V.; Siedlak, S.; Yuan, J.; Rezaee, M.; Incensi, A.; Kuzkina, A.; Orru, C.D.; Tatsuoka, C.; et al. Skin alpha-Synuclein Aggregation Seeding Activity as a Novel Biomarker for Parkinson Disease. JAMA Neurol. 2020, 78, 30–40. [Google Scholar] [CrossRef]
- Gibbons, C.H.; Levine, T.; Adler, C.; Bellaire, B.; Wang, N.; Stohl, J.; Agarwal, P.; Aldridge, G.M.; Barboi, A.; Evidente, V.G.H.; et al. Skin Biopsy Detection of Phosphorylated alpha-Synuclein in Patients With Synucleinopathies. JAMA 2024, 331, 1298–1306. [Google Scholar] [CrossRef]
- Contie, V. Skin Test Detects Evidence of Parkinson’s and Related Disorders. 2024. Available online: https://www.nih.gov/news-events/nih-research-matters/skin-test-detects-evidence-parkinson-s-related-disorders (accessed on 2 November 2024).
- Thomas, R.; Moloney, E.B.; Macbain, Z.K.; Hallett, P.J.; Isacson, O. Fibroblasts from idiopathic Parkinson’s disease exhibit deficiency of lysosomal glucocerebrosidase activity associated with reduced levels of the trafficking receptor LIMP2. Mol. Brain 2021, 14, 16. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Tang, B.; Guo, J. Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson’s disease. Transl. Neurodegener. 2024, 13, 48. [Google Scholar] [CrossRef]
- Sanchez-Danes, A.; Richaud-Patin, Y.; Carballo-Carbajal, I.; Jimenez-Delgado, S.; Caig, C.; Mora, S.; Di Guglielmo, C.; Ezquerra, M.; Patel, B.; Giralt, A.; et al. Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol. Med. 2012, 4, 380–395. [Google Scholar] [CrossRef]
- Aladdin, A.; Kiraly, R.; Boto, P.; Regdon, Z.; Tar, K. Juvenile Huntington’s Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mutant Huntingtin Protein. Int. J. Mol. Sci. 2019, 20, 5338. [Google Scholar] [CrossRef] [PubMed]
- Bezprozvanny, I.; Kiselev, S.L. Neurons from skin mimic brain holes. Oncotarget 2017, 8, 8997–8998. [Google Scholar] [CrossRef] [PubMed]
- Kaye, J.; Reisine, T.; Finkbeiner, S. Huntington’s disease iPSC models-using human patient cells to understand the pathology caused by expanded CAG repeats. Fac. Rev. 2022, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Park, I.-H.; Lerou, P.H.; Zhao, R.; Huo, H.; Daley, G.Q. Generation of human-induced pluripotent stem cells. Nat. Protoc. 2008, 3, 1180–1186. [Google Scholar] [CrossRef]
- Victor, M.B.; Richner, M.; Olsen, H.E.; Lee, S.W.; Monteys, A.M.; Ma, C.; Huh, C.J.; Zhang, B.; Davidson, B.L.; Yang, X.W.; et al. Striatal neurons directly converted from Huntington’s disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat. Neurosci. 2018, 21, 341–352. [Google Scholar] [CrossRef]
- Hermann, P.; Appleby, B.; Brandel, J.P.; Caughey, B.; Collins, S.; Geschwind, M.D.; Green, A.; Haïk, S.; Kovacs, G.G.; Ladogana, A.; et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol. 2021, 20, 235–246. [Google Scholar] [CrossRef]
- Orrú, C.D.; Yuan, J.; Appleby, B.S.; Li, B.; Li, Y.; Winner, D.; Wang, Z.; Zhan, Y.-A.; Rodgers, M.; Rarick, J.; et al. Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease. Sci. Transl. Med. 2017, 9, eaam7785. [Google Scholar] [CrossRef]
- Coughlin, D.G.; Dickson, D.W.; Josephs, K.A.; Litvan, I. Progressive Supranuclear Palsy and Corticobasal Degeneration. Adv. Exp. Med. Biol. 2021, 1281, 151–176. [Google Scholar] [CrossRef]
- Vacchi, E.; Lazzarini, E.; Pinton, S.; Chiaro, G.; Disanto, G.; Marchi, F.; Robert, T.; Staedler, C.; Galati, S.; Gobbi, C.; et al. Tau protein quantification in skin biopsies differentiates tauopathies from alpha-synucleinopathies. Brain 2022, 145, 2755–2768. [Google Scholar] [CrossRef]
- Raman, R.; Allen, S.P.; Goodall, E.F.; Kramer, S.; Ponger, L.L.; Heath, P.R.; Milo, M.; Hollinger, H.C.; Walsh, T.; Highley, J.R.; et al. Gene expression signatures in motor neurone disease fibroblasts reveal dysregulation of metabolism, hypoxia-response and RNA processing functions. Neuropathol. Appl. Neurobiol. 2015, 41, 201–226. [Google Scholar] [CrossRef]
- Bhinge, A.; Namboori, S.C.; Zhang, X.; VanDongen, A.M.J.; Stanton, L.W. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis. Stem Cell Rep. 2017, 8, 856–869. [Google Scholar] [CrossRef] [PubMed]
- Certificate of Analysis GM 23280A. Available online: https://www.coriell.org/0/PDF/NIGMS/ipsc/GM23280_CofA.pdf (accessed on 2 November 2024).
- Meyyazhagan, A.; Orlacchio, A. Hereditary Spastic Paraplegia: An Update. Int. J. Mol. Sci. 2022, 23, 1697. [Google Scholar] [CrossRef] [PubMed]
- Wali, G.; Berkovsky, S.; Whiten, D.R.; Mackay-Sim, A.; Sue, C.M. Single cell morphology distinguishes genotype and drug effect in Hereditary Spastic Paraplegia. Sci. Rep. 2021, 11, 16635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Schmid, B.; Nikolaisen, N.K.; Rasmussen, M.A.; Aldana, B.I.; Agger, M.; Calloe, K.; Stummann, T.C.; Larsen, H.M.; Nielsen, T.T.; et al. Patient iPSC-Derived Neurons for Disease Modeling of Frontotemporal Dementia with Mutation in CHMP2B. Stem Cell Rep. 2017, 8, 648–658. [Google Scholar] [CrossRef]
- Evangelisti, C.; Ramadan, S.; Orlacchio, A.; Panza, E. Experimental Cell Models for Investigating Neurodegenerative Diseases. Int. J. Mol. Sci. 2024, 25, 9747. [Google Scholar] [CrossRef]
Biomarker | Method of Detection | Sensitivity | Specificity | Key Findings |
---|---|---|---|---|
APP (Amyloid Precursor Protein) gene | Gene Expression Analysis, RTQ-PCR | High | High | Mutations in APP are linked to amyloid-β (Aβ) accumulation and are associated with familial early-onset AD [3] |
PSEN1 (Presenilin 1) | Gene Expression Analysis, RTQ-PCR | High | High | Mutations impair amyloid processing, a strong indicator of familial AD, especially early-onset forms [3] |
PPA2 Gene Expression | RTQ-PCR | Medium | Medium | Altered gene expression in AD fibroblasts; reduced phosphatase activity affects tau protein regulation [15] |
PKCε Levels | ELISA | High | High | Reduced levels in AD fibroblasts and brain tissue reflecting impaired protective function against Aβ [8] |
Amyloid-β (Aβ) | Immunohistochemistry, ELISA | Low | Low | Present in both AD and non-AD patients, limiting its reliability as a standalone AD biomarker [17] |
Tau Protein | Seed-Amplification Assay (SAA), RT-QuIC | 75–80% | 95–100% | Tau seeding activity in skin mirrors brain pathology progression, offering a non-invasive biomarker for AD and other tauopathies [6] |
Calcium Homeostasis | Fluorescence Imaging, ELISA | Medium | Medium | Disrupted calcium transport in AD fibroblasts, increasing vulnerability to oxidative stress [32] |
Fibroblast Aggregation | Aggregation Rate Calculation | High | High | Higher aggregation rates in AD fibroblasts correlate with disease progression and diagnosis [22] |
AD-Index (MAPK Erk1/2) | Phosphorylation Analysis | 97% | 100% | Measures imbalances in Erk1/2 phosphorylation, accurate for early AD diagnosis using skin fibroblasts [23] |
Morphometric Imaging (MI) | 3D Matrigel Analysis | High | High | AD fibroblasts form fewer but larger aggregates than controls, aiding in the differentiation of AD from other neurodegenerative conditions [26] |
Skin pH | Skin pH Meter | Medium | Medium | AD patients display less acidic skin pH compared to healthy controls, serving as a potential marker [27] |
Skin Hydration | Hydration Meter | Medium | Medium | Increased hydration levels in AD patients, distinguishing them from controls [27] |
Skin Elasticity | Elasticity Meter | Medium | Medium | Reduced skin elasticity in AD patients compared to healthy individuals, indicating systemic effects [27] |
Microvascular Tortuosity | Microvascular Imaging | Medium | Medium | Vascular changes in the skin correlate with cognitive decline, offering early insights into AD [27] |
iPSC-Derived Neurons | Reprogramming and Differentiation | High | High | Neurons derived from AD fibroblasts exhibit increased vulnerability to Aβ, providing insights into AD mechanisms [31] |
Condition | % Positive for αSynP | Sensitivity | Specificity |
---|---|---|---|
Parkinson’s | 92.7% | 94% | 98% |
MSA | 98.2% | 94% | 98% |
DLB | 96.0% | 94% | 98% |
PAF | 100% | 94% | 98% |
Control Group | 3.3% | N/A * | N/A |
Characteristic | Early iPSC Models | Recent iPSC Models |
---|---|---|
Neuronal Conversion Method | Standard iPSC-derived neurons, free of aggregates and cell death phenotype. | microRNA-based direct conversion to MSNs retains age signatures and exhibits mHTT aggregates, DNA damage, mitochondrial dysfunction, and spontaneous degeneration. |
Age-Related Characteristics | Lost during conversion, limiting relevance for age-dependent diseases. | Preserved during conversion, highlighting the role of age in HD progression. |
Key HD Features | Often absent (no mHTT aggregates or cell death). | Consistently present: mHTT aggregates, DNA damage, mitochondrial dysfunction, and neuronal degeneration. |
Relevance to Late-Onset HD | Limited due to loss of age signatures. | Improved accuracy, as age, is a crucial factor in HD, particularly for late-onset forms. |
Neurodegenerative Disorder | Fibroblast Biomarker | Role of Fibroblast Biomarkers | Methodology |
---|---|---|---|
Sporadic Creutzfeldt–Jakob Disease (sCJD) [10] | Prion-seeding activity detected via RT-QuIC in skin fibroblasts | Alternative diagnostic tool for prion detection in sCJD; potential non-invasive biomarker | RT-QuIC, Western Blot |
Progressive Supranuclear Palsy (PSP) [50] | MAPT gene expression (elevated tau isoforms 2N4R, 4R) | Non-invasive method for distinguishing PSP by measuring tau isoforms in fibroblasts | Real-Time PCR, Western Blot |
Corticobasal Degeneration (CBD) [50] | MAPT gene expression (elevated tau isoforms 2N4R, 4R) | Fibroblasts reveal tau pathology in CBD, aiding in differential diagnosis | Real-Time PCR, Western Blot |
Amyotrophic Lateral Sclerosis (ALS) [51,52] | Gene expression profiling in fibroblasts (RNA processing, hypoxia response) | Fibroblasts show altered gene expression relevant to ALS/PLS, modeling disease mechanisms | Microarray analysis, qPCR, iPSC generation |
Primary Lateral Sclerosis (PLS) [51] | Gene expression changes in RNA processing genes | Helps distinguish PLS from ALS through fibroblast gene expression analysis | Microarray analysis, qPCR |
Hereditary Spastic Paraplegia (HSP) [55] | Fibroblast morphology profiling (SPAST, SPG7 mutations) | Machine learning identifies genotype-specific fibroblast morphological changes, indicating SPAST and SPG7 mutations | Machine learning, automated image analysis |
Frontotemporal Dementia (FTD) [56] | iPSCs from fibroblasts (mitochondrial dysfunction, oxidative stress) | iPSCs derived from fibroblasts display disease-related cellular dysfunction, offering a model for FTD | iPSC generation, CRISPR gene editing |
Tissue | Advantages | Key Biomarkers | Limitations |
---|---|---|---|
Skin | Non-invasive, accessible, suitable for long-term studies. | Erk1/2 phosphorylation (AD). | Needs more validation for specific diseases; inconsistent α-synuclein results (PD). |
Reflects aging, oxidative stress, mitochondrial dysfunction. | Altered calcium homeostasis (AD). | ||
Allows studies on mitochondrial function and proteostasis. | Impaired mitochondrial function (AD). | ||
Brain | Highly specific, detects hallmark pathologies (amyloid plaques and tau tangles). | Amyloid plaques and tau tangles (AD). | Invasive (e.g., lumbar puncture), requires autopsy for confirmation, limited for repeated studies. |
Directly assesses central neurodegeneration. | Dopaminergic neuron loss (PD). | ||
Blood | Easily accessible, non-invasive, ideal for large-scale studies. | PKC levels in RBCs (AD). | High variability; inconsistent findings for some markers like amyloid-β. |
Reflects systemic inflammation and protein alterations. | GSK-3 in WBCs (AD). | ||
α-synuclein, DJ-1 isoforms (PD). | |||
Retina | Non-invasive imaging, allows monitoring of structural changes over time. | RNFL thinning (AD, PD). | Needs more validation for consistency; variability in biomarker results. |
Reflects neurodegeneration indirectly. | Retinal ganglion cell loss (AD). | ||
Provides insight into CNS changes. | Retinal dopamine deficits (PD). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rallis, E.; Grech, V.-S.; Lotsaris, K.; Tertipi, N.; Sfyri, E.; Kefala, V. Skin and Induced Pluripotent Stem Cells as Biomarkers for Neurodegenerative Diseases. Genes 2024, 15, 1507. https://doi.org/10.3390/genes15121507
Rallis E, Grech V-S, Lotsaris K, Tertipi N, Sfyri E, Kefala V. Skin and Induced Pluripotent Stem Cells as Biomarkers for Neurodegenerative Diseases. Genes. 2024; 15(12):1507. https://doi.org/10.3390/genes15121507
Chicago/Turabian StyleRallis, Efstathios, Vasiliki-Sofia Grech, Kleomenis Lotsaris, Niki Tertipi, Eleni Sfyri, and Vassiliki Kefala. 2024. "Skin and Induced Pluripotent Stem Cells as Biomarkers for Neurodegenerative Diseases" Genes 15, no. 12: 1507. https://doi.org/10.3390/genes15121507
APA StyleRallis, E., Grech, V. -S., Lotsaris, K., Tertipi, N., Sfyri, E., & Kefala, V. (2024). Skin and Induced Pluripotent Stem Cells as Biomarkers for Neurodegenerative Diseases. Genes, 15(12), 1507. https://doi.org/10.3390/genes15121507