Effects of Gene–Lifestyle Interaction on Obesity Among Students
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Participants
2.3. Anthropometric Measurement
2.4. Lifestyle Variables
2.5. SNP Selection and Genotyping
2.6. Genetic Risk Score Calculation
2.7. Lifestyle Risk Score Calculation
2.8. Statistical Analysis
3. Results
3.1. Anthropometric Characteristics
3.2. Association Between Genetic Variants and BMI
3.3. Association Between Lifestyle Parameters and BMI
3.4. Gene–Lifestyle Interaction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Information Bulletins. Obesity and Overweight. Available online: https://www.who.int/ru/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 12 October 2024).
- Yanovski, J.A. Obesity: Trends in underweight and obesity—Scale of the problem. Nat. Rev. Endocrinol. 2018, 14, 5–6. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Bhaskaran, K.; Dos-Santos-Silva, I.; Leon, D.A.; Douglas, I.J.; Smeeth, L. Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3.6 million adults in the UK. Lancet Diabetes Endocrinol. 2018, 6, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Global BMI Mortality Collaboration; Di Angelantonio, E.; Bhupathiraju, S.N.; Wormser, D.; Gao, P.; Kaptoge, S.; Berrington de Gonzalez, A.; Cairns, B.J.; Huxley, R.; Jackson, C.H.; et al. Body-mass index and all-cause mortality: Individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016, 388, 776–786. [Google Scholar] [CrossRef]
- Townsend, T.N.; Mehta, N.K. Contributions of obesity and cigarette smoking to incident disability: A longitudinal analysis. Prev. Med. 2020, 141, 106226. [Google Scholar] [CrossRef]
- Silventoinen, K.; Li, W.; Jelenkovic, A.; Sund, R.; Yokoyama, Y.; Aaltonen, S.; Piirtola, M.; Sugawara, M.; Tanaka, M.; Matsumoto, S.; et al. Changing genetic architecture of body mass index from infancy to early adulthood: An individual based pooled analysis of 25 twin cohorts. Int. J. Obes. 2022, 46, 1901–1909. [Google Scholar] [CrossRef]
- Silventoinen, K.; Jelenkovic, A.; Sund, R.; Latvala, A.; Honda, C.; Inui, F.; Tomizawa, R.; Watanabe, M.; Sakai, N.; Rebato, E.; et al. Genetic and environmental variation in educational attainment: An individual-based analysis of 28 twin cohorts. Sci. Rep. 2020, 10, 12681. [Google Scholar] [CrossRef]
- Bouchard, C. Genetics of Obesity: What We Have Learned Over Decades of Research. Obesity 2021, 29, 802–820. [Google Scholar] [CrossRef]
- Yengo, L.; Sidorenko, J.; Kemper, K.E.; Zheng, Z.; Wood, A.R.; Weedon, M.N.; Frayling, T.M.; Hirschhorn, J.N.; Yang, J.; Visscher, P.M.; et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700,000 individuals of European ancestry. Hum. Mol. Genet. 2018, 27, 3641–3649. [Google Scholar] [CrossRef]
- Kim, M.S.; Shim, I.; Fahed, A.C.; Do, R.; Park, W.-Y.; Natarajan, P.; Khera, A.V.; Won, H.-H. Association of genetic risk, lifestyle, and their interaction with obesity and obesity-related morbidities. Cell Metab. 2024, 36, 1494–1503.e3. [Google Scholar] [CrossRef]
- Pérusse, L.; Jacob, R.; Drapeau, V.; Llewellyn, C.; Arsenault, B.J.; Bureau, A.; Labonté, M.È.; Tremblay, A.; Vohl, M.C. Understanding Gene-Lifestyle Interaction in Obesity: The Role of Mediation versus Moderation. Lifestyle Genom. 2022, 15, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J. Gene-environment interactions in human diseases. Nat. Rev. Genet. 2005, 6, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Rask-Andersen, M.; Karlsson, T.; Ek, W.E.; Johansson, A. Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption, and socioeconomic status. PLoS Genet. 2017, 13, e1006977. [Google Scholar] [CrossRef] [PubMed]
- Chermon, D.; Birk, R. Gene-Environment Interactions Significantly Alter the Obesity Risk of SH2B1 rs7498665 Carriers. J. Obes. Metab. Syndr. 2024, 33, 251–260. [Google Scholar] [CrossRef]
- Li, S.; Zhao, J.H.; Luan, J.; Ekelund, U.; Luben, R.N.; Khaw, K.T.; Wareham, N.J.; Loos, R.J. Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from the EPIC-Norfolk prospective population study. PLoS Med. 2010, 7, e1000332. [Google Scholar] [CrossRef]
- Xue, H.; Zhang, X.; Li, D.; Chen, M.; Luo, J.; Gong, Y.; Lv, X.; Quan, L.; He, F.; Zhang, L.; et al. Relevance of Physical Activities, Sedentary Behaviors, and Genetic Predisposition in Body Fatness: Population-Based Study on Chinese Adults. Obes. Facts 2021, 14, 346–356. [Google Scholar] [CrossRef]
- Qi, Q.; Li, Y.; Chomistek, A.K.; Kang, J.H.; Curhan, G.C.; Pasquale, L.R.; Willett, W.C.; Rimm, E.B.; Hu, F.B.; Qi, L. Television watching, leisure time physical activity, and the genetic predisposition in relation to body mass index in women and men. Circulation 2012, 126, 1821–1827. [Google Scholar] [CrossRef]
- Celis-Morales, C.; Lyall, D.M.; Guo, Y.; Steell, L.; Llanas, D.; Ward, J.; Mackay, D.F.; Biello, S.M.; Bailey, M.E.; Pell, J.P.; et al. Sleep characteristics modify the association of genetic predisposition with obesity and anthropometric measurements in 119,679 UK Biobank participants. Am. J. Clin. Nutr. 2017, 105, 980–990. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Barton, A.R.; Sherman, M.A.; Mukamel, R.E.; Loh, P.R. Whole-exome imputation within UK Biobank powers rare coding variant association and fine-mapping analyses. Nat. Genet. 2021, 53, 1260–1269. [Google Scholar] [CrossRef]
- Hübel, C.; Gaspar, H.A.; Coleman, J.R.I.; Finucane, H.; Purves, K.L.; Hanscombe, K.B.; Prokopenko, I.; MAGIC investigators; Graff, M.; Ngwa, J.S.; et al. Genomics of body fat percentage may contribute to sex bias in anorexia nervosa. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2019, 180, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Cule, M.; Basty, N.; Tyrrell, J.; Beaumont, R.N.; Wood, A.R.; Frayling, T.M.; Sorokin, E.; Whitcher, B.; Liu, Y.; et al. Genetic Evidence for Different Adiposity Phenotypes and Their Opposing Influences on Ectopic Fat and Risk of Cardiometabolic Disease. Diabetes 2021, 70, 1843–1856. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.C. Gene × environment interaction studies have not properly controlled for potential confounders: The problem and the (simple) solution. Biol. Psychiatry 2014, 75, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Fang, X.; Saito, Y.; Narimatsu, H.; Ota, A.; Ikezaki, H.; Shimanoe, C.; Tanaka, K.; Kubo, Y.; Tsukamoto, M.; et al. Effects of gene-lifestyle interactions on obesity based on a multi-locus risk score: A cross-sectional analysis. PLoS ONE 2023, 18, e0279169. [Google Scholar] [CrossRef]
- Choi, S.W.; Mak, T.S.; O’Reilly, P.F. Tutorial: A guide to performing polygenic risk score analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef]
- Cano-Gamez, E.; Trynka, G. From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying Complex Diseases. Front. Genet. 2020, 11, 424. [Google Scholar] [CrossRef]
- Vasileiou, V.; Abbott, S. Emotional eating among adults with healthy weight, overweight, and obesity: A systematic review and meta-analysis. J. Hum. Nutr. Diet. 2023, 36, 1922–1930. [Google Scholar] [CrossRef]
- Teodoro, M.C.; Conceição, E.M.; de Lourdes, M.; Alves, J.R.; Neufeld, C.B. Grazing’s frequency and associations with obesity, psychopathology, and loss of control eating in clinical and community contexts: A systematic review. Appetite 2021, 167, 105620. [Google Scholar] [CrossRef]
- Larsen, S.C.; Horgan, G.; Mikkelsen, M.K.; Palmeira, A.L.; Scott, S.; Duarte, C.; Santos, I.; Encantado, J.; Driscoll, R.O.; Turicchi, J.; et al. Association between objectively measured sleep duration, adiposity and weight loss history. Int. J. Obes. 2020, 44, 1577–1585. [Google Scholar] [CrossRef]
- Bacaro, V.; Ballesio, A.; Cerolini, S.; Vacca, M.; Poggiogalle, E.; Donini, L.M.; Lucidi, F.; Lombardo, C. Sleep duration and obesity in adulthood: An updated systematic review and meta-analysis. Obes. Res. Clin. Pract. 2020, 14, 301–309. [Google Scholar] [CrossRef]
- Longo-Silva, G.; Pedrosa, A.K.P.; de Oliveira, P.M.B.; da Silva, J.R.; de Menezes, R.C.E.; Marinho, P.d.M.; Bernardes, R.S. Beyond sleep duration: Sleep timing is associated with BMI among Brazilian adults. Sleep Med. X 2023, 6, 100082. [Google Scholar] [CrossRef] [PubMed]
- Tse, L.A.; Wang, C.; Rangarajan, S.; Liu, Z.; Teo, K.; Yusufali, A.; Avezum, Á.; Wielgosz, A.; Rosengren, A.; Kruger, I.M.; et al. Timing and Length of Nocturnal Sleep and Daytime Napping and Associations With Obesity Types in High-, Middle-, and Low-Income Countries. JAMA Netw. Open 2021, 4, e2113775. [Google Scholar] [CrossRef] [PubMed]
- Tammelin, T.; Laitinen, J.; Näyhä, S. Change in the level of physical activity from adolescence into adulthood and obesity at the age of 31 years. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 775–782. [Google Scholar] [CrossRef]
- Curran, F.; Davis, M.E.; Murphy, K.; Tersigni, N.; King, A.; Ngo, N.; O’Donoghue, G. Correlates of physical activity and sedentary behavior in adults living with overweight and obesity: A systematic review. Obesity Rev. 2023, 24, e13615. [Google Scholar] [CrossRef]
- Wang, T.; Huang, T.; Kang, J.H.; Zheng, Y.; Jensen, M.K.; Wiggs, J.L.; Pasquale, L.R.; Fuchs, C.S.; Campos, H.; Rimm, E.B.; et al. Habitual coffee consumption and genetic predisposition to obesity: Gene-diet interaction analyses in three US prospective studies. BMC Med. 2017, 15, 97. [Google Scholar] [CrossRef]
- Icken, D.; Feller, S.; Engeli, S.; Mayr, A.; Müller, A.; Hilbert, A.; de Zwaan, M. Caffeine intake is related to successful weight loss maintenance. Eur. J. Clin. Nutr. 2016, 70, 532–534. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, Y.S. Light coffee consumption is protective against sarcopenia, but frequent coffee consumption is associated with obesity in Korean adults. Nutr. Res. 2017, 41, 97–102. [Google Scholar] [CrossRef]
- Lee, J.; Kim, H.Y.; Kim, J. Coffee Consumption and the Risk of Obesity in Korean Women. Nutrients 2017, 9, 1340. [Google Scholar] [CrossRef]
- Nicolopoulos, K.; Mulugeta, A.; Zhou, A.; Hyppönen, E. Association between habitual coffee consumption and multiple disease outcomes: A Mendelian randomisation phenome-wide association study in the UK Biobank. Clin. Nutr. 2020, 39, 3467–3476. [Google Scholar] [CrossRef]
- Magaña-de la Vega, L.; Martínez-López, E.; Sanchez-Murguia, T.; Madrigal-Juárez, A.; Rodríguez-Reyes, S.C.; Aguilar-Vega, I.; Torres-Castillo, N. Effect of coffee intake on appetite parameters in woman with overweight or obesity: A pilot crossover randomized trial. Endocrinol. Diabetes Nutr. 2024, 71, 236–245. [Google Scholar] [CrossRef]
- Daily, J.W.; Liu, M.; Park, S. High genetic risk scores of SLIT3, PLEKHA5 and PPP2R2C variants increased insulin resistance and interacted with coffee and caffeine consumption in middle-aged adults. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.S.D.; Pontes, K.S.D.S.; Guedes, M.R.; Barreto Silva, M.I.; Klein, M.R.S.T. Association of habitual coffee consumption with obesity, sarcopenia, bone mineral density and cardiovascular risk factors: A two-year follow-up study in kidney transplant recipients. Clin. Nutr. 2023, 42, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Woolf, B.; Cronjé, H.T.; Zagkos, L.; Larsson, S.C.; Gill, D.; Burgess, S. Comparison of caffeine consumption behavior with plasma caffeine levels as exposure measures in drug-target Mendelian randomization. Am. J. Epidemiol. 2024, 10, 38904434. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, A.; Yamazaki, T.; Ryan, C.; Ito, K.; Sato, S.; Tamura, K.; Sekiguchi, M.; Cao, S.; Shibata, S. Caffeine suppresses high-fat diet-induced body weight gain in mice depending on feeding timing. J. Funct. Foods 2022, 99, 105307. [Google Scholar] [CrossRef]
- Ludwig, M.G.; Seuwen, K. Characterization of the human adenylyl cyclase gene family: cDNA, gene structure, and tissue distribution of the nine isoforms. J. Recept. Signal Transduct. Res. 2002, 22, 79–110. [Google Scholar] [CrossRef]
- Xu, T.R.; Yang, Y.; Ward, R.; Gao, L.; Liu, Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers, and other physiological disorders. Cell. Signal. 2013, 25, 2413–2423. [Google Scholar] [CrossRef]
- Duncan, R.E.; Ahmadian, M.; Jaworski, K.; Sarkadi-Nagy, E.; Sul, H.S. Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 2007, 27, 79–101. [Google Scholar] [CrossRef]
- Song, W.; Luo, Q.; Zhang, Y.; Zhou, L.; Liu, Y.; Ma, Z.; Guo, J.; Huang, Y. Organic cation transporter 3 (Oct3) is a distinct catecholamines clearance route in adipocytes mediating the beiging of white adipose tissue. PLoS Biol. 2019, 17, e2006571. [Google Scholar] [CrossRef]
- Hosseini-Esfahani, F.; Koochakpoor, G.; Daneshpour, M.S.; Mirmiran, P.; Sedaghati-Khayat, B.; Azizi, F. The interaction of fat mass and obesity associated gene polymorphisms and dietary fiber intake in relation to obesity phenotypes. Sci. Rep. 2017, 7, 18057. [Google Scholar] [CrossRef]
- Koochakpour, G.; Esfandiar, Z.; Hosseini-Esfahani, F.; Mirmiran, P.; Daneshpour, M.S.; Sedaghati-Khayat, B.; Azizi, F. Evaluating the interaction of common FTO genetic variants, added sugar, and trans-fatty acid intakes in altering obesity phenotypes. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 474–480. [Google Scholar] [CrossRef]
- Hosseini-Esfahani, F.; Koochakpoor, G.; Daneshpour, M.S.; Sedaghati-Khayat, B.; Mirmiran, P.; Azizi, F. Mediterranean Dietary Pattern Adherence Modify the Association between FTO Genetic Variations and Obesity Phenotypes. Nutrients 2017, 9, 1064. [Google Scholar] [CrossRef] [PubMed]
- Hosseini-Esfahani, F.; Koochakpoor, G.; Mirmiran, P.; Daneshpour, M.S.; Azizi, F. Dietary patterns modify the association between fat mass and obesity-associated genetic variants and changes in obesity phenotypes. Br. J. Nutr. 2019, 121, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Jääskeläinen, A.; Schwab, U.; Kolehmainen, M.; Kaakinen, M.; Savolainen, M.J.; Froguel, P.; Cauchi, S.; Järvelin, M.R.; Laitinen, J. Meal frequencies modify the effect of common genetic variants on body mass index in adolescents of the northern Finland birth cohort 1986. PLoS ONE 2013, 8, e73802. [Google Scholar] [CrossRef] [PubMed]
- Reddon, H.; Gerstein, H.C.; Engert, J.C.; Mohan, V.; Bosch, J.; Desai, D.; Bailey, S.D.; Diaz, R.; Yusuf, S.; Anand, S.S.; et al. Physical activity and genetic predisposition to obesity in a multiethnic longitudinal study. Sci. Rep. 2016, 6, 18672. [Google Scholar] [CrossRef]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef]
- Robinson, M.R.; English, G.; Moser, G.; Lloyd-Jones, L.R.; Triplett, M.A.; Zhu, Z.; Nolte, I.M.; van Vliet-Ostaptchouk, J.V.; Snieder, H.; LifeLines Cohort Study; et al. Genotype-covariate interaction effects and the heritability of adult body mass index. Nat. Genet. 2017, 49, 1174–1181. [Google Scholar] [CrossRef]
- Jung, H.U.; Kim, D.J.; Baek, E.J.; Chung, J.Y.; Ha, T.W.; Kim, H.-K.; Kang, J.-O.; Lim, J.E.; Oh, B. Gene-environment interaction explains a part of missing heritability in human body mass index. Commun. Biol. 2023, 6, 324. [Google Scholar] [CrossRef]
- Sulc, J.; Mounier, N.; Günther, F.; Winkler, T.; Wood, A.R.; Frayling, T.M.; Heid, I.M.; Robinson, M.R.; Kutalik, Z. Quantification of the overall contribution of gene-environment interaction for obesity-related traits. Nat. Commun. 2020, 11, 1385. [Google Scholar] [CrossRef]
- Xiang, R.; Kelemen, M.; Xu, Y.; Harris, L.W.; Parkinson, H.; Inouye, M.; Lambert, S.A. Recent advances in polygenic scores: Translation, equitability, methods and FAIR tools. Genome Med. 2024, 16, 33. [Google Scholar] [CrossRef]
- Leońska-Duniec, A.; Jastrzębski, Z.; Jażdżewska, A.; Moska, W.; Lulińska-Kuklik, E.; Sawczuk, M.; Gubaydullina, S.I.; Shakirova, A.T.; Cięszczyk, P.; Maszczyk, A.; et al. Individual Responsiveness to Exercise-Induced Fat Loss and Improvement of Metabolic Profile in Young Women is Associated with Polymorphisms of Adrenergic Receptor Genes. J. Sport. Sci. Med. 2018, 17, 134–144. [Google Scholar]
- Leonska-Duniec, A.; Cięszczyk, P.; Ahmetov, I.I. Genes and individual responsiveness to exercise-induced fat loss. In Sports, Exercise, and Nutritional Genomics: Current Status and Future Directions; Barh, D., Ahmetov, I., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 231–247. [Google Scholar] [CrossRef]
- Bojarczuk, A.; Egorova, E.S.; Dzitkowska-Zabielska, M.; Ahmetov, I.I. Genetics of Exercise and Diet-Induced Fat Loss Efficiency: A Systematic Review. J. Sports Sci. Med. 2024, 23, 236–257. [Google Scholar] [CrossRef]
Traits | Males | Females | ||
---|---|---|---|---|
Non-Obese (n = 94) | Overweight or Obese (n = 33) | Non-Obese (n = 456) | Overweight or Obese (n = 75) | |
Age, years | 21.5 (3.7) | 24.9 (6.9) ** | 20.8 (2.8) | 22.0 (4.7) |
BMI, kg/m2 | 21.0 (2.0) | 28.3 (2.7) * | 20.0 (2.0) | 28.1 (2.8) * |
Fat mass, kg | 9.9 (4.6) | 22.2 (5.7) * | 14.1 (4.2) | 26.8 (5.5) * |
Fat-free mass, kg, | 61.6 (7.3) | 66.3 (6.5) * | 30.1 (5.3) | 49.5 (4.8) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egorova, E.S.; Aseyan, K.K.; Bikbova, E.R.; Zhilina, A.E.; Valeeva, E.V.; Ahmetov, I.I. Effects of Gene–Lifestyle Interaction on Obesity Among Students. Genes 2024, 15, 1506. https://doi.org/10.3390/genes15121506
Egorova ES, Aseyan KK, Bikbova ER, Zhilina AE, Valeeva EV, Ahmetov II. Effects of Gene–Lifestyle Interaction on Obesity Among Students. Genes. 2024; 15(12):1506. https://doi.org/10.3390/genes15121506
Chicago/Turabian StyleEgorova, Emiliya S., Kamilla K. Aseyan, Elvina R. Bikbova, Anastasia E. Zhilina, Elena V. Valeeva, and Ildus I. Ahmetov. 2024. "Effects of Gene–Lifestyle Interaction on Obesity Among Students" Genes 15, no. 12: 1506. https://doi.org/10.3390/genes15121506
APA StyleEgorova, E. S., Aseyan, K. K., Bikbova, E. R., Zhilina, A. E., Valeeva, E. V., & Ahmetov, I. I. (2024). Effects of Gene–Lifestyle Interaction on Obesity Among Students. Genes, 15(12), 1506. https://doi.org/10.3390/genes15121506