MicroRNA Screening Reveals Upregulation of FoxO-Signaling in Relapsed Acute Myeloid Leukemia Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. MicroRNA Expression Profiling
2.3. Bioinformatics
2.4. Reverse Transcription and qRT-PCR
2.5. Statistical Analyses
3. Results
3.1. Relapse and Treatment Failure Are Associated with Fundamental Changes in the microRNA Signature of AML Patients
3.2. MicroRNA Profiling Indicates FoxO-Signaling to Be Associated with Relapse and Chemoresistance
3.3. Gene Expression Analysis Reveals Significant Shifts in FoxO Signaling Activity in Patients with Relapsing AML
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thol, F.; Ganser, A. Treatment of Relapsed Acute Myeloid Leukemia. Curr. Treat. Options Oncol. 2020, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- Chua, B.A.; van der Werf, I.; Jamieson, C.; Signer, R.A.J. Post-Transcriptional Regulation of Homeostatic, Stressed, and Malignant Stem Cells. Cell Stem Cell 2020, 26, 138–159. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Lai, X.; Wolkenhauer, O.; Vera, J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res. 2016, 44, 6019–6035. [Google Scholar] [CrossRef]
- Pospisil, V.; Vargova, K.; Kokavec, J.; Rybarova, J.; Savvulidi, F.; Jonasova, A.; Necas, E.; Zavadil, J.; Laslo, P.; Stopka, T. Epigenetic silencing of the oncogenic miR-17-92 cluster during PU.1-directed macrophage differentiation. EMBO J. 2011, 30, 4450–4464. [Google Scholar] [CrossRef]
- Wallace, J.A.; O’Connell, R.M. MicroRNAs and acute myeloid leukemia: Therapeutic implications and emerging concepts. Blood 2017, 130, 1290–1301. [Google Scholar] [CrossRef]
- Fazi, F.; Rosa, A.; Fatica, A.; Gelmetti, V.; de Marchis, M.L.; Nervi, C.; Bozzoni, I. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005, 123, 819–831. [Google Scholar] [CrossRef]
- Chen, C.Z.; Li, L.; Lodish, H.F.; Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004, 303, 83–86. [Google Scholar] [CrossRef]
- Eyholzer, M.; Schmid, S.; Schardt, J.A.; Haefliger, S.; Mueller, B.U.; Pabst, T. Complexity of miR-223 regulation by CEBPA in human AML. Leuk. Res. 2010, 34, 672–676. [Google Scholar] [CrossRef]
- Katzerke, C.; Madan, V.; Gerloff, D.; Bräuer-Hartmann, D.; Hartmann, J.U.; Wurm, A.A.; Müller-Tidow, C.; Schnittger, S.; Tenen, D.G.; Niederwieser, D.; et al. Transcription factor C/EBPα-induced microRNA-30c inactivates Notch1 during granulopoiesis and is downregulated in acute myeloid leukemia. Blood 2013, 122, 2433–2442. [Google Scholar] [CrossRef]
- Wurm, A.A.; Zjablovskaja, P.; Kardosova, M.; Gerloff, D.; Bräuer-Hartmann, D.; Katzerke, C.; Hartmann, J.U.; Benoukraf, T.; Fricke, S.; Hilger, N.; et al. Disruption of the C/EBPα-miR-182 balance impairs granulocytic differentiation. Nat. Commun. 2017, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Beyá, M.; Brunet, S.; Nomdedéu, J.; Tejero, R.; Díaz, T.; Pratcorona, M.; Tormo, M.; Ribera, J.M.; Escoda, L.; Duarte, R.; et al. MicroRNA expression at diagnosis adds relevant prognostic information to molecular categorization in patients with intermediate-risk cytogenetic acute myeloid leukemia. Leukemia 2014, 28, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.M.; Rockova, V.; Bullinger, L.; Dijkstra, M.K.; Döhner, H.; Löwenberg, B.; Jongen-Lavrencic, M. The prognostic relevance of miR-212 expression with survival in cytogenetically and molecularly heterogeneous AML. Leukemia 2013, 27, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, G.; Mrózek, K.; Radmacher, M.D.; Garzon, R.; Bloomfield, C.D. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011, 117, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhan, H.; Jiang, X.; Jin, L.; Zhao, T.; Xie, S.; Liu, W.; Jia, Y.; Liang, H.; Zeng, H. A Novel miRNA Restores the Chemosensitivity of AML Cells Through Targeting FosB. Front. Med. 2020, 7, 582923. [Google Scholar] [CrossRef]
- Gabra, M.M.; Salmena, L. microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front. Oncol. 2017, 7, 255. [Google Scholar] [CrossRef]
- Gocek, E.; Wang, X.; Liu, X.; Liu, C.G.; Studzinski, G.P. MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis. Cancer Res. 2011, 71, 6230–6239. [Google Scholar] [CrossRef]
- Li, H.; Hui, L.; Xu, W. miR-181a sensitizes a multidrug-resistant leukemia cell line K562/A02 to daunorubicin by targeting BCL-2. Acta Biochim. Biophys. Sin. 2012, 44, 269–277. [Google Scholar] [CrossRef]
- Ben-Hamo, R.; Efroni, S. MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget 2015, 6, 1594–1604. [Google Scholar] [CrossRef]
- Inui, M.; Martello, G.; Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol. 2010, 11, 252–263. [Google Scholar] [CrossRef]
- Artcibasova, A.V.; Korzinkin, M.B.; Sorokin, M.I.; Shegay, P.V.; Zhavoronkov, A.A.; Gaifullin, N.; Alekseev, B.Y.; Vorobyev, N.V.; Kuzmin, D.V.; Kaprin, A.D.; et al. MiRImpact, a new bioinformatic method using complete microRNA expression profiles to assess their overall influence on the activity of intracellular molecular pathways. Cell Cycle 2016, 15, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Hagen, J.W.; Lai, E.C. microRNA control of cell-cell signaling during development and disease. Cell Cycle 2008, 7, 2327–2332. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed]
- Kassambara, A.; Kosinski, M.; Biecek, P. Drawing Survival Curves Using ‘ggplot2′, R package survminer version 0.4.8; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Reichelt, P.; Bernhart, S.; Wilke, F.; Schwind, S.; Cross, M.; Platzbecker, U.; Behre, G. MicroRNA Expression Patterns Reveal a Role of the TGF-β Family Signaling in AML Chemo-Resistance. Cancers 2023, 15, 5086. [Google Scholar] [CrossRef]
- Pan, D. Hippo signaling in organ size control. Genes Dev. 2007, 21, 886–897. [Google Scholar] [CrossRef]
- Zhang, L.; Yue, T.; Jiang, J. Hippo signaling pathway and organ size control. Fly 2009, 3, 68–73. [Google Scholar] [CrossRef]
- Zanconato, F.; Cordenonsi, M.; Piccolo, S. YAP/TAZ at the Roots of Cancer. Cancer Cell 2016, 29, 783–803. [Google Scholar] [CrossRef]
- Cho, Y.S.; Li, S.; Wang, X.; Zhu, J.; Zhuo, S.; Han, Y.; Yue, T.; Yang, Y.; Jiang, J. CDK7 regulates organ size and tumor growth by safeguarding the Hippo pathway effector Yki/Yap/Taz in the nucleus. Genes Dev. 2020, 34, 53–71. [Google Scholar] [CrossRef]
- Yu, F.X.; Zhao, B.; Guan, K.L. Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 2015, 163, 811–828. [Google Scholar] [CrossRef]
- Allegra, A.; Pioggia, G.; Innao, V.; Musolino, C.; Gangemi, S. New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers 2021, 13, 1981. [Google Scholar] [CrossRef]
- Gholami, M.; Mirfakhraie, R.; Movafagh, A.; Jalaeekhoo, H.; Kalahroodi, R.; Zare-Abdollahi, D.; Zare-Karizi, S. The expression analysis of LATS2 gene in de novo AML patients. Med. Oncol. 2014, 31, 961. [Google Scholar] [CrossRef] [PubMed]
- Noorbakhsh, N.; Hayatmoghadam, B.; Jamali, M.; Golmohammadi, M.; Kavianpour, M. The Hippo signaling pathway in leukemia: Function, interaction, and carcinogenesis. Cancer Cell Int. 2021, 21, 705. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Brenner, A.K.; Tvedt, T.H.A.; Bruserud, Ø. The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells. Molecules 2016, 21, 1512. [Google Scholar] [CrossRef]
- Park, H.J.; Gregory, M.A.; Zaberezhnyy, V.; Goodspeed, A.; Jordan, C.T.; Kieft, J.S.; DeGregori, J. Therapeutic resistance in acute myeloid leukemia cells is mediated by a novel ATM/mTOR pathway regulating oxidative phosphorylation. eLife 2022, 11, e79940. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X.; Huang, Y.; Lin, J.; Wu, Y.; Chen, Y. TCP1 increases drug resistance in acute myeloid leukemia by suppressing autophagy via activating AKT/mTOR signaling. Cell Death Dis. 2021, 12, 1058. [Google Scholar] [CrossRef]
- Park, S.; Chapuis, N.; Tamburini, J.; Bardet, V.; Cornillet-Lefebvre, P.; Willems, L.; Green, A.; Mayeux, P.; Lacombe, C.; Bouscary, D. Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia. Haematologica 2010, 95, 819–828. [Google Scholar] [CrossRef]
- Farhan, M.; Wang, H.; Gaur, U.; Little, P.J.; Xu, J.; Zheng, W. FOXO Signaling Pathways as Therapeutic Targets in Cancer. Int. J. Biol. Sci. 2017, 13, 815–827. [Google Scholar] [CrossRef]
- Jiramongkol, Y.; Lam, E.W. FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev. 2020, 39, 681–709. [Google Scholar] [CrossRef]
- Anderson, L.; Seilhamer, J. A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 1997, 18, 533–537. [Google Scholar] [CrossRef]
- Hill, C.G.; Matyunina, L.V.; Walker, D.; Benigno, B.B.; McDonald, J.F. Transcriptional override: A regulatory network model of indirect responses to modulations in microRNA expression. BMC Syst. Biol. 2014, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Ruike, Y.; Ichimura, A.; Tsuchiya, S.; Shimizu, K.; Kunimoto, R.; Okuno, Y.; Tsujimoto, G. Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines. J. Hum. Genet. 2008, 53, 515. [Google Scholar] [CrossRef] [PubMed]
- de Mattos, S.F.; Villalonga, P.; Clardy, J.; Lam, E.W. FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells. Mol. Cancer Ther. 2008, 7, 3237–3246. [Google Scholar] [CrossRef] [PubMed]
- Sunters, A.; de Mattos, S.F.; Stahl, M.; Brosens, J.J.; Zoumpoulidou, G.; Saunders, C.A.; Coffer, P.J.; Medema, R.H.; Coombes, R.C.; Lam, E.W. FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J. Biol. Chem. 2003, 278, 49795–49805. [Google Scholar] [CrossRef]
- Liu, H.; Yin, J.; Wang, C.; Gu, Y.; Deng, M.; He, Z. FOXO3a mediates the cytotoxic effects of cisplatin in lung cancer cells. Anti-Cancer Drugs 2014, 25, 898–907. [Google Scholar] [CrossRef]
- Yao, S.; Fan, L.Y.; Lam, E.W. The FOXO3-FOXM1 axis: A key cancer drug target and a modulator of cancer drug resistance. Semin. Cancer Biol. 2018, 50, 77–89. [Google Scholar] [CrossRef]
Patient Nr. | Sex | Age at Diagnosis | Karyotype | Cytogenetic Risk | Days Until Relapse | Mutation Profile |
---|---|---|---|---|---|---|
1 | w | 59 | 46 XX | favorable | 208 | NPM1mut Typ A, CEBPAwt, FLT3-ITD low ratio, FLT3 TKDwt, IDH1 R132C, IDH2wt, DNMT3A R882wt |
2 | w | 57 | 46 XX | favorable | 266 | biall CEBPAmut, NPM1wt, FLT3-ITD low ratio, FLT3-TKD, IDH1 and 2 wt |
3 | m | 38 | 46, XY, del(9)(q21q32)[2]&46, XY [29] | favorable | 113 | biall CEBPAmut, NPM1wt, FLT3-ITD wt, FLT3-TKD wt |
4 | w | 35 | 46, XX | intermediate | 175 | CEBPAwt, NPM1wt, FLT3-ITD wt, FLT3-TKD wt, IDH1 and 2 wt, DNMT3A wt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reichelt, P.; Bernhart, S.; Platzbecker, U.; Cross, M. MicroRNA Screening Reveals Upregulation of FoxO-Signaling in Relapsed Acute Myeloid Leukemia Patients. Genes 2024, 15, 1625. https://doi.org/10.3390/genes15121625
Reichelt P, Bernhart S, Platzbecker U, Cross M. MicroRNA Screening Reveals Upregulation of FoxO-Signaling in Relapsed Acute Myeloid Leukemia Patients. Genes. 2024; 15(12):1625. https://doi.org/10.3390/genes15121625
Chicago/Turabian StyleReichelt, Paula, Stephan Bernhart, Uwe Platzbecker, and Michael Cross. 2024. "MicroRNA Screening Reveals Upregulation of FoxO-Signaling in Relapsed Acute Myeloid Leukemia Patients" Genes 15, no. 12: 1625. https://doi.org/10.3390/genes15121625
APA StyleReichelt, P., Bernhart, S., Platzbecker, U., & Cross, M. (2024). MicroRNA Screening Reveals Upregulation of FoxO-Signaling in Relapsed Acute Myeloid Leukemia Patients. Genes, 15(12), 1625. https://doi.org/10.3390/genes15121625