Genetic Parameters for Limousine Interbeef Genetic Evaluation of Calving Traits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Data Edits
2.3. Model
- Direct genetic correlations which were not statistically significant were set to average values with a standard error of 0.3. The matrix of direct genetic correlations was then bended, with standard errors used as weights.
- Maternal genetic correlations which were not statistically significant or for which the estimation did not converge were set to a value of 0.6 and a standard error of 0.4. The matrix of maternal genetic correlations was then bended, with standard errors used as weight.
- A full matrix of direct and maternal genetic correlations for both calving traits was created with within-country correlations provided by the participating countries (Table 5) [25]. Across-country correlations between direct and maternal effects and direct and maternal correlations between BWT and CAE were set to 0. The full correlation matrix was then bended with a weighting factor equal to the reciprocal of 1000 plus the number of common sires multiplied by 20 for direct correlations, 500 plus the number of common maternal grandsires multiplied by 5 for maternal correlations, the number 1000 for non-converged or statistically not significant direct correlations, the number 500 for non-converged or statistically not significant maternal correlations, the number 9999 for non-zero within-country correlations, and the number 1 for direct–maternal and BWT–CAE correlations between countries. These weighting factors aimed to keep the within-country genetic correlations provided by the participating countries without significant changes and minimize changes in the estimated across-country correlations. Therefore, the highest values were set for within-country genetic correlations, and slightly lower values were set for across-country correlations within direct and maternal genetic effects. The lowest values were set for across-country genetic correlations between direct and maternal effects and between BWT and CAE. Weighted bending minimizes the changes to more reliable estimates at the expense of larger changes to less reliable ones [27]. The matrix of weights used for bending the full Interbeef correlation matrix is presented in Supplementary Table S4.
3. Results
3.1. Connectedness
3.2. Across-Country Genetic Correlations
3.3. Interbeef Correlation Matrix
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Journaux, L.; Wickham, B.; Venot, E.; Pabiou, T. Development of Routine International Genetic Evaluation Services for Beef Cattle as an Extension of Interbull’s Services. In Proceedings of the Interbull Meeting, Kuopio, Finland, 4–6 June 2006; pp. 146–152. [Google Scholar]
- Renand, G.; Laloë, D.; Quintanilla, R.; Fouilloux, M.N. A First Attempt of an International Genetic Evaluation of Beef Breeds in Europe. In Proceedings of the Interbull Meeting, Rome, Italy, 28–30 August 2003; pp. 151–155. [Google Scholar]
- Phocas, F.; Donoghue, K.; Graser, H. Comparison of Alternative Strategies for an International Genetic Evaluation of Beef Cattle Breeds. In Proceedings of the Interbull Meeting, Sousse, Tunisia, 29–31 May 2004; pp. 18–24. [Google Scholar]
- Phocas, F.; Donoghue, K.; Graser, H.U. Investigation of Three Strategies for an International Genetic Evaluation of Beef Cattle Weaning Weight. Genet. Sel. Evol. 2005, 37, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Venot, E.; Pabiou, T.; Hjerpe, E.; Nilforooshan, M.; Launay, A.; Wickham, B.W. Benefits of Interbeef International Genetic Evaluations for Weaning Weight. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014; pp. 17–22. [Google Scholar]
- Venot, E.; Pabiou, T.; Laloë, D.; Wickham, B.; Fouilloux, M.-N.; Journaux, L. First Steps towards a European Joint Genetic Evaluation of the Limousine Breed. In Proceedings of the Interbull Meeting, Kuopio, Finland, 4–6 June 2006; pp. 141–145. [Google Scholar]
- Venot, E.; Fouilloux, M.N.; Forabosco, F.; Fogh, A.; Pabiou, T.; Moore, K.; Eriksson, J.-Å.; Renand, G.; Laloë, D. Beef without Borders: Genetic Parameters for Charolais and Limousine Interbeef Genetic Evaluation of Weaning Weights. In Proceedings of the Interbull Meeting, Barcelona, Spain, 21–23 August 2009; pp. 55–60. [Google Scholar]
- Vesela, Z.; Vostry, L.; Bucek, P. International Genetic Evaluation of Calving Traits in Beef Cattle. Interbull Bull. 2013, 47, 176–181. [Google Scholar]
- Vesela, Z.; Brzakova, M.; Svitakova, A.; Vostry, L.; Bucek, P. Interbeef International Genetic Evaluation for Calving Traits. In Proceedings of the 43rd ICAR Conference, Prague, Czech Republic, 17–21 June 2019; pp. 49–54. [Google Scholar]
- Bonifazi, R. International Genetic and Genomic Evaluations of Beef Cattle. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2022. [Google Scholar]
- Berry, D.P.; Garcia, J.F.; Garrick, D.J. Development and Implementation of Genomic Predictions in Beef Cattle. Anim. Front. 2016, 6, 32–38. [Google Scholar] [CrossRef]
- Bonifazi, R.; Vandenplas, J.; Napel, J.T.; Matilainen, K.; Veerkamp, R.F.; Calus, M.P.L. Impact of Sub-Setting the Data of the Main Limousin Beef Cattle Population on the Estimates of across-Country Genetic Correlations. Genet. Sel. Evol. 2020, 52, 32. [Google Scholar] [CrossRef] [PubMed]
- Pabiou, T.; Nilforooshan, M.; Laloë, D.; Hjerpe, E.; Venot, E. Across-Country Genetic Parameters in Beef Cattle for Interbeef Weaning Weight Genetic Evaluation. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17–22 August 2014. [Google Scholar]
- Misztal, I.; Lourenco, D.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs; University of Georgia: Athens, GA, USA, 2018. [Google Scholar]
- Misztal, I. Reliable Computing in Estimation of Variance Components. J. Anim. Breed. Genet. 2008, 125, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Přibyl, J.; Misztal, I.; Přibylová, J.; Šeba, K. Multiple breed, Multiple-Traits Evaluation of Beef Cattle in the Czech Republic. Czech J. Anim. Sci. 2003, 48, 519–532. [Google Scholar]
- Vesela, Z.; Pribyl, J.; Kucera, J.; Seba, K.; Vostry, L. Current System of Beef Evaluation in the Czech Republic. Interbull Bull. 2007, 36, 33. [Google Scholar]
- Eriksson, J.-Å.; Eriksson, S.; Näsholm, A.; Roth, A. Genetic Evaluation of Beef Cattle in Sweden. Interbull Bull. 2007, 36, 13. [Google Scholar]
- Coffey, M.; Krzyzelewski, T.; Roughsedge, T.; Mrode, R. EGENES and BASCO–National Beef Evaluations in the UK. Interbull Bull. 2007, 36, 1. [Google Scholar]
- Roughsedge, T.; Amer, P.R.; Thompson, R.; Simm, G. Genetic Parameters for a Maternal Breeding Goal in Beef Production. J. Anim. Sci. 2005, 83, 2319–2329. [Google Scholar] [CrossRef]
- Evans, R.D.; Pabiou, T.; Cromie, A.; Kearney, F.; Wickham, B. Genetic Improvement in the Irish Suckler Beef Herd: Industry Expectation and Experience so Far. Interbull Bull. 2007, 36, 7. [Google Scholar]
- Laloë, D.; Fouilloux, M.-N.; Guerrier, J. Field Genetic Evaluation of Beef Cattle in France: From Birth to Slaughterhouse. Interbull Bull. 2007, 36, 19. [Google Scholar]
- Phocas, F.; Laloë, D. Evaluation Models and Genetic Parameters for Calving Difficulty in Beef Cattle. J. Anim. Sci. 2003, 81, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Phocas, F.; Laloë, D. Genetic Parameters for Birth and Weaning Traits in French Specialized Beef Cattle Breeds. Livest. Prod. Sci. 2004, 89, 121–128. [Google Scholar] [CrossRef]
- Interbeef. Genetic Evaluations in Beef Cattle. Available online: https://www.icar.org/index.php/technical-bodies/working-groups/interbeef-working-group/genetic-evaluations-in-beef-cattle-2/ (accessed on 11 December 2023).
- Boelling, D.; Nielsen, U.S.; Pösö, J.; Eriksson, J.-Å.; Aamand, G.P. Genetic Evaluation of Calving Traits in Denmark, Finland, and Sweden. Interbull Bull. 2007, 37, 179. [Google Scholar]
- Jorjani, H.; Klei, L.; Emanuelson, U. A Simple Method for Weighted Bending of Genetic (Co)Variance Matrices. J. Dairy Sci. 2003, 86, 677–679. [Google Scholar] [CrossRef] [PubMed]
- Venot, E.; Fouilloux, M.-N.; Sullivan, P.; Laloë, D. Level of Connectedness and Reliability in International Beef Evaluation. Interbull Bull. 2008, 38, 3. [Google Scholar]
- Bouquet, A.; Venot, E.; Laloë, D.; Forabosco, F.; Fogh, A.; Pabiou, T.; Moore, K.; Eriksson, J.-Å.; Renand, G.; Phocas, F. Genetic Structure of the European Charolais and Limousin Cattle Metapopulations Using Pedigree Analyses. J. Anim. Sci. 2011, 89, 1719–1730. [Google Scholar] [CrossRef]
- Mark, T.; Madsen, P.; Jensen, J.; Fikse, W.F. Short Communication: Difficulties in Estimating Across-Country Genetic Correlations for Weakly Linked Bull Populations. J. Dairy Sci. 2005, 88, 3303–3305. [Google Scholar] [CrossRef]
- Jorjani, H. Well-Connected, Informative Sub-Sets of Data. In Proceedings of the Interbull Meeting, Bled, Slovenia, 14–15 May 2000; pp. 22–25. [Google Scholar]
- Jorjani, H.; Klei, B.; Emanuelson, U. Combining Disparate Estimates of Genetic Correlations. Interbull Bull. 2002, 29, 1–3. [Google Scholar]
- Nilforooshan, M.A.; Jorjani, H. Invited Review: A Quarter of a Century—International Genetic Evaluation of Dairy Sires Using MACE Methodology. J. Dairy Sci. 2022, 105, 3–21. [Google Scholar] [CrossRef]
- Interbeef. Public/Interbeef_Calendar–Interbull Centre Wiki. Available online: https://wiki.interbull.org/public/Interbeef_calendar?action=print&rev=58 (accessed on 21 December 2023).
BWT | CAE | |||||
---|---|---|---|---|---|---|
Population | N | % | Year of Birth | N | % | Year of Birth |
CZE | 25,792 | 0.40 | 1991–2021 | 25,792 | 0.33 | 1991–2021 |
DFS | 177,946 | 2.76 | 1998–2021 | 318,954 | 4.10 | 1998–2021 |
FRA | 5,964,620 | 92.35 | 1963–2021 | 5,930,554 | 76.17 | 1965–2021 |
GBR | 212,787 | 3.29 | 1972–2021 | 176,132 | 2.26 | 1989–2021 |
IRL | 19,300 | 0.30 | 1998–2022 | 1,245,339 | 15.99 | 1950–2022 |
SVN | 3103 | 0.05 | 1995–2021 | 3877 | 0.05 | 2004–2021 |
EST | - | - | - | 24,306 | 0.31 | 1999–2022 |
CHE | 55,308 | 0.86 | 2006–2022 | 61,020 | 0.78 | 2006–2022 |
Total | 6,458,856 | 7,785,974 |
Population | ET | Sire | CG | SireCG | NoVar | After Edits |
---|---|---|---|---|---|---|
CZE | 0 | 425 | 533 | 2071 | 86 | 22,677 |
DFS | 294 | 23,519 | 1281 | 33,833 | 2065 | 116,954 |
FRA | 0 | 1,677,531 | 49,925 | 262,256 | 3927 | 3,970,981 |
GBR | 9668 | 5581 | 9870 | 27,365 | 765 | 159,538 |
IRL | 0 | 5309 | 861 | 3395 | 538 | 9197 |
SVN | 0 | 210 | 0 | 0 | 0 | 2893 |
CHE | 0 | 3141 | 3717 | 4649 | 252 | 43,549 |
Population | ET | Sire | CG | SireCG | NoVar | After Edits |
---|---|---|---|---|---|---|
CZE | 0 | 302 | 402 | 1306 | 4236 | 19,546 |
DFS | 105 | 62,659 | 4375 | 32,194 | 99,244 | 120,377 |
FRA | 0 | 1,587,609 | 42,405 | 239,048 | 156,332 | 3,905,160 |
GBR | 6654 | 4056 | 3411 | 16,163 | 3009 | 142,839 |
IRL | 0 | 642,833 | 67,048 | 243,469 | 113,655 | 178,334 |
SVN | 0 | 101 | 13 | 4 | 714 | 3045 |
EST | 0 | 847 | 106 | 4335 | 4946 | 14,072 |
CHE | 0 | 3099 | 3223 | 4472 | 7617 | 42,609 |
Population | YoB | CG | Dam | SireCG | Conn |
---|---|---|---|---|---|
CZE | 2006 | 5 | 3 | 3 | 10% |
DFS | 2006 | 5 | 3 | 3 | 40% |
FRA | 2010 | 20 | 4 | 4 | 90% |
GBR | 2006 | 5 | 3 | 3 | 40% |
IRL | 2006 | 3 (BWT) 5 (CAE) | 2 (BWT) 3 (CAE) | 2 (BWT) 3 (CAE) | All (BWT) 40% (CAE) |
SVN | 2006 | 3 | 2 | 2 | All |
EST | 2006 | 3 | 2 | 2 | All |
CHE | 2006 | 5 | 3 | 3 | 30% |
CZE | DFS | FRA | GBR | IRL | SVN | EST | CHE | |
---|---|---|---|---|---|---|---|---|
rg(dir bwt, dir cae) | 0.25 | 0 | 0.69 | 0.53 | 0.62 | 0 | - | −0.63 |
rg(mat bwt, mat cae) | 0.42 | 0 | 0.28 | 0 | - | 0 | - | −0.24 |
rg(dir bwt, mat bwt) | −0.48 | −0.15 | −0.61 | −0.37 | - | −0.49 | - | −0.72 |
rg(dir cae, mat cae) | −0.47 | −0.2 | −0.56 | −0.35 | - | −0.51 | - | −0.53 |
rg(dir bwt, mat cae) | 0.04 | 0 | −0.45 | 0 | - | 0 | - | 0.24 |
rg(mat bwt, dir cae) | −0.01 | 0 | −0.20 | 0 | - | 0 | - | 0.39 |
CZE | DFS | FRA | GBR | IRL | SVN | EST | CHE | |
---|---|---|---|---|---|---|---|---|
σ2dir bwt | 4.1 | 8.7689 | 4.985 | 3.6 | 7.3139 | 11.265 | - | 12.126 |
σ2mat bwt | 0.9 | 2.3712 | 1.08 | 0.67 | - | 4.321 | - | 2.093 |
σ2dir cae | 0.0169 | 0.0116 | 0.0041 | 0.04 | 0.0788 | 0.0294 | 0.0045 | 287.256 |
σ2mat cae | 0.0033 | 0.0059 | 0.0013 | 0.02 | - | 0.0073 | - | 149.438 |
h2dir bwt | 0.21 | 0.38 | 0.43 | 0.30 | 0.14 | 0.39 | - | 0.47 |
h2mat bwt | 0.05 | 0.10 | 0.09 | 0.06 | - | 0.15 | - | 0.08 |
h2dir cae | 0.17 | 0.04 | 0.05 | 0.11 | 0.14 | 0.10 | 0.10 | 0.17 |
h2mat cae | 0.03 | 0.02 | 0.02 | 0.06 | - | 0.02 | - | 0.09 |
CZE | DFS | FRA | GBR | IRL | SVN | CHE | |
---|---|---|---|---|---|---|---|
CZE | 1018 | 115 | 672 | 127 | 77 | 18 | 111 |
DFS | 103 | 5489 | 325 | 152 | 83 | 22 | 111 |
FRA | 262 | 224 | 89,153 | 1384 | 148 | 83 | 620 |
GBR | 90 | 119 | 388 | 10,695 | 218 | 21 | 111 |
IRL | 73 | 77 | 118 | 172 | 1124 | 16 | 56 |
SVN | 15 | 24 | 44 | 15 | 14 | 177 | 22 |
CHE | 79 | 83 | 61 | 61 | 44 | 13 | 2832 |
CZE | DFS | FRA | GBR | IRL | SVN | EST | CHE | |
---|---|---|---|---|---|---|---|---|
CZE | 1018 | 115 | 672 | 137 | 113 | 18 | 40 | 111 |
DFS | 101 | 7650 | 311 | 155 | 126 | 24 | 106 | 108 |
FRA | 262 | 216 | 88,573 | 1084 | 473 | 74 | 92 | 619 |
GBR | 106 | 123 | 402 | 9330 | 487 | 28 | 30 | 116 |
IRL | 97 | 113 | 230 | 309 | 31,095 | 22 | 35 | 101 |
SVN | 15 | 21 | 33 | 16 | 18 | 209 | 9 | 25 |
EST | 32 | 60 | 53 | 29 | 29 | 3 | 542 | 60 |
CHE | 80 | 83 | 153 | 67 | 66 | 12 | 28 | 3173 |
Number of Connected Populations | |||||||
---|---|---|---|---|---|---|---|
COU | 2 | 3 | 4 | 5 | 6 | 7 | Sum |
CAN | 2 | 3 | 5 | ||||
CHE | 6 | 6 | |||||
DEU | 34 | 30 | 12 | 10 | 6 | 92 | |
DNK | 26 | 6 | 32 | ||||
FRA | 1028 | 291 | 224 | 155 | 108 | 42 | 1848 |
GBR | 114 | 72 | 16 | 5 | 207 | ||
IRL | 22 | 15 | 37 | ||||
LUX | 4 | 4 | |||||
NOR | 2 | 2 | |||||
SWE | 3 | 3 | |||||
USA | 2 | 2 | |||||
Sum | 1240 | 420 | 252 | 170 | 114 | 42 | 2238 |
Number of Connected Populations | |||||||
---|---|---|---|---|---|---|---|
COU | 2 | 3 | 4 | 5 | 6 | 7 | Sum |
CAN | 4 | 3 | 7 | ||||
CHE | 8 | 3 | 11 | ||||
CZE | 8 | 8 | |||||
DEU | 36 | 24 | 20 | 15 | 6 | 101 | |
DNK | 66 | 6 | 5 | 77 | |||
FRA | 1010 | 372 | 260 | 145 | 174 | 105 | 2066 |
GBR | 154 | 81 | 20 | 10 | 265 | ||
IRL | 56 | 21 | 77 | ||||
LUX | 4 | 4 | |||||
NOR | 2 | 2 | |||||
SWE | 8 | 3 | 11 | ||||
USA | 6 | 6 | |||||
Sum | 1362 | 513 | 305 | 170 | 180 | 105 | 2635 |
Connected Population | ||||||||
---|---|---|---|---|---|---|---|---|
POP | CZE | DFS | FRA | GBR | IRL | SVN | CHE | Mean |
CZE | 14.53 | 21.14 | 12.36 | 10.76 | 2.70 | 12.83 | 12.39 | |
DFS | 4.89 | 6.21 | 2.86 | 2.39 | 0.52 | 2.70 | 3.26 | |
FRA | 12.16 | 12.61 | 9.63 | 8.30 | 2.73 | 10.97 | 9.4 | |
GBR | 7.91 | 6.44 | 10.40 | 16.63 | 0.86 | 2.56 | 7.47 | |
IRL | 12.07 | 7.90 | 10.23 | 20.18 | 1.16 | 6.12 | 9.61 | |
SVN | 1.87 | 2.85 | 4.69 | 2.48 | 1.72 | 1.99 | 2.6 | |
CHE | 7.43 | 8.14 | 14.59 | 4.91 | 3.79 | 1.04 | 6.65 | |
Mean | 7.72 | 8.74 | 11.21 | 8.74 | 7.26 | 1.50 | 6.19 | 7.34 |
Connected Population | |||||||||
---|---|---|---|---|---|---|---|---|---|
POP | CZE | DFS | FRA | GBR | IRL | SVN | EST | CHE | Mean |
CZE | 14.43 | 21.14 | 13.12 | 13.66 | 2.88 | 5.28 | 12.85 | 11.91 | |
DFS | 3.91 | 4.51 | 2.29 | 2.23 | 0.46 | 4.73 | 1.91 | 2.86 | |
FRA | 12.17 | 12.62 | 10.86 | 11.10 | 2.90 | 4.30 | 10.97 | 9.27 | |
GBR | 7.45 | 5.34 | 9.53 | 21.30 | 0.56 | 0.83 | 2.24 | 6.75 | |
IRL | 3.33 | 2.89 | 4.39 | 9.94 | 0.24 | 0.97 | 1.65 | 3.34 | |
SVN | 1.83 | 2.42 | 4.35 | 2.01 | 2.55 | 0.30 | 1.83 | 2.18 | |
EST | 1.05 | 3.84 | 3.68 | 0.64 | 0.60 | 0.08 | 0.93 | 1.54 | |
CHE | 7.10 | 7.96 | 13.85 | 5.72 | 5.76 | 1.03 | 2.81 | 6.32 | |
Mean | 5.26 | 7.07 | 8.78 | 6.37 | 8.17 | 1.16 | 2.75 | 4.63 | 5.52 |
CZE | DFS | FRA | GBR | IRL | SVN | CHE | |
CZE | 0.33 (0.74) * | 0.34 (0.52) * | 0.04 (0.45) * | - | nc | 0.49 (0.55) * | |
DFS | 0.70 (0.16) | 0.05 (0.25) * | 0.01 (0.31) * | - | 0.08 (0.22) * | 0.59 (0.18) | |
FRA | 0.95 (0.09) | 0.88 (0.04) | 0.41 (0.14) | - | nc | 0.14 (0.63) * | |
GBR | 0.82 (0.21) | 0.73 (0.04) | 0.80 (0.02) | - | nc | 0.58 (0.17) | |
IRL | 0.86 (0.14) | 0.89 (0.18) | 0.87 (0.11) | 0.87 (0.10) | - | - | |
SVN | 0.56 (0.70) * | 0.89 (0.04) | 0.87 (0.04) | 0.45 (0.82) * | 0.32 (0.63) * | 0.70 (0.21) | |
CHE | 0.69 (0.13) | 0.95 (0.05) | 0.87 (0.04) | 0.80 (0.18) | 0.96 (0.10) | 0.85 (0.26) |
CZE | DFS | FRA | GBR | IRL | SVN | EST | CHE | |
---|---|---|---|---|---|---|---|---|
CZE | 0.11 (0.36) * | 0.56 (0.14) | nc | - | 0.32 (0.40) * | - | −0.27 (0.77) * | |
DFS | 0.83 (0.15) | 0.06 (0.33) * | 0.13 (0.32) * | - | 0.01 (0.25) * | - | 0.21 (0.89) * | |
FRA | 0.62 (0.08) | 0.70 (0.17) | 0.67 (0.08) | - | nc | - | −0.10 (0.69) * | |
GBR | 0.75 (0.15) | 0.82 (0.11) | 0.73 (0.05) | - | nc | - | −0.41 (0.45) * | |
IRL | 0.78 (0.23) | 0.78 (0.22) | 0.80 (0.13) | 0.65 (0.15) | - | - | - | |
SVN | 0.76 (0.05) | 0.77 (0.24) | 0.82 (0.05) | 0.67 (0.05) | 0.86 (0.27) | - | −0.08 (0.93) * | |
EST | 0.52 (0.48) * | 0.77 (0.23) | 0.29 (0.69) * | 0.94 (0.09) | 0.67 (0.22) | 0.18 (0.65) * | - | |
CHE | −0.35 (0.29) * | 0.32 (0.37) * | −0.73 (0.18) | −0.63 (0.20) | −0.75 (0.22) | 0.01 (0.75) * | −0.09 (0.52) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veselá, Z.; Brzáková, M.; Novotná, A.; Vostrý, L. Genetic Parameters for Limousine Interbeef Genetic Evaluation of Calving Traits. Genes 2024, 15, 216. https://doi.org/10.3390/genes15020216
Veselá Z, Brzáková M, Novotná A, Vostrý L. Genetic Parameters for Limousine Interbeef Genetic Evaluation of Calving Traits. Genes. 2024; 15(2):216. https://doi.org/10.3390/genes15020216
Chicago/Turabian StyleVeselá, Zdeňka, Michaela Brzáková, Alexandra Novotná, and Luboš Vostrý. 2024. "Genetic Parameters for Limousine Interbeef Genetic Evaluation of Calving Traits" Genes 15, no. 2: 216. https://doi.org/10.3390/genes15020216
APA StyleVeselá, Z., Brzáková, M., Novotná, A., & Vostrý, L. (2024). Genetic Parameters for Limousine Interbeef Genetic Evaluation of Calving Traits. Genes, 15(2), 216. https://doi.org/10.3390/genes15020216