Genome-Wide Association Study Revealed Putative SNPs and Candidate Genes Associated with Growth and Meat Traits in Japanese Quail
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Birds
2.2. Phenotypic Traits
2.3. Sampling and DNA Extraction
2.4. Sequencing, Genotyping and SNP Quality Control
2.5. Principal Component Analysis
2.6. Genome-Wide Association Study and Statistical Analyses
3. Results
3.1. Population Stratification
3.2. Genome-Wide Association Study
3.3. Candidate Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minvielle, F. The future of Japanese quail for research and production. Worlds Poult. Sci. J. 2004, 60, 500–507. [Google Scholar] [CrossRef]
- Podstreshnyi, O.P.; Tereshchenko, O.V.; Katerynych, O.O.; Tkachyk, T.E.; Podstreshna, I.O. Production of Quail Eggs and Meat: Methodical Recommendations, 2nd ed.; Tereshchenko, O.V., Ed.; Poultry Research Institute, NAAS of Ukraine: Birky, Ukraine, 2010; Available online: https://www.researchgate.net/publication/342802513_Podstresnij_OP_Teresenko_OV_Katerinic_OO_Tkacik_TE_Podstresna_IO_Virobnictvo_perepelinih_aec_ta_m'asa_metodicni_rekomendacii_Uklad_OV_Teresenko_ta_in_pid_red_OV_Teresenka_-_2-e_vid_pererob_ta_dop_-_Bi (accessed on 7 October 2023). (In Ukrainian)
- Volkovoy, S.; Bondarenko, Y. Japanese quail plumage rainbow. Priusadebnoye Khoz. [Allot. Husb.] 1989, 5, 14–15. Available online: https://yablonka.net/world/zh/686-raduga-opereniya-yaponskogo-perepela.html (accessed on 7 October 2023). (In Russian).
- Podstreshnyi, O.; Tereshchenko, O. Maintenance of adult quails. Ahrar. Krayina [Agrar. Country] 2012, 6, 8–9. Available online: https://www.researchgate.net/publication/342832587_Podstresnij_O_Teresenko_O_Utrimanna_doroslih_perepeliv_Agrarna_kraina_-_2012_-_Cerven-_S_8-9 (accessed on 7 October 2023). (In Ukrainian).
- Podstreshnyi, O.; Tereshchenko, O. Feeding young quails. Ahrar. Krayina [Agrar. Country] 2012, 7, 6. Available online: https://www.researchgate.net/publication/342832583_Podstresnij_O_Teresenko_O_Godivla_molodnaka_perepeliv_Agrarna_kraina_-_2012_-_Lipen_-_S_6_httpagrokrainacomuapoultry_farming268-godvlya-molodnyaka-perepelvhtml (accessed on 7 October 2023). (In Ukrainian).
- Genchev, A. Egg production potential of Manchurian Golden quail breeders. Agric. Sci. Technol. 2011, 3, 73–80. Available online: http://agriscitech.eu/wp-content/uploads/2014/05/GB_02.pdf (accessed on 7 October 2023).
- Priti, M.; Satish, S. Quail farming: An introduction. Int. J. Life Sci. 2014, 2, 190–193. Available online: https://oaji.net/articles/2014/736-1404212860.pdf (accessed on 7 October 2023).
- Abou-Kassem, D.E.; El-Kholy, M.S.; Alagawany, M.; Laudadio, V.; Tufarelli, V. Age and sex-related differences in performance, carcass traits, hemato–biochemical parameters, and meat quality in Japanese quails. Poult. Sci. 2019, 98, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Quaresma, M.A.G.; Antunes, I.C.; Ferreira, B.G.; Parada, A.; Elias, A.; Barros, M.; Santos, C.; Partidário, A.; Mourato, M.; Roseiro, L.C. The composition of the lipid, protein and mineral fractions of quail breast meat obtained from wild and farmed specimens of Common quail (Coturnix coturnix) and farmed Japanese quail (Coturnix japonica domestica). Poult. Sci. 2022, 101, 101505. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Y.; Hou, Z.; Fan, G.; Pi, J.; Sun, S.; Chen, J.; Liu, H.; Du, X.; Shen, J.; et al. Population genomic data reveal genes related to important traits of quail. GigaScience 2018, 7, giy049. [Google Scholar] [CrossRef] [PubMed]
- Fathi, M.M.; Al-Homidan, I.; Ebeid, T.A.; Galal, A.; Abou-Emera, O.K. Assessment of residual feed intake and its relevant measurements in two varieties of Japanese quails (Coturnix coturnix japonica) under high environmental temperature. Animals 2019, 9, 299. [Google Scholar] [CrossRef] [PubMed]
- Bigland, C.H.; DaMassa, A.J.; Woodard, A.E. Diseases of Japanese quail (Coturnix coturnix japonica): A flock survey and experimental transmission of selected avian pathogens. Avian Dis. 1965, 9, 212–219. [Google Scholar] [CrossRef]
- Randall, M.; Bolla, G. Raising Japanese quail. Primefacts 2008, 602, 1–5. Available online: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0005/145346/Raising-Japanese-quail.pdf (accessed on 7 October 2023).
- Ergun, O.F.; Yamak, U.S. The effect of eggshell thickness on hatchability of quail eggs. Vet. World 2017, 10, 1114. [Google Scholar] [CrossRef] [PubMed]
- Durmuş, İ.; Alkan, S.; Narinç, D.; Karabağ, K.E.M.A.L.; Karslı, T. Effects of mass selection on egg production on some reproductive traits in Japanese quail. Eur. Poult. Sci. 2017, 81, 1–9. [Google Scholar] [CrossRef]
- Barnes, H.J. Diseases of quail. Vet. Clin. N. Am. Small Anim. Pract. 1987, 17, 1109–1144. [Google Scholar] [CrossRef]
- Oladipo, F.O.; Olorunfemi, O.D.; Adefalu, L.L.; Matanmi, B.M.; Bello, A.G. Awareness of poultry farmers on quail production in Kwara state, Nigeria: Implication for extension service delivery on protein nutritional sustainability. J. Ext. Syst. 2014, 30, 43–54. [Google Scholar] [CrossRef]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Farrell, C.M.; Feldgarden, M.; Fine, A.M.; Funk, K.; et al. Database resources of the National Center for Biotechnology Information in 2023. Nucleic Acids Res. 2023, 51, D29–D38. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.L.; Park, C.A.; Reecy, J.M. Bringing the Animal QTLdb and CorrDB into the future: Meeting new challenges and providing updated services. Nucleic Acids Res. 2022, 50, D956–D961. [Google Scholar] [CrossRef]
- Animal QTLdb. 2023. Program for Applied Bioinformatics, NRPSP8, USDA, USA; Bioinformatics Team. Available online: https://www.animalgenome.org/cgi-bin/QTLdb/index (accessed on 7 October 2023).
- Romanov, M.N.; Weigend, S. Genetic diversity in chicken populations based on microsatellite markers. In Proceedings of the From Jay Lush to Genomics: Visions for Animal Breeding and Genetics, Ames, IA, USA, 16–18 May 1999; Dekkers, J.C.M., Lamont, S.J., Rothschild, M.F., Eds.; Department of Animal Science, Iowa State University: Ames, IA, USA, 1999; p. 174. Available online: https://web.archive.org/web/20050314091227/http://www.agbiotechnet.com/proceedings/jaylush.asp#34 (accessed on 7 October 2023).
- Schreiweis, M.A.; Hester, P.Y.; Settar, P.; Moody, D.E. Identification of quantitative trait loci associated with egg quality, egg production, and body weight in an F2 resource population of chickens. Anim. Genet. 2006, 37, 106–112. [Google Scholar] [CrossRef]
- Campos, R.L.R.; Ambo, M.; Rosário, M.F.D.; Moura, A.S.A.M.T.; Boschiero, C.; Nones, K.; Ledur, M.C.; Coutinho, L.L. Potential association between microsatellite markers on chicken chromosomes 6, 7 and 8 and body weight. Int. J. Poult. Sci. 2009, 8, 696–699. [Google Scholar] [CrossRef]
- Goto, T.; Tsudzuki, M. Genetic mapping of quantitative trait loci for egg production and egg quality traits in chickens: A review. J. Poult. Sci. 2017, 54, 1–12. [Google Scholar] [CrossRef]
- Dementeva, N.V.; Romanov, M.N.; Kudinov, A.A.; Mitrofanova, O.V.; Stanishevskaya, O.I.; Terletsky, V.P.; Fedorova, E.S.; Nikitkina, E.V.; Plemyashov, K.V. Studying the structure of a gene pool population of the Russian White chicken breed by genome-wide SNP scan. Sel’skokhozyaistvennaya Biol. [Agric. Biol.] 2017, 52, 1166–1174. [Google Scholar] [CrossRef]
- Moreira, G.C.M.; Poleti, M.D.; Pértille, F.; Boschiero, C.; Cesar, A.S.M.; Godoy, T.F.; Ledur, M.C.; Reecy, J.M.; Garrick, D.J.; Coutinho, L.L. Unraveling genomic associations with feed efficiency and body weight traits in chickens through an integrative approach. BMC Genet. 2019, 20, 83. [Google Scholar] [CrossRef]
- Li, W.; Zheng, M.; Zhao, G.; Wang, J.; Liu, J.; Wang, S.; Feng, F.; Liu, D.; Zhu, D.; Li, Q.; et al. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers. Genet. Sel. Evol. 2021, 53, 13. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.W.Y.; Ritland, C.; Carlson, J.E.; Cheng, K.M. Japanese quail microsatellite loci amplified with chicken-specific primers. Anim. Genet. 1999, 30, 195–199. [Google Scholar] [CrossRef]
- Esmailizadeh, A.K.; Baghizadeh, A.; Ahmadizadeh, M. Genetic mapping of quantitative trait loci affecting bodyweight on chromosome 1 in a commercial strain of Japanese quail. Anim. Prod. Sci. 2011, 52, 64–68. [Google Scholar] [CrossRef]
- Sohrabi, S.S.; Esmailizadeh, A.K.; Baghizadeh, A.; Moradian, H.; Mohammadabadi, M.R.; Askari, N.; Nasirifar, E. Quantitative trait loci underlying hatching weight and growth traits in an F2 intercross between two strains of Japanese quail. Anim. Prod. Sci. 2012, 52, 1012–1018. [Google Scholar] [CrossRef]
- Ori, R.J.; Esmailizadeh, A.K.; Charati, H.; Mohammadabadi, M.R.; Sohrabi, S.S. Identification of QTL for live weight and growth rate using DNA markers on chromosome 3 in an F2 population of Japanese quail. Mol. Biol. Rep. 2014, 41, 10491057. [Google Scholar] [CrossRef]
- Nasirifar, E.; Talebi, M.; Esmailizadeh, A.K.; Moradian, H.; Sohrabi, S.S.; Askari, N. A chromosome-wide QTL mapping on chromosome 2 to identify loci affecting live weight and carcass traits in F2 population of Japanese quail. Czech J. Anim. Sci. 2016, 61, 290–297. [Google Scholar] [CrossRef]
- Tavaniello, S.; Maiorano, G.; Siwek, M.; Knaga, S.; Witkowski, A.; Di Memmo, D.; Bednarczyk, M. Growth performance, meat quality traits, and genetic mapping of quantitative trait loci in 3 generations of Japanese quail populations (Coturnix japonica). Poult. Sci. 2014, 93, 2129–2140. [Google Scholar] [CrossRef]
- Knaga, S.; Siwek, M.; Tavaniello, S.; Maiorano, G.; Witkowski, A.; Jeżewska-Witkowska, G.; Bednarczyk, M.; Zięba, G. Identification of quantitative trait loci affecting production and biochemical traits in a unique Japanese quail resource population. Poult. Sci. 2018, 97, 2267–2277. [Google Scholar] [CrossRef] [PubMed]
- Haqani, M.I.; Nomura, S.; Nakano, M.; Goto, T.; Nagano, A.J.; Takenouchi, A.; Nakamura, Y.; Ishikawa, A.; Tsudzuki, M. Quantitative trait loci for growth-related traits in Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Mol. Genet. Genom. 2021, 296, 1147–1159. [Google Scholar] [CrossRef]
- Vollmar, S.; Haas, V.; Schmid, M.; Preuß, S.; Joshi, R.; Rodehutscord, M.; Bennewitz, J. Mapping genes for phosphorus utilization and correlated traits using a 4k SNP linkage map in Japanese quail (Coturnix japonica). Anim. Genet. 2020, 52, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Li, J.Y.; Bai, J.Y.; Wang, L.W.; Fan, H.D.; Chen, M.K.; Zeng, F.L.; Lu, X.N.; He, Y.H. Research Note: Polymorphisms of gonadotrophin-releasing hormone gene and their association with growth traits in quail (Coturnix Coturnix). Poult. Sci. 2023, 102, 102439. [Google Scholar] [CrossRef] [PubMed]
- Recoquillay, J.; Pitel, F.; Arnould, C.; Leroux, S.; Dehais, P.; Moréno, C.; Calandreau, L.; Bertin, A.; Gourichon, D.; Bouchez, O.; et al. A medium density genetic map and QTL for behavioral and production traits in Japanese quail. BMC Genom. 2015, 16, 10. [Google Scholar] [CrossRef] [PubMed]
- Morris, K.M.; Hindle, M.M.; Boitard, S.; Burt, D.W.; Danner, A.F.; Eory, L.; Forrest, H.L.; Gourichon, D.; Gros, J.; Hillier, L.W.; et al. The quail genome: Insights into social behaviour, seasonal biology and infectious disease response. BMC Biol. 2020, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xiao, H.; Pi, J.; Zhang, H.; Pan, A.; Pu, Y.; Liang, Z.; Shen, J.; Du, J. EGFR promotes the proliferation of quail follicular granulosa cells through the MAPK/extracellular signal-regulated kinase (ERK) signaling pathway. Cell Cycle 2019, 18, 2742–2756. [Google Scholar] [CrossRef]
- Haqani, M.I.; Nomura, S.; Nakano, M.; Goto, T.; Nagano, A.J.; Takenouchi, A.; Nakamura, Y.; Ishikawa, A.; Tsudzuki, M. Mapping of quantitative trait loci controlling egg-quality and -production traits in Japanese quail (Coturnix japonica) using restriction-site associated DNA sequencing. Genes 2021, 12, 735. [Google Scholar] [CrossRef]
- Bai, J.; Wang, X.; Li, J.; Wang, L.; Fan, H.; Chen, M.; Zeng, F.; Lu, X.; He, Y. Research Note: Association of IGF-1R gene polymorphism with egg quality and carcass traits of quail (Coturnix japonica). Poult. Sci. 2023, 102, 102617. [Google Scholar] [CrossRef]
- German, N.Y.; Volkova, N.A.; Larionova, P.V.; Vetokh, A.N.; Volkova, L.A.; Sermyagin, A.A.; Shakhin, A.V.; Anshakov, D.V.; Fisinin, V.I.; Zinovieva, N.A. Genome-wide association studies of growth dynamics in quails Coturnix coturnix. Sel’skokhozyaistvennaya Biol. [Agric. Biol.] 2022, 57, 1136–1146. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [PubMed]
- Ogada, S.; Otecko, N.O.; Moraa Kennedy, G.; Musina, J.; Agwanda, B.; Obanda, V.; Lichoti, J.; Peng, M.S.; Ommeh, S. Demographic history and genetic diversity of wild African harlequin quail (Coturnix delegorguei delegorguei) populations of Kenya. Ecol. Evol. 2021, 11, 18562–18574. [Google Scholar] [CrossRef] [PubMed]
- Volkova, N.A.; Romanov, M.N.; Abdelmanova, A.S.; Larionova, P.V.; German, N.Y.; Vetokh, A.N.; Shakhin, A.V.; Volkova, L.A.; Anshakov, D.V.; Fisinin, V.I.; et al. Genotyping-by-sequencing strategy for integrating genomic structure, diversity and performance of various Japanese quail breeds. Animals 2023, 13, 3439. [Google Scholar] [CrossRef] [PubMed]
- Iranmanesh, M.; Esmailizadeh, A.; Mohammad Abadi, M.R.; Zand, E.; Mokhtari, M.S.; Wu, D.D. A molecular genome scan to identify DNA segments associated with live weight in Japanese quail. Mol. Biol. Rep. 2016, 43, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Hu, J.; Fan, W.; Xu, Y.; Tang, J.; Xie, M.; Zhang, Y.; Guo, Z.; Zhou, Z.; Hou, S. Strategies to improve genomic predictions for 35 duck carcass traits in an F2 population. J. Anim. Sci. Biotechnol. 2023, 14, 74. [Google Scholar] [CrossRef]
- Genofond. Catalogue of Breeds: Quails; Official Site of the Company Genofond LLC: Sergiev Posad, Russia, 2015; Available online: http://www.genofond-sp.ru/quail.html (accessed on 7 October 2023). (In Russian)
- Romanov, M.N.; Wezyk, S.; Cywa-Benko, K.; Sakhatsky, N.I. Poultry genetic resources in the countries of Eastern Europe—History and current state. Poult. Avian Biol. Rev. 1996, 7, 1–29. Available online: https://www.researchgate.net/publication/255710929_Poultry_genetic_resources_in_the_countries_of_Eastern_Europe_-_history_and_current_state (accessed on 7 October 2023).
- Mills, A.D.; Crawford, L.L.; Domjan, M.; Faure, J.M. The behavior of the Japanese or domestic quail Coturnix japonica. Neurosci. Biobehav. Rev. 1997, 21, 261–281. [Google Scholar] [CrossRef]
- Chang, G.B.; Chang, H.; Liu, X.P.; Xu, W.; Wang, H.Y.; Zhao, W.M.; Olowofeso, O. Developmental research on the origin and phylogeny of quails. Worlds Poult. Sci. J. 2005, 61, 105–112. [Google Scholar] [CrossRef]
- Roiter, Y.S.; Anskakov, D.V.; Degtyareva, T.N.; Degtyareva, O.N. Gene pool of quail breeds: Present condition and prospects for practical application. Ptitsevodstvo [Poult. Farming] 2017, 6, 7–11. Available online: https://www.elibrary.ru/item.asp?id=29444424 (accessed on 7 October 2023). (In Russian with English summary).
- Domesticfutures. Quail Breeds: Characteristics with Photos. domesticfutures.com, 2021. Available online: https://domesticfutures.com/porody-perepelov-harakteristiki-s-fotografiyami-4457 (accessed on 7 October 2023).
- Bachinina, K.N.; Shcherbatov, V.I. Morphological indicators and quality of quail eggs of different breeds. Ptitsevodstvo [Poult. Farming] 2021, 6, 69–72, (In Russian with English summary). [Google Scholar] [CrossRef]
- Dymkov, A.B.; Fisinin, V.I. Differentiation of quail (Coturnix japonica) breeds based on the morphological parameters of eggs. Sel’skokhozyaistvennaya Biol. [Agric. Biol.] 2022, 57, 694–705. [Google Scholar] [CrossRef]
- German, N.Y.; Vetokh, A.N.; Dzhagaev, A.Y.; Ilyina, E.R.; Kotova, T.O. Morphometric parameters of eggs from breeds quail for meat. Vet. Korml. [Vet. Feed.] 2023, 2, 20–23, (In Russian with English summary). [Google Scholar] [CrossRef]
- Dodds, K.G.; McEwan, J.C.; Brauning, R.; Anderson, R.M.; van Stijn, T.C.; Kristjánsson, T.; Clarke, S.M. Construction of relatedness matrices using genotyping-by-sequencing data. BMC Genom. 2015, 16, 1047. [Google Scholar] [CrossRef]
- AgResearch. DECONVQC; GitHub, Inc.: San Francisco, CA, USA, 2016; Available online: https://github.com/AgResearch/DECONVQC (accessed on 7 October 2023).
- Jacobs, J.; Clarke, S.; Faville, M.; Griffiths, A.; Cao, M.; Tan, R.; Van Stijn, T.; Anderson, R.; Ashby, R.; Rowe, S.; et al. Genotyping-by-sequencing applications in biology. In Proceedings of the Plant and Animal Genome XXV Conference, San Diego, CA, USA, 13–18 January 2017; Scherago International: Surfside, FL, USA, 2017. Abstract P0128. Available online: https://pag.confex.com/pag/xxv/meetingapp.cgi/Paper/24487 (accessed on 7 October 2023). [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High throughput Sequence Data, Version 0.10.1; Bioinformatics Group, Babraham Institute: Cambridge, UK, 2012; Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 7 October 2023).
- Szpak, M. Ensembl 104 Has Been Released. Ensembl Blog, 2021. Available online: https://www.ensembl.info/2021/05/05/ensembl-104-has-been-released/ (accessed on 7 October 2023).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt, Version 3.4; GitHub, Inc.: 2021. Available online: https://github.com/marcelm/cutadapt (accessed on 7 October 2023).
- Langmead, B. bowtie2: A Fast and Sensitive Gapped Read Aligner, Version 2.4.4; GitHub, Inc.: 2021. Available online: https://github.com/BenLangmead/bowtie2 (accessed on 7 October 2023).
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- AgResearch. snpGBS; GitHub, Inc.: 2021. Available online: https://github.com/AgResearch/snpGBS (accessed on 7 October 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.r-project.org/ (accessed on 7 October 2023).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- DataCamp. Principal Component Analysis in R Tutorial; DataCamp, Inc.: 2023. Available online: https://www.datacamp.com/tutorial/pca-analysis-r (accessed on 7 October 2023).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009; ISBN 978-0-387-98141-3. [Google Scholar] [CrossRef]
- CRAN. R Version 4.0.0; The Comprehensive R Archive Network (CRAN); Institute for Statistics and Mathematics, Vienna University of Economics and Business: Vienna, Austria, 2020; Available online: https://cran.r-project.org/bin/windows/base/old/4.0.0/ (accessed on 7 October 2023).
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q-Q and Manhattan plots. J. Open Source Softw. 2018, 3, 731. [Google Scholar] [CrossRef]
- Dunn, I.; Miao, Y.-W.; Morris, A.; Romanov, M.N.; Wilson, P.; Waddington, D.; Sharp, P. Candidate genes and reproductive traits in a commercial broiler breeder population, an association study. J. Anim. Sci. 2001, 79 (Suppl. S1), 43. Available online: http://www.jtmtg.org/JAM/2001/jointabs/iaafsc18.pdf (accessed on 7 October 2023).
- Kudinov, A.A.; Dementieva, N.V.; Mitrofanova, O.V.; Stanishevskaya, O.I.; Fedorova, E.S.; Larkina, T.A.; Mishina, A.I.; Plemyashov, K.V.; Griffin, D.K.; Romanov, M.N. Genome-wide association studies targeting the yield of extraembryonic fluid and production traits in Russian White chickens. BMC Genom. 2019, 20, 270. [Google Scholar] [CrossRef]
- Lake, J.A.; Dekkers, J.C.; Abasht, B. Genetic basis and identification of candidate genes for wooden breast and white striping in commercial broiler chickens. Sci. Rep. 2021, 11, 6785. [Google Scholar] [CrossRef] [PubMed]
- Easa, A.A.; Selionova, M.; Aibazov, M.; Mamontova, T.; Sermyagin, A.; Belous, A.; Abdelmanova, A.; Deniskova, T.; Zinovieva, N. Identification of genomic regions and candidate genes associated with body weight and body conformation traits in Karachai goats. Genes 2022, 13, 1773. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Luo, C.; Peng, X.; Fang, M.; Nie, Q.; Zhang, D.; Yang, G.; Zhang, X. Polymorphism of growth-correlated genes associated with fatness and muscle fiber traits in chickens. Poult. Sci. 2007, 86, 835–842. [Google Scholar] [CrossRef]
- Aslam, M.L.; Bastiaansen, J.W.; Crooijmans, R.P.; Vereijken, A.; Groenen, M.A. Whole genome QTL mapping for growth, meat quality and breast meat yield traits in turkey. BMC Genet. 2011, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Kirrella, A.A.; El-Kassas, S.; El-Naggar, K.; Galosi, L.; Biagini, L.; Rossi, G.; Di Cerbo, A.; Alagawany, M.; Kassab, M.; Al Wakeel, R.A. Growing and laying performance of two different-plumage color Japanese quail varieties supplemented with corn silk in their diet. Poult. Sci. 2023, 102, 102360. [Google Scholar] [CrossRef] [PubMed]
- Sefton, A.E.; Siegel, P.B. Inheritance of body weight in Japanese quail. Poult. Sci. 1974, 53, 1597–1603. [Google Scholar] [CrossRef] [PubMed]
- El-Tarabany, M.S.; Saleh, A.A.; El-Araby, I.E.; El-Magd, M.A. Association of LEPR polymorphisms with egg production and growth performance in female Japanese quails. Anim. Biotechnol. 2022, 33, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Karabağ, K.; Alkan, S.; Karsli, T.A.K.İ.; İkten, C.; Sahin, I.; Mendeş, M. Effects of selection in terms of meat yield traits on leptin receptor gene in Japanese quail lines. Slov. Vet. Res. 2022, 59, 89–98. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.; Bai, J. Research Note: Association of LEPR gene polymorphism with growth and carcass traits in Savimalt and French Giant meat-type quails. Poult. Sci. 2023, 102, 103047. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, G.; Scatà, M.C.; Catillo, G.; Terzano, G.M.; Grandoni, F.; Napolitano, F. Characterization of leptin receptor gene in Bubalus bubalis and association analysis with body measurement traits. Mol. Biol. Rep. 2015, 42, 1049–1057. [Google Scholar] [CrossRef]
- Kim, J.M.; Park, J.E.; Lee, S.W.; Cho, E.S.; Choi, B.H.; Park, H.C.; Lee, K.T.; Kim, T.H. Association of polymorphisms in the 5′ regulatory region of LEPR gene with meat quality traits in Berkshire pigs. Anim. Genet. 2017, 48, 723–724. [Google Scholar] [CrossRef]
- Lakhssassi, K.; Serrano, M.; Lahoz, B.; Sarto, M.P.; Iguácel, L.P.; Folch, J.; Alabart, J.L.; Calvo, J.H. The LEPR gene is associated with reproductive seasonality traits in Rasa Aragonesa sheep. Animals 2020, 10, 2448. [Google Scholar] [CrossRef]
- Raza, S.H.A.; Liu, G.Y.; Zhou, L.; Gui, L.S.; Khan, R.; Jinmeng, Y.; Chugang, M.; Schreurs, N.M.; Ji, R.; Zan, L. Detection of polymorphisms in the bovine leptin receptor gene affects fat deposition in two Chinese beef cattle breeds. Gene 2020, 758, 144957. [Google Scholar] [CrossRef]
- Ma, S.; Ji, X.; Cang, M.; Wang, J.; Yu, H.; Liu, Y.; Zhang, W.; Wu, Y.; Zhao, S.; Cao, G.; et al. Association analysis between novel variants in LEPR gene and litter size in Mongolia and ujimqin sheep breeds. Theriogenology 2022, 183, 79–89. [Google Scholar] [CrossRef]
- Óvilo, C.; Trakooljul, N.; Núñez, Y.; Hadlich, F.; Murani, E.; Ayuso, M.; García-Contreras, C.; Vázquez-Gómez, M.; Rey, A.I.; Garcia, F.; et al. SNP discovery and association study for growth, fatness and meat quality traits in Iberian crossbred pigs. Sci. Rep. 2022, 12, 16361. [Google Scholar] [CrossRef]
- Ramos, Z.; Garrick, D.J.; Blair, H.T.; Vera, B.; Ciappesoni, G.; Kenyon, P.R. Genomic regions associated with wool, growth and reproduction traits in Uruguayan Merino sheep. Genes. 2023, 14, 167. [Google Scholar] [CrossRef]
- El Moujahid, E.M.; Chen, S.; Jin, S.; Lu, Y.; Zhang, D.; Ji, C.; Yang, N. Association of leptin receptor gene polymorphisms with growth and feed efficiency in meat-type chickens. Poult. Sci. 2014, 93, 1910–1915. [Google Scholar] [CrossRef]
- Li, Y.D.; Wang, W.J.; Li, Z.W.; Wang, N.; Fan, X.I.A.O.; Gao, H.H.; Guo, H.S.; Hui, L.I.; Wang, S.Z. Integration of association and computational methods reveals functional variants of LEPR gene for abdominal fat content in chickens. J. Integr. Agric. 2021, 20, 2734–2748. [Google Scholar] [CrossRef]
- Dadousis, C.; Somavilla, A.; Ilska, J.J.; Johnsson, M.; Batista, L.; Mellanby, R.J.; Headon, D.; Gottardo, P.; Whalen, A.; Wilson, D.; et al. A genome-wide association analysis for body weight at 35 days measured on 137,343 broiler chickens. Genet. Sel. Evol. 2021, 53, 70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Du, Z.Q.; Dong, J.Q.; Wang, H.X.; Shi, H.Y.; Wang, N.; Wang, S.Z.; Li, H. Detection of genome-wide copy number variations in two chicken lines divergently selected for abdominal fat content. BMC Genom. 2014, 15, 517. [Google Scholar] [CrossRef] [PubMed]
- Revilla, M.; Puig-Oliveras, A.; Crespo-Piazuelo, D.; Criado-Mesas, L.; Castelló, A.; Fernández, A.I.; Ballester, M.; Folch, J.M. Expression analysis of candidate genes for fatty acid composition in adipose tissue and identification of regulatory regions. Sci. Rep. 2018, 8, 2045. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhuang, Z.; Yang, M.; Ding, R.; Quan, J.; Zhou, S.; Gu, T.; Xu, Z.; Zheng, E.; Cai, G.; et al. Genome-wide detection of genetic loci and candidate genes for body conformation traits in Duroc × Landrace × Yorkshire Crossbred Pigs. Front. Genet. 2021, 12, 664343. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, H.; Arbab, A.A.I.; Wang, B.; Liu, D.; Abdalla, I.M.; Xu, T.; Sun, Y.; Liu, Z.; Yang, Z. Investigating genetic characteristics of Chinese Holstein cow’s milk somatic cell score by genetic parameter estimation and genome-wide association. Agriculture 2023, 13, 267. [Google Scholar] [CrossRef]
Breed | Code | N1 | Origin | Performance 2 | References |
---|---|---|---|---|---|
Japanese | JAP | 12 | Japan; domesticated in Japan and China as early as the 12th century; selected in the first half of the 20th century, imported to the USSR from Japan in the middle of the 20th century and/or from Yugoslavia in 1964 | Layer type 6 week body weight: 180 g, females; 150 g, males | [3,49,50,51,52,53,54] |
Texas White (or Texas Pharaoh, White Pharaoh, Snowy) | TEW | 12 | Texas, USA; descended from crossing the Pharaoh and English White breeds | Meat type 6 week body weight: 280 g, females; 240 g, males | [53,54,55,56,57] |
Traits | n | Maximum | Minimum | Mean | SD | CV, % |
---|---|---|---|---|---|---|
BW at 1 day of age (g) | 146 | 10.6 | 6.7 | 8.5 | 0.83 | 9.77 |
BW at the age of 56 days (g) | 146 | 299.00 | 169.00 | 239.19 | 24.99 | 10.45 |
Average daily BW gain (g) | 146 | 6.5 | 3.8 | 5.1 | 0.68 | 13.32 |
Dressed weight (g) | 146 | 221.27 | 119.44 | 179.59 | 19.32 | 10.76 |
Breast weight (g) | 146 | 93.17 | 43.21 | 67.60 | 9.37 | 13.86 |
Thigh weight (g) | 146 | 16.53 | 7.37 | 11.36 | 1.63 | 14.36 |
Drumstick weight (g) | 146 | 11.43 | 4.17 | 7.94 | 1.13 | 14.25 |
No. of SNPs | Chromosomes | |
---|---|---|
BW 1 at 1 day of age | 58 | 1, 2, 4, 5, 6, 8, 9, 13–15, 17, 25, 28 |
BW at 56 days of age | 18 | 1, 2, 3, 4, 8, 12, 14, 17, 18 |
Average daily BW gain | 8 | 3, 8, 14, 18 |
Dressed weight | 33 | 1, 3–5, 7–10 |
Breast weight | 18 | 1–3, 5, 9, 14, 25 |
Thigh weight | 8 | 8, 17 |
Drumstick weight | 2 | 1, 19 |
Chr 1 | SNPs | Traits 2 | Genes | |
---|---|---|---|---|
at SNP | Near SNP, ±0.2Mb | |||
2 | 2:87734460 | BW56, BrW | GNAL | AFG3LA, PRELID3A, TUBB6, CIDEA, IMPA2 |
3 | 3:16057525 | BW56, ADBWG, DCW | – | DUSP10, HLX, MTARC2 |
8 | 8:25443595 | BW56, DCW *, ADBWG, BrW, TW | – | CACHD1, JAK1, DNAJC6, LEPR, PDE4B |
8 | 8:25460692 | BW56, ADBWG *, DCW *, BrW, TW | DNAJC6 | CACHD1, RAVER2, JAK1, LEPR, PDE4B |
8 | 8:25524051 | BW56 *, ADBWG *, DCW *, TW * | LEPR | CACHD1, RAVER2, JAK1, DNAJC6, PDE4B, SGIP1, DYNLT5 |
8 | 8:25548447 | BW56 *, ADBWG, DCW *, TW * | – | CACHD1, RAVER2, JAK1, DNAJC6, LEPR, PDE4B, SGIP1, MIER1, DNA14, DYNLT5 |
8 | 8:25548450 | BW56 *, ADBWG, DCW *, TW * | – | CACHD1, RAVER2, JAK1, DNAJC6, LEPR, PDE4B, SGIP1, MIER1, DNA14, DYNLT5 |
8 | 8:25565668 | BW56, ADBWG, DCW, TW | – | CACHD1, RAVER2, JAK1, DNAJC6, LEPR, PDE4B, SGIP1, MIER1, DNA14, DYNLT5 |
9 | 9:19667846 | BrW *, DCW | – | OTOL1, SPTSSB, NMD3, PPM1L, B3GALNT1, KPNA4, TRIM59, IFT80, SCHIP1, IL12A, IQCJ |
14 | 14:8432578 | BW56, ADBWG | – | GDE1, CCP110, MOSMO, VWA3A, SDR42E2, EEF2K, POLR3E, CDR2METTL9, OTOA, IGSF6, KDELR2, RAC1, DAGLB, CYTH3, RMI2, SOCS1, CLEC16A |
17 | 17:3724688 | BW56, TW | SLC27A4 | SLC25A25, NAIF1, EEIG1, AK1, ST6GALNAC6, FPGS, SH2D3C, DPM2, ENG, CDK9, ST6GALNAC4, TOR2A, URM1, CERCAM, TRUB2, SWI5, COQ4, DNM1, CI21, BBLN, ODF2, GLE1, PTGES2, SPTAN1, DYNC212 |
18 | 18:8756728 | BW56, ADBWG | SPAG9 | CA10, UTP18, MBTD1, NME1, NM9, TOB1, WFIKKN2, LUC7L3, ANKPD40, CACNA1G |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkova, N.A.; Romanov, M.N.; Abdelmanova, A.S.; Larionova, P.V.; German, N.Y.; Vetokh, A.N.; Shakhin, A.V.; Volkova, L.A.; Sermyagin, A.A.; Anshakov, D.V.; et al. Genome-Wide Association Study Revealed Putative SNPs and Candidate Genes Associated with Growth and Meat Traits in Japanese Quail. Genes 2024, 15, 294. https://doi.org/10.3390/genes15030294
Volkova NA, Romanov MN, Abdelmanova AS, Larionova PV, German NY, Vetokh AN, Shakhin AV, Volkova LA, Sermyagin AA, Anshakov DV, et al. Genome-Wide Association Study Revealed Putative SNPs and Candidate Genes Associated with Growth and Meat Traits in Japanese Quail. Genes. 2024; 15(3):294. https://doi.org/10.3390/genes15030294
Chicago/Turabian StyleVolkova, Natalia A., Michael N. Romanov, Alexandra S. Abdelmanova, Polina V. Larionova, Nadezhda Yu. German, Anastasia N. Vetokh, Alexey V. Shakhin, Ludmila A. Volkova, Alexander A. Sermyagin, Dmitry V. Anshakov, and et al. 2024. "Genome-Wide Association Study Revealed Putative SNPs and Candidate Genes Associated with Growth and Meat Traits in Japanese Quail" Genes 15, no. 3: 294. https://doi.org/10.3390/genes15030294
APA StyleVolkova, N. A., Romanov, M. N., Abdelmanova, A. S., Larionova, P. V., German, N. Y., Vetokh, A. N., Shakhin, A. V., Volkova, L. A., Sermyagin, A. A., Anshakov, D. V., Fisinin, V. I., Griffin, D. K., Sölkner, J., Brem, G., McEwan, J. C., Brauning, R., & Zinovieva, N. A. (2024). Genome-Wide Association Study Revealed Putative SNPs and Candidate Genes Associated with Growth and Meat Traits in Japanese Quail. Genes, 15(3), 294. https://doi.org/10.3390/genes15030294