Genetic Background of Blood β-Hydroxybutyrate Acid Concentrations in Early-Lactating Holstein Dairy Cows Based on Genome-Wide Association Analyses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Phenotype
2.3. Genotype and Quality Control
2.4. Estimation of Genetic Parameters
2.5. Genome-Wide Association Study
2.6. Functional Analyses
3. Results
3.1. Descriptive Statistics
3.2. Estimation of Genetic Parameters
3.3. Genome-Wide Association Study
3.4. Functional Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Suthar, V.S.; Canelas-Raposo, J.; Deniz, A.; Heuwieser, W. Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cows. J. Dairy Sci. 2013, 96, 2925–2938. [Google Scholar] [CrossRef] [PubMed]
- Benedet, A.; Manuelian, C.L.; Zidi, A.; Penasa, M.; De Marchi, M. Invited review: β-hydroxybutyrate concentration in blood and milk and its associations with cow performance. Animal 2019, 13, 1676–1689. [Google Scholar] [CrossRef] [PubMed]
- Steeneveld, W.; Amuta, P.; van Soest, F.J.S.; Jorritsma, R.; Hogeveen, H. Estimating the combined costs of clinical and subclinical ketosis in dairy cows. PLoS ONE 2020, 15, e0230448. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.L.; LeBlanc, S.J.; Duffield, T.F. Ketosis Treatment in Lactating Dairy Cattle. Vet. Clin. N. Am. Food A 2013, 29, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Ranaraja, U.; Cho, K.; Park, M.; Kim, S.; Lee, S.; Do, C. Genetic parameter estimation for milk β-hydroxybutyrate and acetone in early lactation and its association with fat to protein ratio and energy balance in Korean Holstein cattle. Asian Australas. J. Anim. 2018, 31, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Pryce, J.E.; Gaddis, K.L.P.; Koeck, A.; Bastin, C.; Abdelsayed, M.; Gengler, N.; Miglior, F.; Heringstad, B.; Egger-Danner, C.; Stock, K.F.; et al. Opportunities for genetic improvement of metabolic diseases. J. Dairy Sci. 2016, 99, 6855–6873. [Google Scholar] [CrossRef] [PubMed]
- Ametaj, B.N. Periparturient Diseases of Dairy Cows; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Duffield, T.F.; Lissemore, K.D.; McBride, B.W.; Leslie, K.E. Impact of hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci. 2009, 92, 571–580. [Google Scholar] [CrossRef]
- van der Drift, S.G.; van Hulzen, K.J.; Teweldemedhn, T.G.; Jorritsma, R.; Nielen, M.; Heuven, H.C. Genetic and nongenetic variation in plasma and milk β-hydroxybutyrate and milk acetone concentrations of early-lactation dairy cows. J. Dairy Sci. 2012, 95, 6781–6787. [Google Scholar] [CrossRef]
- Wang, K.; Hua, G.; Li, J.; Yang, Y.; Zhang, C.; Yang, L.; Hu, X.; Scheben, A.; Wu, Y.; Gong, P.; et al. Duck pan-genome reveals two transposon insertions caused bodyweight enlarging and white plumage phenotype formation during evolution. iMeta 2023, 3, e154. [Google Scholar] [CrossRef]
- Wang, K.J.; Hu, H.F.; Tian, Y.D.; Li, J.Y.; Scheben, A.; Zhang, C.X.; Li, Y.Y.; Wu, J.F.; Yang, L.; Fan, X.W.; et al. The Chicken Pan-Genome Reveals Gene Content Variation and a Promoter Region Deletion in Affecting Body Size. Mol. Biol. Evol. 2021, 38, 5066–5081. [Google Scholar] [CrossRef]
- Hu, Z.L.; Park, C.A.; Reecy, J.M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 2019, 47, D701–D710. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Cao, J.; Hanif, Q.; Wang, Y.; Yu, Y.; Zhang, S.; Zhang, Y. Genome-wide association study identifies energy metabolism genes for resistance to ketosis in Chinese Holstein cattle. Anim. Genet. 2019, 50, 376–380. [Google Scholar] [CrossRef]
- Freebern, E.; Santos, D.J.A.; Fang, L.Z.; Jiang, J.C.; Gaddis, K.L.P.; Liu, G.E.; VanRaden, P.M.; Maltecca, C.; Cole, J.B.; Ma, L. GWAS and fine-mapping of livability and six disease traits in Holstein cattle. BMC Genom. 2020, 21, 41. [Google Scholar] [CrossRef] [PubMed]
- Pralle, R.S.; Schultz, N.E.; White, H.M.; Weigel, K.A. Hyperketonemia GWAS and parity-dependent SNP associations in Holstein dairy cows intensively sampled for blood β-hydroxybutyrate concentration. Physiol. Genom. 2020, 52, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Macmillan, K.; Helguera, I.L.; Behrouzi, A.; Gobikrushanth, M.; Hoff, B.; Colazo, M.G. Accuracy of a cow-side test for the diagnosis of hyperketonemia and hypoglycemia in lactating dairy cows. Res. Vet. Sci. 2017, 115, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Browning, S.R.; Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 2007, 81, 1084–1097. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Dunn, P.K.; Smyth, G.K. Generalized Linear Models with Examples in R; Springer: Berlin/Heidelberg, Germany, 2018; Volume 53. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 10 October 2023).
- Misztal, I.; Tsuruta, S.; Strabel, T.; Auvray, B.; Druet, T.; Lee, D. BLUPF90 and related programs (BGF90). In Proceedings of the 7th World Congress on Genetics Applied to Livestock Production; Montpellier, France, 19–23 August 2002, p. 743.
- Aguilar, I.; Tsuruta, S.; Masuda, Y.; Lourenco, D.; Legarra, A.; Misztal, I. BLUPF90 suite of programs for animal breeding with focus on genomics. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February 2018; pp. 11–16. [Google Scholar]
- Legarra, A.; Aguilar, I.; Misztal, I. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 2009, 92, 4656–4663. [Google Scholar] [CrossRef]
- Liu, X.; Yin, L.; Zhang, H.; Li, X.; Zhao, S. Performing Genome-Wide Association Studies Using rMVP. Methods Mol. Biol. 2022, 2481, 219–245. [Google Scholar] [CrossRef]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS ONE 2016, 12, e1005767. [Google Scholar] [CrossRef]
- Wang, Q.S.; Tian, F.; Pan, Y.C.; Buckler, E.S.; Zhang, Z.W. A SUPER Powerful Method for Genome Wide Association Study. PLoS ONE 2014, 9, e107684. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Multiple significance tests: The Bonferroni method. BMJ 1995, 310, 170. [Google Scholar] [CrossRef] [PubMed]
- Bu, D.C.; Luo, H.T.; Huo, P.P.; Wang, Z.H.; Zhang, S.; He, Z.H.; Wu, Y.; Zhao, L.H.; Liu, J.J.; Guo, J.C.; et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Koeck, A.; Jamrozik, J.; Schenkel, F.S.; Moore, R.K.; Lefebvre, D.M.; Kelton, D.F.; Miglior, F. Genetic analysis of milk β-hydroxybutyrate and its association with fat-to-protein ratio, body condition score, clinical ketosis, and displaced abomasum in early first lactation of Canadian Holsteins. J. Dairy Sci. 2014, 97, 7286–7292. [Google Scholar] [CrossRef]
- Benedet, A.; Costa, A.; De Marchi, M.; Penasa, M. Heritability estimates of predicted blood β-hydroxybutyrate and nonesterified fatty acids and relationships with milk traits in early-lactation Holstein cows. J. Dairy Sci. 2020, 103, 6354–6363. [Google Scholar] [CrossRef] [PubMed]
- Lou, W.; Zhang, H.; Luo, H.; Chen, Z.; Shi, R.; Guo, X.; Zou, Y.; Liu, L.; Brito, L.F.; Guo, G.; et al. Genetic analyses of blood β-hydroxybutyrate predicted from milk infrared spectra and its association with longevity and female reproductive traits in Holstein cattle. J. Dairy Sci. 2023, 106, 3051. [Google Scholar] [CrossRef]
- Oikonomou, G.; Valergakis, G.E.; Arsenos, G.; Roubies, N.; Banos, G. Genetic profile of body energy and blood metabolic traits across lactation in primiparous Holstein cows. J. Dairy Sci. 2008, 91, 2814–2822. [Google Scholar] [CrossRef]
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef]
- Oliveira, H.R.; Lourenco, D.A.L.; Masuda, Y.; Misztal, I.; Tsuruta, S.; Jamrozik, J.; Brito, L.F.; Silva, F.F.; Schenkel, F.S. Application of single-step genomic evaluation using multiple-trait random regression test-day models in dairy cattle. J. Dairy Sci. 2019, 102, 2365–2377. [Google Scholar] [CrossRef]
- Vukasinovic, N.; Bacciu, N.; Przybyla, C.A.; Boddhireddy, P.; DeNise, S.K. Development of genetic and genomic evaluation for wellness traits in US Holstein cows. J. Dairy Sci. 2017, 100, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Gaddis, K.L.P.; Cole, J.B.; Clay, J.S.; Maltecca, C. Genomic selection for producer-recorded health event data in US dairy cattle. J. Dairy Sci. 2014, 97, 3190–3199. [Google Scholar] [CrossRef] [PubMed]
- Ziyatdinov, A.; Kim, J.; Prokopenko, D.; Privé, F.; Laporte, F.; Loh, P.R.; Kraft, P.; Aschard, H. Estimating the effective sample size in association studies of quantitative traits. G3 Genes Genom. Genet. 2021, 11, jkab057. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.C.A.; Su, Z.; Donnelly, P.; Marchini, J. Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip. PLoS Genet. 2009, 5, e1000477. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.A.N.; Vargas, G.; Duffield, T.; Schenkel, F.; Squires, E.J. Genome-wide association study and functional analyses for clinical and subclinical ketosis in Holstein cattle. J. Dairy Sci. 2021, 104, 10076–10089. [Google Scholar] [CrossRef]
- Klein, S.L.; Scheper, C.; May, K.; König, S. Genetic and nongenetic profiling of milk β-hydroxybutyrate and acetone and their associations with ketosis in Holstein cows. J. Dairy Sci. 2020, 103, 10332–10346. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Lopera, N.; Alfaro, J.M.; Leal, S.M.; Pineda-Trujillo, N. Type 1 diabetes loci display a variety of native American and African ancestries in diseased individuals from Northwest Colombia. World J. Diabetes 2019, 10, 534–545. [Google Scholar] [CrossRef]
- Li, C.; Wang, M.; Zhang, T.Y.; He, Q.Y.; Shi, H.P.; Luo, J.; Loor, J.J. Insulin-induced gene 1 and 2 isoforms synergistically regulate triacylglycerol accumulation, lipid droplet formation, and lipogenic gene expression in goat mammary epithelial cells. J. Dairy Sci. 2019, 102, 1736–1746. [Google Scholar] [CrossRef]
- Lisowski, P.; Kosciuczuk, E.M.; Goscik, J.; Pierzchala, M.; Rowinska, B.; Zwierzchowski, L. Hepatic transcriptome profiling identifies differences in expression of genes associated with changes in metabolism and postnatal growth between Hereford and Holstein-Friesian bulls. Anim. Genet. 2014, 45, 288–292. [Google Scholar] [CrossRef]
- Weber, C.; Schäff, C.T.; Kautzsch, U.; Börner, S.; Erdmann, S.; Görs, S.; Röntgen, M.; Sauerwein, H.; Bruckmaier, R.M.; Metges, C.C.; et al. Insulin-dependent glucose metabolism in dairy cows with variable fat mobilization around calving. J. Dairy Sci. 2016, 99, 6665–6679. [Google Scholar] [CrossRef]
- Gross, J.; van Dorland, H.A.; Schwarz, F.J.; Bruckmaier, R.M. Endocrine changes and liver mRNA abundance of somatotropic axis and insulin system constituents during negative energy balance at different stages of lactation in dairy cows. J. Dairy Sci. 2011, 94, 3484–3494. [Google Scholar] [CrossRef] [PubMed]
- Kerestes, M.; Faigl, V.; Kulcsár, A.; Balogh, O.; Földi, J.; Fébel, H.; Chilliard, Y.; Huszenicza, G. Periparturient insulin secretion and whole-body insulin responsiveness in dairy cows showing various forms of ketone pattern with or without puerperal metritis. Domest. Anim. Endocrinol. 2009, 37, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Gaddis, K.L.P.; Megonigal, J.H.; Clay, J.S.; Wolfe, C.W. Genome-wide association study for ketosis in US Jerseys using producer-recorded data. J. Dairy Sci. 2018, 101, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Tufarelli, V.; Puvača, N.; Glamočić, D.; Pugliese, G.; Colonna, M.A. The Most Important Metabolic Diseases in Dairy Cattle during the Transition Period. Animals 2024, 14, 816. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Kang, S.; Jeong, M.; Han, M.; Lee, J.; Chung, H.; Park, J. Characteristics of Holstein cows predisposed to ketosis during the post-partum transition period. Vet. Med. Sci. 2023, 9, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Sun, X.M.; Huang, F.Q.; Liu, J.F.; Cai, Y.Y.; Wu, X.; Alolga, R.N.; Li, P.; Liu, B.L.; Liu, Q.; et al. The mitochondrial β-oxidation enzyme HADHA restrains hepatic glucagon response by promoting β-hydroxybutyrate production. Nat. Commun. 2022, 13, 386. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.N.; Shi, L.J.; Liu, L.; Liang, R.B.; Li, Q.; Li, J.G.; Han, B.; Sun, D.X. Analysis of Liver Proteome and Identification of Critical Proteins Affecting Milk Fat, Protein, and Lactose Metabolism in Dariy Cattle with iTRAQ. Proteomics 2019, 19, 1800387. [Google Scholar] [CrossRef]
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef]
- McCarthy, M.I.; Abecasis, G.R.; Cardon, L.R.; Goldstein, D.B.; Little, J.; Ioannidis, J.P.A.; Hirschhorn, J.N. Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nat. Rev. Genet. 2008, 9, 356–369. [Google Scholar] [CrossRef]
Items | Number |
---|---|
Number of records | 83,878 |
Number of animals | 45,617 |
Number of herd-years-season | 104 |
Number of parities | 3 |
Mean incidence of ketosis (%) | 1.1 |
Number of genotyped individuals | 5146 |
Number of SNP after editing | 80,217 |
Herd | n * | No. of Cows | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
H1 | 14,691 | 9134 | 0.868 | 0.469 | 0.1 | 6.1 |
H2 | 16,612 | 8367 | 1.010 | 0.516 | 0.1 | 5.4 |
H3 | 16,749 | 8798 | 0.937 | 0.507 | 0.1 | 8.0 |
H4 | 15,614 | 8107 | 0.925 | 0.529 | 0.1 | 8.0 |
H5 | 11,905 | 6363 | 0.888 | 0.485 | 0.1 | 5.4 |
H6 | 2855 | 1570 | 0.880 | 0.478 | 0.1 | 4.4 |
H7 | 5451 | 3278 | 0.926 | 0.785 | 0.1 | 7.3 |
Methods | ± SE | ± SE | ± SE | ± SE | |
---|---|---|---|---|---|
BLUP | 0.044 ± 0.002 | 0.002 ± 0.003 | 0.218 ± 0.002 | 0.167 ± 0.010 | 0.175 |
ssGBLUP | 0.045 ± 0.003 | 0.002 ± 0.002 | 0.218 ± 0.002 | 0.169 ± 0.010 | 0.175 |
SNP | BTA | Position | p-Value | Gene |
---|---|---|---|---|
BovineHD0200020100 | 2 | 69,386,940 | 1.76 × 10−7 | CCDC93, INSIG2 |
BovineHD0200025237 | 2 | 88,536,618 | 4.77 × 10−7 | SATB2, C2H2orf69, TYW5, MAIP1, SPATS2L, KCTD18 |
BTA-05080-no-rs | 6 | 10,139,671 | 4.39 × 10−7 | NDST4 |
Hapmap51347-BTA-90657 | 9 | 103,006,480 | 2.59 × 10−7 | DACT2, SMOC2, THBS2, WDR27, C9H6orf120, PHF10 |
BovineHD1100000220 | 11 | 730,613 | 3.70 × 10−7 | ZC3H8, FBLN7, TMEM87B, MERTK, ANAPC1, BCL2L11 |
BovineHD1100021063 | 11 | 73,677,409 | 2.51 × 10−7 | SELENOI, ADGRF3, HADHB, HADHA, GAREM2, RAB10, KIF3C, ASXL2, DTNB, DNMT3A, POMC, EFR3B |
Hapmap43234-BTA-31907 | 13 | 24,940,514 | 1.70 × 10−7 | KIAA1217 |
BTA-32905-no-rs | 13 | 50,955,987 | 5.57 × 10−7 | HAO1, ADRA1D, SMOX, RNF24, PANK2, MAVS, AP5S1, CDC25B, CENPB, SPEF1, ADISSP, HSPA12B |
BovineHD2300004717 | 23 | 18,540,309 | 4.98 × 10−7 | SUPT3H, RUNX2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, Z.; Liu, W.; Xie, S.; Ren, X.; Yan, L.; Liang, D.; Gao, T.; Fu, T.; Zhang, Z.; et al. Genetic Background of Blood β-Hydroxybutyrate Acid Concentrations in Early-Lactating Holstein Dairy Cows Based on Genome-Wide Association Analyses. Genes 2024, 15, 412. https://doi.org/10.3390/genes15040412
Wang Y, Wang Z, Liu W, Xie S, Ren X, Yan L, Liang D, Gao T, Fu T, Zhang Z, et al. Genetic Background of Blood β-Hydroxybutyrate Acid Concentrations in Early-Lactating Holstein Dairy Cows Based on Genome-Wide Association Analyses. Genes. 2024; 15(4):412. https://doi.org/10.3390/genes15040412
Chicago/Turabian StyleWang, Yueqiang, Zhenyu Wang, Wenhui Liu, Shuoqi Xie, Xiaoli Ren, Lei Yan, Dong Liang, Tengyun Gao, Tong Fu, Zhen Zhang, and et al. 2024. "Genetic Background of Blood β-Hydroxybutyrate Acid Concentrations in Early-Lactating Holstein Dairy Cows Based on Genome-Wide Association Analyses" Genes 15, no. 4: 412. https://doi.org/10.3390/genes15040412
APA StyleWang, Y., Wang, Z., Liu, W., Xie, S., Ren, X., Yan, L., Liang, D., Gao, T., Fu, T., Zhang, Z., & Huang, H. (2024). Genetic Background of Blood β-Hydroxybutyrate Acid Concentrations in Early-Lactating Holstein Dairy Cows Based on Genome-Wide Association Analyses. Genes, 15(4), 412. https://doi.org/10.3390/genes15040412