The Relationship between miR-5682 and Nutritional Status of Radiotherapy-Treated Male Laryngeal Cancer Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Group
2.2. Treatment Protocol
2.3. Nutritional Status Assessment
2.4. Bioelectrical Impendence Analysis
2.5. miRNA Expression Analysis
2.6. Statistical Analysis
3. Results
3.1. Nutritional Assessment
3.2. Relationship between Expression of miR-5682 and Nutritional Status of LC Patients
3.3. Correlation between miR-5682 Expression and Parameters Reflecting Nutritional Status
3.4. Diagnostic Usefulness of the Assessment of mi-5682 Expression in Predicting Nutritional Disorders and Its Prognostic Value
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Setiawan, T.; Sari, I.N.; Wijaya, Y.T.; Julianto, N.M.; Muhammad, J.A.; Lee, H.; Chae, J.H.; Kwon, H.Y. Cancer cachexia: Molecular mechanisms and treatment strategies. J. Hematol. Oncol. 2023, 16, 54. [Google Scholar] [CrossRef]
- Ni, J.; Zhang, L. Cancer cachexia: Definition, staging, and emerging treatments. Cancer Manag. Res. 2020, 12, 5597–5605. [Google Scholar] [CrossRef] [PubMed]
- Loumaye, A.; Thissen, J.-P. Biomarkers of cancer cachexia. Clin. Biochem. 2017, 50, 1281–1288. [Google Scholar] [CrossRef] [PubMed]
- Muthanandam, S.; Muthu, J. Understanding Cachexia in Head and Neck Cancer. Asia-Pacific J. Oncol. Nurs. 2021, 8, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Attar, E.; Dey, S.; Hablas, A.; Seifeldin, I.A.; Ramadan, M.; Rozek, L.S.; Soliman, A.S. Head and neck cancer in a developing country: A population-based perspective across 8 years. Oral Oncol. 2010, 46, 591–596. [Google Scholar] [CrossRef]
- Igissin, N.; Zatonskikh, V.; Telmanova, Z.; Tulebaev, R.; Moore, M. Laryngeal Cancer: Epidemiology, Etiology, and Prevention: A Narrative Review. Iran. J. Public Health 2023, 52, 2248–2259. [Google Scholar] [CrossRef]
- Santos, A.; Santos, I.C.; Fonseca, P. Impact of Nutritional Status on Survival in Head and Neck Cancer Patients After Total Laryngectomy Impact of Nutritional Status on Survival in Head and Neck Cancer. Nutr. Cancer 2022, 74, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Kim, R.B.; Roh, J.-L.; Lee, S.-W.; Kim, S.-B.; Choi, S.-H.; Nam, S.Y.; Kim, S.Y. Prevalence and clinical significance of cancer cachexia based on time from treatment in advanced-stage head and neck squamous cell carcinoma. Head Neck 2017, 39, 716–723. [Google Scholar] [CrossRef]
- Jager-Wittenaar, H.; Dijkstra, P.U.; Vissink, A.; Van Der Laan, B.F.A.M.; Van Oort, R.P.; Roodenburg, J.L.N. Critical weight loss in head and neck cancer—Prevalence and risk factors at diagnosis: An explorative study. Support. Care Cancer 2007, 15, 1045–1050. [Google Scholar] [CrossRef]
- Yurut-Caloglu, V.; Caloglu, M.; Turkkan, G. The importance of weight loss during definitive radiotherapy in patients with laryngeal carcinoma. J. Cancer Res. Ther. 2022, 18, 638–643. [Google Scholar] [CrossRef]
- Langius, J.A.E.; Twisk, J.; Kampman, M.; Doornaert, P.; Kramer, M.H.H.; Weijs, P.J.M.; Leemans, C.R. Prediction model to predict critical weight loss in patients with head and neck cancer during (chemo)radiotherapy. Oral Oncol. 2016, 52, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Zhao, K.; Jose, I.; Hoogenraad, N.J.; Osellame, L.D. Biomarkers for Cancer Cachexia: A Mini Review. Int. J. Mol. Sci. 2021, 22, 4501. [Google Scholar] [CrossRef] [PubMed]
- Gorenc, M.; Kozjek, N.R.; Strojan, P. Malnutrition and cachexia in patients with head and neck cancer treated with (chemo)radiotherapy. Rep. Pract. Oncol. Radiother. 2015, 20, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Article, R. The role of microRNA in cancer cachexia and muscle wasting: A review article. Caspian J. Intern. Med. 2021, 12, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Narasimhan, A.; Ghosh, S.; Stretch, C.; Greiner, R.; Bathe, O.F.; Baracos, V.; Damaraju, S. Small RNAome profiling from human skeletal muscle: Novel miRNAs and their targets associated with cancer cachexia. J. Cachexia. Sarcopenia Muscle 2017, 8, 405–416. [Google Scholar] [CrossRef]
- Grobbelaar, E.J.; Owen, S.; Torrance, A.D.; Wilson, J.A. Nutritional challenges in head and neck cancer. Clin. Otolaryngol. Allied Sci. 2004, 29, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, M.B.; Isenring, E.; Brown, B. Nutrition and swallowing therapy strategies for patients with head and neck cancer. Nutrition 2020, 69, 110548. [Google Scholar] [CrossRef] [PubMed]
- Hunter, M.; Kellett, J.; Toohey, K.; D’Cunha, N.M.; Isbel, S.; Naumovski, N. Toxicities Caused by Head and Neck Cancer Treatments and Their Influence on the Development of Malnutrition: Review of the Literature. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Langius, J.A.E.; Doornaert, P.; Spreeuwenberg, M.D.; Langendijk, J.A.; Leemans, C.R.; van Bokhorst-de van der Schueren, M.A.E. Radiotherapy on the neck nodes predicts severe weight loss in patients with early stage laryngeal cancer. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2010, 97, 80–85. [Google Scholar] [CrossRef]
- De Matos-Neto, E.M.; Lima, J.D.C.C.; de Pereira, W.O.; Figuerêdo, R.G.; Riccardi, D.M.D.R.; Radloff, K.; das Neves, R.X.; Camargo, R.G.; Maximiano, L.F.; Tokeshi, F.; et al. Systemic Inflammation in Cachexia—Is Tumor Cytokine Expression Profile the Culprit? Front. Immunol. 2015, 6, 629. [Google Scholar] [CrossRef]
- Santos, J.M.O.; Da Silva, S.P.; Gil Da Costa, R.M.; Medeiros, R. The emerging role of micrornas and other non-coding rnas in cancer cachexia. Cancers 2020, 12, 1004. [Google Scholar] [CrossRef]
- Fabbri, M.; Paone, A.; Calore, F.; Galli, R.; Gaudio, E.; Santhanam, R.; Lovat, F.; Fadda, P.; Mao, C.; Nuovo, G.J.; et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. USA 2012, 109, E2110–E2116. [Google Scholar] [CrossRef]
- Yehia, R.; Schaalan, M.; Abdallah, D.M.; Saad, A.S.; Sarhan, N.; Saleh, S. Impact of TNF-α Gene Polymorphisms on Pancreatic and Non-Small Cell Lung Cancer-Induced Cachexia in Adult Egyptian Patients: A Focus on Pathogenic Trajectories. Front. Oncol. 2021, 11, 783231. [Google Scholar] [CrossRef]
- Liu, Z.; Song, Y.-N.; Chen, K.-Y.; Gao, W.-L.; Chen, H.-J.; Liang, G.-Y. Bioinformatics prediction of potential mechanisms and biomarkers underlying dilated cardiomyopathy. World J. Cardiol. 2022, 14, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Ying, L.; Yao, Y.; Lv, H.; Lu, G.; Zhang, Q.; Yang, Y.; Zhou, J. IL-17A contributes to skeletal muscle atrophy in lung cancer-induced cachexia via JAK2/STAT3 pathway. Am. J. Physiol. Cell Physiol. 2022, 322, C814–C824. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, Z.; Li, B.; Liu, Y.-E.; Wang, P. Immunoregulation in cancer-associated cachexia. J. Adv. Res. 2024, 58, 45–62. [Google Scholar] [CrossRef]
- Powrózek, T.; Mlak, R.; Brzozowska, A.; Mazurek, M.; Gołębiowski, P.; Małecka-Massalska, T. MiRNA-130a significantly improves accuracy of SGA nutritional assessment tool in prediction of malnutrition and cachexia in radiotherapy-treated head and neck cancer patients. Cancers 2018, 10, 294. [Google Scholar] [CrossRef]
- Mazurek, M.; Mlak, R.; Homa-mlak, I.; Powrózek, T.; Brzozowska, A.; Kwaśniewski, W.; Opielak, G.; Małecka-massalska, T. Low miR-511-3p Expression as a Potential Predictor of a Poor Nutritional Status in Head and Neck Cancer Patients Subjected to Intensity-Modulated Radiation Therapy. J. Clin. Med. 2022, 11, 805. [Google Scholar] [CrossRef]
- Powrózek, T.; Brzozowska, A.; Mazurek, M.; Mlak, R.; Sobieszek, G.; Małecka-Massalska, T. Combined analysis of miRNA-181a with phase angle derived from bioelectrical impedance predicts radiotherapy-induced changes in body composition and survival of male patients with head and neck cancer. Head Neck 2019, 41, 3247–3257. [Google Scholar] [CrossRef]
- Magnano, M.; Mola, P.; Machetta, G.; Maffeis, P.; Forestiero, I.; Cavagna, R.; Artino, E.; Boffano, P. The nutritional assessment of head and neck cancer patients. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 3793–3799. [Google Scholar] [CrossRef]
- Zhang, X.-W.; Liu, N.; Chen, S.; Wang, Y.; Zhang, Z.-X.; Sun, Y.-Y.; Qiu, G.-B.; Fu, W.-N. High microRNA-23a expression in laryngeal squamous cell carcinoma is associated with poor patient prognosis. Diagn. Pathol. 2015, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lin, Y.-P.; Yang, D.; Zhang, G.; Zhou, H.-F. Clinical Significance of miR-149 in the Survival of Patients with Laryngeal Squamous Cell Carcinoma. BioMed Res. Int. 2016, 2016, 8561251. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Qi, Z. Clinical significance of miRNA-195 expression in patients with laryngeal carcinoma. J. BUON 2019, 24, 315–322. [Google Scholar]
Factor | n = 56 (%) | |
---|---|---|
Age [years] | Median (range) >65 ≤65 | 65 (42–87) 42 (75%) 14 (25%) |
T stage | T1 T2 T3 T4 | 2 (3.6%) 12 (21.4%) 20 (35.7%) 22 (39.3%) |
N stage | N0 N1 N2 N3 | 28 (50%) 10 (17.9%) 16 (28.6%) 2 (3.6%) |
M stage | Mx M0 M1 | 2 (3.6%) 52 (92.9%) 2 (3.6%) |
Disease stage (TNM) | III IVA IVB | 26 (46.4%) 26 (46.4%) 4 (7.1%) |
Performance status (PS) | ≤1 >1 | 52 (92.9%) 4 (7.1%) |
Type of treatment | Surgery + RT Surgery + C-RT | 33 (58.9%) 23 (41.1%) |
Alcohol consumption | Yes No | 32 (57.1%) 24 (42.9%) |
Smoking status | Smoker Non-smoker | 42 (75%) 14 (25%) |
Current smoker Former smoker | 40 (95.2%) 2 (4.8%) | |
Relative expression of miRNA-5682 | Mean ± SD median (range) | 2.95 ± 1.56 1.29 (0.01–18.19) |
Factor | n = 56 (%) | |
---|---|---|
Weight [kg] | Mean ± SD, median (range) | 64.73 ± 11.83 64.75 (43–91) |
Body mass index (BMI) [kg/m2] | Mean± SD median (range) ≥18.5 <18.5 | 22.99 ± 4.32 18.5 (14.53–34.37) 44 (78.6%) 12 (21.4%) |
Subjective Global Assessment (SGA) | A B C | 8 (14.3%) 22 (39.3%) 26 (46.4%) |
Nutritional Risk Score (NRS-2002) | 2 3 4 5 | 40 (71.4%) 12 (21.4%) 2 (3.6%) 2 (3.6%) |
Critical weight loss (CWL) | Yes No | 22 (39.3%) 34 (60.7%) |
Nutritional Risk Index (NRI) | Mild Moderate Severe | 8 (14.3%) 42 (75%) 6 (10.7%) |
FM [kg] | Mean ± SD median (range) | 18.59 ± 8.05 18.48 (7.27–34.25) |
FFM [kg] | Mean ± SD median (range) | 48.21 ± 6.72 46.79 (30.31–60.64) |
FFMI [kg/m2] | Mean ± SD median (range) | 16.85 ± 2.13 16.59 (11.55–20.99) |
nFFMI [kg/m2] | Mean ± SD median (range) | 17.48 ± 2.23 17.44 (12.65–22.21) |
CRP [mg/L] | Mean ± SD, median (range) | 7.45 ± 8.67 4.92 (0.14–35) |
TP [g/L] | Mean ± SD median (range) | 6.62 ± 0.53 6.59 (5.52–7.52) |
Albumin [g/dL] | Mean ± SD median (range) | 3.35 ± 0.26 3.30 (2.81–3.92) |
Prealbumin [g/dL] | Mean ± SD median (range) | 0.23 ± 0.08 0.20 (0.1–0.4) |
Transferrin [g/L] | Mean ± SD median (range) | 2.33 ± 0.54 2.40 (1.2–3.2) |
Factor | Measurement (Week) | miR-5682 Expression | p | |
---|---|---|---|---|
High Median (IQR) (n = 28) | Low Median (IQR) (n = 28) | |||
Weight [kg] | I | 62 (54–72) | 68 (59.5–71.5) | 0.455 |
IV | 60.5 (52–68) | 65 (55.5–67.75) | 0.323 | |
VII | 56 (51–66) | 62 (54.25–68) | 0.285 | |
Weight loss during treatment [%] | I–IV | 4.58 (1.49–10.52) | 3.38 (1.92–8.69) | 0.947 |
IV–VII | 3.84 (2–7.69) | 3.92 (1.59–9.37) | 0.818 | |
I–VII | 6.27 (3.70–13.64) | 4.35 (2.08–11.94) | 0.512 | |
BMI [kg/m2] | I | 21.96 (17.96–23.46) | 23.78 (22.36–26.51) | 0.018 * |
IV | 19.82 (18.31–22.98) | 22.67 (20.89–23.53) | 0.009 * | |
VII | 18.84 (16.79–23.11) | 21.77 (19.56–24.09) | 0.023 * | |
FM [kg] | I | 14.26 (9.63–22.29) | 23.50 (18.35–31.30) | 0.027 * |
IV | 14.02 (10.74–22.59) | 20.47 (13.35–23.82) | 0.011 * | |
VII | 13.46 (12.56–20.78) | 14.81 (11.37–18.49) | 0.857 | |
FM [%] | I | 24.76 (21.97–29.36) | 30.07 (24.12–34.61) | 0.101 |
IV | 24.46 (20.73–35.04) | 32.63 (23.55–37.27) | 0.344 | |
VII | 25.08 (22.77–28.54) | 24.29 (18.91–25.61) | 0.071 | |
FFM [kg] | I | 46.60 (42.71–53.47) | 47.57 (44.98–53.7) | 0.212 |
IV | 42.51 (39.75–46.29) | 50.47 (42.78–52.03) | 0.011 * | |
VII | 44.91 (38.57–47.79) | 53.41 (44.44–55.36) | 0.009 * | |
FFM [%] | I | 75.19 (70.66–82.13) | 69.80 (65.15–75.88) | 0.076 |
IV | 75.71 (64.56–79.73) | 67.65 (64.93–75.11) | 0.149 | |
VII | 75.04 (71.05–77.82) | 75.68 (74.64–80.29) | 0.071 | |
FFMI [kg/m2] | I | 16.59 (15.98–17.32) | 16.64 (15.37–18.57) | 0.533 |
IV | 15.04 (13.67–16.21) | 17.07 (15.04–18.69) | 0.006 * | |
VII | 15.04 (14.28–16.62) | 18.56 (16.5–18.92) | 0.038 * | |
nFFMI [kg/m2] | I | 17.20 (16.57–18.46) | 17.61 (15.93–18.81) | 0.446 |
IV | 15.6 (14.22–16.88) | 17.50 (15.68–19.54) | 0.019 * | |
VII | 15.68 (13.91–16.50) | 19.11 (17.36–19.65) | 0.005 * | |
CRP [mg/L] | I | 5.69 (1.55–7.22) | 3.98 (1.25–11.86) | 0.047 * |
TP [g/L] | I | 6.63 (6.30–7.10) | 6.59 (6.10–6.84) | 0.309 |
IV | 6.61 (6.18–7.24) | 6.51 (6.42–6.82) | 0.667 | |
VII | 6.17 (5.58–7.04) | 6.67 (6.58–6.77) | 0.085 | |
Albumin [g/dL] | I | 3.22 (3.11–3.3) | 3.37 (3.26–3.45) | 0.094 |
IV | 3.13 (2.94–3.49) | 3.4 (3.22–3.46) | 0.183 | |
VII | 2.98 (2.8–3.25) | 3.39 (3.07–3.5) | 0.015 * |
Nutritional Parameters | Comparisons | ||
---|---|---|---|
Median (IQR) | p | ||
SGA | A | 1.06 (0.41–2.35) | 0.302 |
B or C | 1.32 (0.32–4.32) | ||
A or B | 0.88 (0.32–2.34) | 0.045 * | |
C | 1.55 (0.52–4.41) | ||
SGA | A | 1.06 (0.41–2.35) | 0.128 # |
B | 0.88 (0.22–2.34) | ||
C | 1.55 (0.52–4.41) | ||
NRS-2002 | <3 | 1.38 (0.6–3.82) | 0.309 |
>3 | 0.91 (0.21–2.89) | ||
CWL | Yes | 1.37 (0.88–3.39) | 0.039 * |
No | 0.52 (0.20–4.24) | ||
CRP [mg/L] | >5 | 1.34 (0.81–2.74) | 0.238 |
<5 | 0.85 (0.2–4.24) | ||
CRP [mg/L] | >10 | 1.27 (0.52–1.37) | 0.472 |
<10 | 1.49 (0.24–4.24) | ||
Weight loss 5% | Yes | 1.32 (0.81–4.67) | 0.373 |
No | 1.10 (0.24–2.74) | ||
Weight loss 10% | Yes | 0.81 (0.22–4.99) | 0.791 |
No | 1.31 (0.39–3.39) |
Factor | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR [95%CI] | p | HR [95%CI] | p | |
Smoking history (yes) | - | NS | ||
N stage (N1-3) | 5.49 [0.23–133.10] | 0.006* | 19.13 [1.76–196.57] | 0.013 * |
M stage (M1) | 14.54 [0.08–2505.86] | <0.0001 * | - | NS |
Treatment (concurrent C-RT) | - | NS | 8.65 [1.52–49.37] | 0.016 * |
Relative expression of miR-5682 (high) | 2.26 [1.14–4.52] | 0.008 * | 3.82 [1.33–10.93] | 0.012 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazurek, M.; Brzozowska, A.; Maziarz, M.; Małecka-Massalska, T.; Powrózek, T. The Relationship between miR-5682 and Nutritional Status of Radiotherapy-Treated Male Laryngeal Cancer Patients. Genes 2024, 15, 556. https://doi.org/10.3390/genes15050556
Mazurek M, Brzozowska A, Maziarz M, Małecka-Massalska T, Powrózek T. The Relationship between miR-5682 and Nutritional Status of Radiotherapy-Treated Male Laryngeal Cancer Patients. Genes. 2024; 15(5):556. https://doi.org/10.3390/genes15050556
Chicago/Turabian StyleMazurek, Marcin, Anna Brzozowska, Mirosław Maziarz, Teresa Małecka-Massalska, and Tomasz Powrózek. 2024. "The Relationship between miR-5682 and Nutritional Status of Radiotherapy-Treated Male Laryngeal Cancer Patients" Genes 15, no. 5: 556. https://doi.org/10.3390/genes15050556
APA StyleMazurek, M., Brzozowska, A., Maziarz, M., Małecka-Massalska, T., & Powrózek, T. (2024). The Relationship between miR-5682 and Nutritional Status of Radiotherapy-Treated Male Laryngeal Cancer Patients. Genes, 15(5), 556. https://doi.org/10.3390/genes15050556