Distribution of BCR::ABL1 Transcripts in the Different Clinical Phases of Chronic Myeloid Leukemia: Effect on Hematological Parameters and Patient Survival
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Description of the Study Population
3.2. Association between BCR::ABL1 mRNA Variants and Clinical Data
3.3. Association between mRNA Variants and the Clinical Phase of CML
3.4. Association between the Clinical Phase of CML and Clinical Variables
3.5. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thijsen, S.; Schuurhuis, G.; van Oostveen, J.; Ossenkoppele, G. Chronic Myeloid Leukemia from Basics to Bedside. Leukemia 1999, 13, 1646–1674. [Google Scholar] [CrossRef]
- Belohlavkova, P.; Steinerova, K.; Karas, M.; Skoumalova, I.; Rohon, P.; Indrak, K.; Voglova, J.; Vrbacky, F.; Cmunt, E.; Necasova, T.; et al. First-Line Imatinib in Elderly Patients with Chronic Myeloid Leukaemia from the CAMELIA Registry: Age and Dose Still Matter. Leuk. Res. 2019, 81, 67–74. [Google Scholar] [CrossRef]
- Jabbour, E.J.; Mendiola, M.F.; Lingohr-Smith, M.; Lin, J.; Makenbaeva, D. Economic Modeling to Evaluate the Impact of Chronic Myeloid Leukemia Therapy Management on the Oncology Care Model in the US. J. Med. Econ. 2019, 22, 1113–1118. [Google Scholar] [CrossRef]
- McMullan, R.R.; McConville, C.; McMullin, M.F. Response to Therapy, Treatment Intolerance and Tyrosine Kinase Inhibitor Cessation Eligibility in a Real-World Cohort of Chronic Myeloid Leukaemia Patients. Ulster Med. J. 2019, 88, 105–110. [Google Scholar]
- Molica, M.; Naqvi, K.; Cortes, J.E.; Paul, S.; Kadia, T.M.; Breccia, M.; Kantarjian, H.; Jabbour, E.J. Treatment-Free Remission in Chronic Myeloid Leukemia. Clin. Adv. Hematol. Oncol. 2019, 17, 686–696. [Google Scholar]
- Deininger, M.W.N.; Goldman, J.M.; Melo, J.V. The Molecular Biology of Chronic Myeloid Leukemia. Blood 2000, 96, 3343–3356. [Google Scholar] [CrossRef]
- Epstein, F.H.; Kurzrock, R.; Gutterman, J.U.; Talpaz, M. The Molecular Genetics of Philadelphia Chromosome–Positive Leukemias. N. Engl. J. Med. 1988, 319, 990–998. [Google Scholar] [CrossRef]
- Gandhe, N.; Vekaria, M.; Dabak, V. A Rare Case of P190 BCR-ABL Chronic Myeloid Leukemia with a Very Good Response to Tyrosine Kinase Inhibitors. Cureus 2021, 13, e16914. [Google Scholar] [CrossRef]
- Baccarani, M.; Castagnetti, F.; Gugliotta, G.; Rosti, G.; Soverini, S.; Albeer, A.; Pfirrmann, M. The Proportion of Different BCR-ABL1 Transcript Types in Chronic Myeloid Leukemia. An International Overview. Leukemia 2019, 33, 1173–1183. [Google Scholar] [CrossRef]
- Meza-Espinoza, J.P.; Gutiérrez-Angulo, M.; Vázquez-Cárdenas, A.; Delgado-Lamas, J.L.; Esparza-Flores, M.A.; González-García, J.R. Prevalence of the BCR/ABL1 Transcripts in Mexican Patients with Chronic Myelogenous Leukemia. Rev. Investig. Clin. 2007, 59, 338–341. [Google Scholar]
- Lin, H.-X.; Sjaarda, J.; Dyck, J.; Stringer, R.; Hillis, C.; Harvey, M.; Carter, R.; Ainsworth, P.; Leber, B.; Pare, G.; et al. Gender and BCR-ABL Transcript Type Are Correlated with Molecular Response to Imatinib Treatment in Patients with Chronic Myeloid Leukemia. Eur. J. Haematol. 2016, 96, 360–366. [Google Scholar] [CrossRef]
- Khazaal, M.S.; Hamdan, F.B.; Al-Mayah, Q.S. Association of BCR/ABL Transcript Variants with Different Blood Parameters and Demographic Features in Iraqi Chronic Myeloid Leukemia Patients. Mol. Genet. Genom. Med. 2019, 7, e809. [Google Scholar] [CrossRef]
- Mehlman, M.A. Dangerous and Cancer-Causing Properties of Products and Chemicals in the Oil Refining and Petrochemical Industries. Part XXX. Ann. N. Y. Acad. Sci. 2006, 1076, 110–119. [Google Scholar] [CrossRef]
- Hu, Y.; Li, Q.; Hou, M.; Peng, J.; Yang, X.; Xu, S. Magnitude and Temporal Trend of the Chronic Myeloid Leukemia: On the Basis of the Global Burden of Disease Study 2019. JCO Glob. Oncol. 2021, 7, 1429–1441. [Google Scholar] [CrossRef]
- Abdulla, M.A.J.; Chandra, P.; El Akiki, S.; Aldapt, M.B.; Sardar, S.; Chapra, A.; Nashwan, A.J.; Sorio, C.; Tomasello, L.; Boni, C.; et al. Clinicopathological Variables and Outcome in Chronic Myeloid Leukemia Associated With BCR-ABL1 Transcript Type and Body Weight: An Outcome of European LeukemiaNet Project. Cancer Control 2021, 28, 107327482110384. [Google Scholar] [CrossRef]
- Belkhair, J.; Raissi, A.; Elyahyaoui, H.; Ameur, M.A.; Chakour, M. Atypical Chronic Myeloid Leukemia BCR-ABL 1 Negative: A Case Report and Literature Review. Leuk. Res. Rep. 2019, 12, 100172. [Google Scholar] [CrossRef]
- Angel, J.L.; Vega, W.; López-Ortega, M. Aging in Mexico: Population Trends and Emerging Issues. Gerontologist 2016, 57, gnw136. [Google Scholar] [CrossRef]
- Pagnano, K.B.B.; Miranda, E.C.; Delamain, M.T.; Duarte, G.O.; de Paula, E.V.; Lorand-Metze, I.; de Souza, C.A. Influence of BCR-ABL Transcript Type on Outcome in Patients With Chronic-Phase Chronic Myeloid Leukemia Treated with Imatinib. Clin. Lymphoma Myeloma Leuk. 2017, 17, 728–733. [Google Scholar] [CrossRef]
- Lewandowski, K.; Warzocha, K.; Hellmann, A.; Skotnicki, A.; Prejzner, W.; Foryciarz, K.; Sacha, T.; Gniot, M.; Majewski, M.; Solarska, I.; et al. Frequency of BCR-ABL Gene Mutations in Polish Patients with Chronic Myeloid Leukemia Treated with Imatinib: A Final Report of the MAPTEST Study. Pol. Arch. Med. Wewn. 2009, 119, 789–794. [Google Scholar]
- Adler, R.; Viehmann, S.; Kuhlisch, E.; Martiniak, Y.; Röttgers, S.; Harbott, J.; Suttorp, M. Correlation of BCR/ABL Transcript Variants with Patients’ Characteristics in Childhood Chronic Myeloid Leukaemia. Eur. J. Haematol. 2009, 82, 112–118. [Google Scholar] [CrossRef]
- Paramita, D.K.; Hutajulu, S.H.; Syifarahmah, A.; Sholika, T.A.; Fatmawati, S.; Aning, S.; Sulistyawati, D.; Wahyuni, S.; Taroeno-Hariadi, K.W.; Kurnianda, J. BCR-ABL Gene Transcript Types of Patients with Chronic Myelogenous Leukemia in Yogyakarta, Indonesia. Asian Pac. J. Cancer Prev. 2020, 21, 1545–1550. [Google Scholar] [CrossRef]
- Ayatollahi, H.; Keramati, M.R.; Shirdel, A.; Kooshyar, M.M.; Raiszadeh, M.; Shakeri, S.; Sadeghian, M.H. BCR-ABL Fusion Genes and Laboratory Findings in Patients with Chronic Myeloid Leukemia in Northeast Iran. Casp. J. Intern. Med. 2018, 9, 65–70. [Google Scholar] [CrossRef]
- Amaru Calzada, A.; Masias, J.; Ustarez, E.; Choque, G.; Peñaloza, R.; Mansilla, S.; Amaru, R. Frequency of P210 BCR-ABL Transcripts in 272 Bolivian Patients with Chronic Myeloid Leukemia (CML). Rev. Médica La Paz 2016, 22, 13–19. [Google Scholar]
- Ruiz-Argüelles, G.J.; Garcés-Eisele, J.; Reyes-Núñez, V.; Ruiz-Delgado, G.J. Frequencies of the Breakpoint Cluster Region Types of the BCR/ABL Fusion Gene in Mexican Mestizo Patients with Chronic Myelogenous Leukemia. Rev. Investig. Clin. 2004, 56, 605–608. [Google Scholar]
- Arana-Trejo, R.M.; Sánchez, E.R.; Ignacio-Ibarra, G.; De La Fuente, E.B.; Garces, O.; Morales, E.G.; Granados, M.C.; Martínez, R.O.; Rubio-Borja, M.E.; Anaya, L.S.; et al. BCR/ABL P210, P190 and P230 Fusion Genes in 250 Mexican Patients with Chronic Myeloid Leukaemia (CML). Clin. Lab. Haematol. 2002, 24, 145–150. [Google Scholar] [CrossRef]
- Aya Bonilla, C.; Torres, J.; Muskus, C.; Ramírez Gaviria, G.; Cuervo Sierra, J.; Sierra Sánchez, M.; Cuéllar-Ambrosi, F.; Botero Garcés, J.; Artigas, A.C.; Muñetón, C.; et al. Frecuencia de Los Transcriptos P190BCR-ABL y P210BCR-ABL En Una Población Colombiana Con Leucemia Mieloide Crónica (LMC) Usando RT-PCR Cualitativa. Iatreia 2014, 27, 398–409. [Google Scholar]
- Yaghmaie, M.; Ghaffari, S.H.; Ghavamzadeh, A.; Alimoghaddam, K.; Jahani, M.; Mousavi, S.-A.; Irvani, M.; Bahar, B.; Bibordi, I. Frequency of BCR-ABL Fusion Transcripts in Iranian Patients with Chronic Myeloid Leukemia. Arch. Iran. Med. 2008, 11, 247–251. [Google Scholar]
- Leven, R.M. Differential Regulation of Integrin-Mediated Proplatelet Formation and Megakaryocyte Spreading. J. Cell. Physiol. 1995, 163, 597–607. [Google Scholar] [CrossRef]
- Barnes, D.J.; Melo, J.V. Cytogenetic and Molecular Genetic Aspects of Chronic Myeloid Leukaemia. Acta. Haematol. 2002, 108, 180–202. [Google Scholar] [CrossRef]
- Aguiar, R.C.T.; Dahia, P.L.M.; Bendit, I.; Beitler, B.; Dorlhiac, P.; Bydlowski, S.; Chamone, D. Further Evidence for the Lack of Correlation between the Breakpoint Site within M-BCR and CML Prognosis and for the Occasional Involvement of P53 in Transformation. Cancer Genet. Cytogenet. 1995, 84, 105–112. [Google Scholar] [CrossRef]
- Prejzner, W. Relationship of the BCR Gene Breakpoint and the Type of BCR/ABL Transcript to Clinical Course, Prognostic Indexes and Survival in Patients with Chronic Myeloid Leukemia. Med. Sci. Monit. 2002, 8, BR193-7. [Google Scholar]
- Ohm, L.; Arvidsson, I.; Barbany, G.; Hast, R.; Stenke, L. Early Landmark Analysis of Imatinib Treatment in CML Chronic Phase: Less than 10% BCR-ABL by FISH at 3 Months Associated with Improved Long-Term Clinical Outcome. Am. J. Hematol. 2012, 87, 760–765. [Google Scholar] [CrossRef]
Total (n = 33) | |
---|---|
Diabetes | |
Yes (%) | 3 (9.1%) |
No (%) | 30 (90.9%) |
Hypertension | |
Yes (%) | 7 (21.2%) |
No (%) | 26 (78.8%) |
Splenomegaly | |
Yes (%) | 19 (57.6%) |
No (%) | 14 (42.4%) |
Hepatomegaly | |
Yes (%) | 10 (30.3%) |
No (%) | 23 (69.7%) |
Anemia | |
Yes (%) | 6 (18.2%) |
No (%) | 27 (81.8%) |
Hemorrhagic syndrome | |
Yes (%) | 1 (3%) |
No (%) | 32 (97%) |
Thrombocytosis | |
Yes (%) | 2 (6.1%) |
No (%) | 31 (93.9%) |
Thrombocytopenia | |
Yes (%) | 1 (3%) |
No (%) | 32 (97%) |
Adenomegaly/Edema | |
Yes (%) | 1 (3%) |
No (%) | 32 (97%) |
Ecchymosis/Petechiae | |
Yes (%) | 1 (3%) |
No (%) | 32 (97%) |
PP (n = 28) | NP (n = 5) | p | |
---|---|---|---|
Demographic data | |||
Female (%) | 9 (32.1) | 2 (40.0) | >0.99 |
Male (%) | 19 (67.9) | 3 (60.0) | |
Age at diagnosis | 37.5 (20.8–49.8) | 73.0 (35.5–79.5) | 0.046 |
Age at admission | 42.5 (28.3–54.0) | 82.0 (41.0–85) | 0.037 |
Clinical phase of CML at diagnosis | |||
Accelerated (%) | 1 (3.6) | 0 (0) | 0.38 |
Blast (%) | 7 (25) | 0 (0) | |
Chronic (%) | 20 (71.4) | 5 (100.0) | |
Hematological parameters | |||
Leukocytes (109 cells/L) | 175.3 (69.4–281.2) | 101.4 (34.45–292.6) | 0.33 |
Erythrocytes (109 cells/L) | 2.9 (2.6–3.9) | 3.3 (2.5–3.8) | 0.89 |
Platelets (109 cells/L) | 465.0 (287.8–599.0) | 121.0 (68–133.5) | 0.004 |
Neutrophils (%) | 73.0 (61.0–81.0) | 71.0 (47.0–77.0) | 0.50 |
Basophils (%) | 6.0 (2.3–9.8) | 0.0 (0.0–3.5) | 0.025 |
Eosinophils (%) | 2.0 (1.0–5.8) | 2.0 (0–10.5) | 0.94 |
Blasts (%) * | 0.5 (0.0–5.5) | 0 | 0.08 |
mRNA variants | |||
b2a2 | 8 (28.6%) | 0 (0%) | |
b3a2 | 18 (64.3%) | 0 (0%) | |
e1a2 | 1 (3.6%) | 0 (0%) | |
b3a2/b3a3 | 1 (3.6%) | 0 (0%) | |
Negative | 0 (0%) | 5 (100.0%) |
b2a2 (n = 8) | b3a2 (n = 18) | Other (n = 2) | p | |
---|---|---|---|---|
Female (%) | 3(37.5) | 5 (27.8) | 1 (50.0) | 0.66 |
Male (%) | 5 (62.5) | 13 (72.2) | 1 (50.0) | |
Age at diagnosis | 50.0 (33.3–55.8) | 32.5 (17.3–45.0) | 31.5 (14.0–49.0) | 0.02 |
Clinical phase of CML at diagnosis | ||||
Accelerated (%) | 1 (12.5) | 0 (0) | 0 (0) | 0.09 |
Blast (%) | 0 (0) | 5 (27.8) | 2 (100.0) | |
Chronic (%) | 7 (87.5) | 13 (72.2) | 0 (0.0) | |
Type of treatment (initial) | ||||
Imatinib (%) | 3 (37.5) | 11 (61.1) | 1 (100.0) | 0.40 |
Hydroxyurea (%) | 5 (62.5) | 7 (38.9) | 0 (0.0) | |
Type of treatment (final) | ||||
I/N (%) | 7 (87.5) | 15 (83.3) | 2 (100) | >0.99 |
Other (%) | 1 (12.5) | 3 (16.7) | 0 (0) | |
Hematological parameters | ||||
Leukocytes (109 cells/L) | 159.1 (46.11–298.9) | 208.2 (132.1–292.1) | 0.5 (0.2–0.8) | 0.46 |
Erythrocytes (109 cells/L) | 3.49 (2.7–4.4) | 2.9 (2.6–3.5) | 2.3 (2.2–2.5) | 0.19 |
Platelets (109 cells/L) | 437.5 (318.0–599.0) | 500.5 (299.0–745.8) | 8.5 (0.0–17.0) | 0.80 |
Neutrophils (%) | 79.5 (68.3–83.3) | 73.0 (56.0–82.0) | 7.0 (0.0–14.0) | 0.39 |
Basophils (%) | 6.0 (3.5–10.0) | 6.5 (3.5–10.0) | 1.0 (0.0–2.0) | 0.90 |
Eosinophils (%) | 2.0 (1.3–5.3) | 3.0 (0.8–6.2) | 0.5 (0.0–1.0) | 0.97 |
Blasts (%) * | 3.0 (2.0–4.0) | 12.0 (2.0–20.0) | 0.0 | 0.23 |
CP (n = 25, 75.8%) | AP (n = 8, 24.2%) | p | |
---|---|---|---|
Female (%) | 8 (32) | 3 (37.5) | >0.99 |
Male (%) | 17 (68) | 5 (62.5) | |
Age at diagnosis | 40.0 (26.5–59.5) | 37.5 (18.2–48.0) | 0.47 |
Age at admission | 49.0 (30.0–63.5) | 42.5 (25.8–53.0) | 0.46 |
Type of treatment (initial) | |||
Imatinib (%) | 14 (56.0) | 4 (50.0) | 0.77 |
Hydroxyurea (%) | 10 (40.0) | 4 (50.0) | |
No treatment (%) | 1 (4.0) | 0 (0) | |
Type of treatment (final) | |||
I/N (%) | 20 (80.0) | 7 (87.5) | 0.81 |
Other (%) | 4 (16.0) | 1 (12.5) | |
No treatment (%) | 1 (4.0) | 0 (0) | |
Status | |||
Deceased (%) | 1 (4.0) | 2 (25.0) | 0.13 |
Alive (%) | 24 (96.0) | 6 (75.0) | |
Hematological parameters | |||
Leukocytes (109 cells/L) | 172.4 (62.5–280.1) | 140.3 (27.2–291.4) | 0.57 |
Erythrocytes (109 cells/L) | 3.2 (2.8–3.9) | 2.6 (2.3–2.8) | 0.01 |
Platelets (109 cells/L) | 414.0 (150.5–589.5) | 406.0 (11.8–581.8) | 0.52 |
Neutrophils (%) | 72.5 (65.8–80.3) | 62.0 (20.5–86.3) | 0.69 |
Basophils (%) | 5.0 (0.0–8.0) | 7.5 (0.5–12.8) | 0.44 |
Eosinophils (%) | 2.0 (1.0–6.0) | 1.0 (0.0–3.5) | 0.16 |
Blasts (%) * | 4.0 (2.0–12.0) | 44.0 (4.0–79.0) | 0.09 |
BCR::ABL1 | |||
Positive (%) | 20 (80.0) | 8 (100.0) | 0.30 |
Negative (%) | 5 (20.0) | 0 (0) | |
Types of mRNA variants | |||
b2a2 | 7 (28.0) | 1 (12.5) | 0.07 |
b2a2/b3a3 | 0 (0) | 1 (12.5) | |
b3a2 | 13 (52.0) | 5 (62.5) | |
e1a2 | 0 (0) | 1 (12.5) | |
Negative | 5 (20.0) | 0 (0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Morelos, P.; González-Yebra, A.L.; Herrerías-García, A.; Ruíz-Velázquez, F.A.; Bueno-Rosario, L.J.; González-Yebra, B. Distribution of BCR::ABL1 Transcripts in the Different Clinical Phases of Chronic Myeloid Leukemia: Effect on Hematological Parameters and Patient Survival. Genes 2024, 15, 567. https://doi.org/10.3390/genes15050567
Romero-Morelos P, González-Yebra AL, Herrerías-García A, Ruíz-Velázquez FA, Bueno-Rosario LJ, González-Yebra B. Distribution of BCR::ABL1 Transcripts in the Different Clinical Phases of Chronic Myeloid Leukemia: Effect on Hematological Parameters and Patient Survival. Genes. 2024; 15(5):567. https://doi.org/10.3390/genes15050567
Chicago/Turabian StyleRomero-Morelos, Pablo, Ana Lilia González-Yebra, Anaid Herrerías-García, Francisco Arath Ruíz-Velázquez, Luis Jonathan Bueno-Rosario, and Beatríz González-Yebra. 2024. "Distribution of BCR::ABL1 Transcripts in the Different Clinical Phases of Chronic Myeloid Leukemia: Effect on Hematological Parameters and Patient Survival" Genes 15, no. 5: 567. https://doi.org/10.3390/genes15050567
APA StyleRomero-Morelos, P., González-Yebra, A. L., Herrerías-García, A., Ruíz-Velázquez, F. A., Bueno-Rosario, L. J., & González-Yebra, B. (2024). Distribution of BCR::ABL1 Transcripts in the Different Clinical Phases of Chronic Myeloid Leukemia: Effect on Hematological Parameters and Patient Survival. Genes, 15(5), 567. https://doi.org/10.3390/genes15050567