Defining a Haplotype Encompassing the LCORL-NCAPG Locus Associated with Increased Lean Growth in Beef Cattle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Sequencing
2.2. Identification of Haplotype-Defining Mutations
2.3. Individual Variant Genotyping
2.4. Statistical Analysis
3. Results
3.1. Defining Mutations Exclusive to the QQ Haplotype
3.2. Discovery of Structural Variants
3.3. Genotype–Phenotype Relationship
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bouwman, A.C.; Daetwyler, H.D.; Chamberlain, A.J.; Ponce, C.H.; Sargolzaei, M.; Schenkel, F.S.; Sahana, G.; Govignon-Gion, A.; Boitard, S.; Dolezal, M.; et al. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat. Genet. 2018, 50, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Setoguchi, K.; Watanabe, T.; Weikard, R.; Albrecht, E.; Kühn, C.; Kinoshita, A.; Sugimoto, Y.; Takasuga, A. The SNP c.1326T>G in the non-SMC condensin I complex, subunit G (NCAPG) gene encoding a p.Ile442Met variant is associated with an increase in body frame size at puberty in cattle. Anim. Genet. 2011, 42, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Bolormaa, S.; Pryce, J.E.; Reverter, A.; Zhang, Y.; Barendse, W.; Kemper, K.; Tier, B.; Savin, K.; Hayes, B.J.; Goddard, M.E. A Multi-Trait, Meta-analysis for Detecting Pleiotropic Polymorphisms for Stature, Fatness and Reproduction in Beef Cattle. PLoS Genet. 2014, 10, e1004198. [Google Scholar] [CrossRef] [PubMed]
- Doyle, J.L.; Berry, D.P.; Veerkamp, R.F.; Carthy, T.R.; Walsh, S.W.; Evans, R.D.; Purfield, D.C. Genomic Regions Associated with Skeletal Type Traits in Beef and Dairy Cattle Are Common to Regions Associated with Carcass Traits, Feed Intake and Calving Difficulty. Front. Genet. 2020, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gil, B.; Williams, J.L.; Homer, D.; Burton, D.; Haley, C.S.; Wiener, P. Search for quantitative trait loci affecting growth and carcass traits in a cross population of beef and dairy cattle. J. Anim. Sci. 2009, 87, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Snelling, W.M.; Allan, M.F.; Keele, J.W.; Kuehn, L.A.; McDaneld, T.; Smith, T.P.L.; Sonstegard, T.S.; Thallman, R.M.; Bennett, G.L. Genome-wide association study of growth in crossbred beef cattle. J. Anim. Sci. 2010, 88, 837–848. [Google Scholar] [CrossRef]
- Smith, J.L.; Wilson, M.L.; Nilson, S.M.; Rowan, T.N.; Oldeschulte, D.L.; Schnabel, R.D.; Decker, J.E.; Seabury, C.M. Genome-wide association and genotype by environment interactions for growth traits in U.S. Gelbvieh cattle. BMC Genom. 2019, 20, 926. [Google Scholar] [CrossRef]
- Smith, J.L.; Wilson, M.L.; Nilson, S.M.; Rowan, T.N.; Schnabel, R.D.; Decker, J.E.; Seabury, C.M. Genome-wide association and genotype by environment interactions for growth traits in U.S. Red Angus cattle. BMC Genom. 2022, 23, 517. [Google Scholar] [CrossRef]
- Setoguchi, K.; Furuta, M.; Hirano, T.; Nagao, T.; Watanabe, T.; Sugimoto, Y.; Takasuga, A. Cross-breed comparisons identified a critical 591-kb region for bovine carcass weight QTL (CW-2) on chromosome 6 and the Ile-442-Met substitution in NCAPG as a positional candidate. BMC Genet. 2009, 10, 43. [Google Scholar] [CrossRef]
- Nishimura, S.; Watanabe, T.; Mizoshita, K.; Tatsuda, K.; Fujita, T.; Watanabe, N.; Sugimoto, Y.; Takasuga, A. Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese Black cattle. BMC Genet. 2012, 13, 40. [Google Scholar] [CrossRef]
- Purfield, D.C.; Evans, R.D.; Berry, D.P. Reaffirmation of known major genes and the identification of novel candidate genes associated with carcass-related metrics based on whole genome sequence within a large multi-breed cattle population. BMC Genom. 2019, 20, 720. [Google Scholar] [CrossRef] [PubMed]
- Keogh, K.; Carthy, T.R.; McClure, M.C.; Waters, S.M.; Kenny, D.A. Genome-wide association study of economically important traits in Charolais and Limousin beef cows. Animal 2021, 15, 100011. [Google Scholar] [CrossRef] [PubMed]
- Lindholm-Perry, A.K.; Sexten, A.K.; Kuehn, L.A.; Smith, T.P.L.; King, D.A.; Shackelford, S.D.; Wheeler, T.L.; Ferrell, C.L.; Jenkins, T.G.; Snelling, W.M.; et al. Association, effects and validation of polymorphisms within the NCAPG–LCORL locus located on BTA6 with feed intake, gain, meat and carcass traits in beef cattle. BMC Genet. 2011, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, M.; Yaghootkar, H.; Mook-Kanamori, D.O.; Sovio, U.; Taal, H.R.; Hennig, B.J.; Bradfield, J.P.; St Pourcain, B.; Evans, D.M.; Charoen, P.; et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat. Genet. 2013, 45, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.R.; Esko, T.; Yang, J.; Vedantam, S.; Pers, T.H.; Gustafsson, S.; Chu, A.Y.; Estrada, K.; Luan, J.a.; Kutalik, Z.; et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 2014, 46, 1173–1186. [Google Scholar] [CrossRef] [PubMed]
- Helgeland, Ø.; Vaudel, M.; Juliusson, P.B.; Lingaas Holmen, O.; Juodakis, J.; Bacelis, J.; Jacobsson, B.; Lindekleiv, H.; Hveem, K.; Lie, R.T.; et al. Genome-wide association study reveals dynamic role of genetic variation in infant and early childhood growth. Nat. Commun. 2019, 10, 4448. [Google Scholar] [CrossRef] [PubMed]
- Vaysse, A.; Ratnakumar, A.; Derrien, T.; Axelsson, E.; Rosengren Pielberg, G.; Sigurdsson, S.; Fall, T.; Seppälä, E.H.; Hansen, M.S.T.; Lawley, C.T.; et al. Identification of Genomic Regions Associated with Phenotypic Variation between Dog Breeds Using Selection Mapping. PLoS Genet. 2011, 7, e1002316. [Google Scholar] [CrossRef] [PubMed]
- Plassais, J.; Kim, J.; Davis, B.W.; Karyadi, D.M.; Hogan, A.N.; Harris, A.C.; Decker, B.; Parker, H.G.; Ostrander, E.A. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun. 2019, 10, 1489. [Google Scholar] [CrossRef]
- Signer-Hasler, H.; Flury, C.; Haase, B.; Burger, D.; Simianer, H.; Leeb, T.; Rieder, S. A Genome-Wide Association Study Reveals Loci Influencing Height and Other Conformation Traits in Horses. PLoS ONE 2012, 7, e37282. [Google Scholar] [CrossRef]
- Tetens, J.; Widmann, P.; Kühn, C.; Thaller, G. A genome-wide association study indicates LCORL/NCAPG as a candidate locus for withers height in German Warmblood horses. Anim. Genet. 2013, 44, 467–471. [Google Scholar] [CrossRef]
- Staiger, E.A.; Abri, M.A.A.; Pflug, K.M.; Kalla, S.E.; Ainsworth, D.M.; Miller, D.; Raudsepp, T.; Sutter, N.B.; Brooks, S.A. Skeletal variation in Tennessee Walking Horses maps to the LCORL/NCAPG gene region. Physiol. Genom. 2016, 48, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Al-Mamun, H.A.; Kwan, P.; Clark, S.A.; Ferdosi, M.H.; Tellam, R.; Gondro, C. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genet. Sel. Evol. 2015, 47, 66. [Google Scholar] [CrossRef]
- Posbergh, C.J.; Huson, H.J. All sheeps and sizes: A genetic investigation of mature body size across sheep breeds reveals a polygenic nature. Anim. Genet. 2021, 52, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Bongiorni, S.; Mancini, G.; Chillemi, G.; Pariset, L.; Valentini, A. Identification of a Short Region on Chromosome 6 Affecting Direct Calving Ease in Piedmontese Cattle Breed. PLoS ONE 2012, 7, e50137. [Google Scholar] [CrossRef]
- Zhao, G.; Liu, Y.; Niu, Q.; Zheng, X.; Zhang, T.; Wang, Z.; Xu, L.; Zhu, B.; Gao, X.; Zhang, L.; et al. Runs of homozygosity analysis reveals consensus homozygous regions affecting production traits in Chinese Simmental beef cattle. BMC Genom. 2021, 22, 678. [Google Scholar] [CrossRef]
- Saif, R.; Henkel, J.; Jagannathan, V.; Drögemüller, C.; Flury, C.; Leeb, T. The LCORL Locus Is under Selection in Large-Sized Pakistani Goat Breeds. Genes 2020, 11, 168. [Google Scholar] [CrossRef]
- Carneiro, M.; Hu, D.; Archer, J.; Feng, C.; Afonso, S.; Chen, C.; Blanco-Aguiar, J.A.; Garreau, H.; Boucher, S.; Ferreira, P.G.; et al. Dwarfism and Altered Craniofacial Development in Rabbits Is Caused by a 12.1 kb Deletion at the HMGA2 Locus. Genetics 2017, 205, 955–965. [Google Scholar] [CrossRef]
- Rubin, C.-J.; Megens, H.-J.; Barrio, A.M.; Maqbool, K.; Sayyab, S.; Schwochow, D.; Wang, C.; Carlborg, Ö.; Jern, P.; Jørgensen, C.B.; et al. Strong signatures of selection in the domestic pig genome. Proc. Natl. Acad. Sci. USA 2012, 109, 19529–19536. [Google Scholar] [CrossRef] [PubMed]
- Markey, A. Mapping of Monogenic and Quantitative Trait Loci Using a Whole Genome Scan Approach and Single Nucleotide Polymorphism Platforms. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2013. [Google Scholar]
- Martins Rodrigues, F. Transcriptional Variation in Muscle from Cattle with Alternative NCAPG/LCORL QTL Genotypes. Master’s Thesis, University of Illinois, Champaign, IL, USA, 2017. [Google Scholar]
- Eberlein, A.; Takasuga, A.; Setoguchi, K.; Pfuhl, R.; Flisikowski, K.; Fries, R.; Klopp, N.; Fürbass, R.; Weikard, R.; Kühn, C. Dissection of Genetic Factors Modulating Fetal Growth in Cattle Indicates a Substantial Role of the Non-SMC Condensin I Complex, Subunit G (NCAPG) Gene. Genetics 2009, 183, 951–964. [Google Scholar] [CrossRef]
- Gutiérrez-Gil, B.; Wiener, P.; Williams, J.L.; Haley, C.S. Investigation of the genetic architecture of a bone carcass weight QTL on BTA6. Anim. Genet. 2012, 43, 654–661. [Google Scholar] [CrossRef]
- Conway, E.; Jerman, E.; Healy, E.; Ito, S.; Holoch, D.; Oliviero, G.; Deevy, O.; Glancy, E.; Fitzpatrick, D.J.; Mucha, M.; et al. A Family of Vertebrate-Specific Polycombs Encoded by the LCOR/LCORL Genes Balance PRC2 Subtype Activities. Mol. Cell 2018, 70, 408–421.e408. [Google Scholar] [CrossRef] [PubMed]
- Wiles, E.T.; Selker, E.U. H3K27 methylation: A promiscuous repressive chromatin mark. Curr. Opin. Genet. Dev. 2017, 43, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Margueron, R.; Reinberg, D. The Polycomb complex PRC2 and its mark in life. Nature 2011, 469, 343–349. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Thoroughput Sequence Data. BMC Bioinform. 2010, 14, 1–4. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Van der Auwera, G.A.; O’Connor, B.D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra, 1st ed.; O‘Reilly Media: Sebastopol, CA, USA, 2020. [Google Scholar]
- Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2012, 14, 178–192. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Zeng, T.; Li, Y.I. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 2022, 23, 103. [Google Scholar] [CrossRef]
- Raney, B.J.; Dreszer, T.R.; Barber, G.P.; Clawson, H.; Fujita, P.A.; Wang, T.; Nguyen, N.; Paten, B.; Zweig, A.S.; Karolchik, D.; et al. Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser. Bioinformatics 2013, 30, 1003–1005. [Google Scholar] [CrossRef]
- Yuan, C.; Tang, L.; Lopdell, T.; Petrov, V.A.; Oget-Ebrad, C.; Moreira, G.C.M.; Gualdrón Duarte, J.L.; Sartelet, A.; Cheng, Z.; Salavati, M.; et al. An organism-wide ATAC-seq peak catalog for the bovine and its use to identify regulatory variants. Genome Res. 2023, 33, 1848–1864. [Google Scholar] [CrossRef]
- Shen, W.K.; Chen, S.Y.; Gan, Z.Q.; Zhang, Y.Z.; Yue, T.; Chen, M.M.; Xue, Y.; Hu, H.; Guo, A.Y. AnimalTFDB 4.0: A comprehensive animal transcription factor database updated with variation and expression annotations. Nucleic Acids Res. 2023, 51, D39–D45. [Google Scholar] [CrossRef]
- Grant, C.E.; Bailey, T.L.; Noble, W.S. FIMO: Scanning for occurrences of a given motif. Bioinformatics 2011, 27, 1017–1018. [Google Scholar] [CrossRef] [PubMed]
- Weirauch, M.T.; Yang, A.; Albu, M.; Cote, A.G.; Montenegro-Montero, A.; Drewe, P.; Najafabadi, H.S.; Lambert, S.A.; Mann, I.; Cook, K.; et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 2014, 158, 1431–1443. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Niu, Q.; Zhang, T.; Xu, L.; Wang, T.; Wang, Z.; Zhu, B.; Gao, X.; Chen, Y.; Zhang, L.; Gao, H.; et al. Identification of Candidate Variants Associated with Bone Weight Using Whole Genome Sequence in Beef Cattle. Front. Genet. 2021, 12, 750746. [Google Scholar] [CrossRef]
- Hu, X.; Xing, Y.; Fu, X.; Yang, Q.; Ren, L.; Wang, Y.; Li, Q.; Li, J.; Zhang, L. NCAPG Dynamically Coordinates the Myogenesis of Fetal Bovine Tissue by Adjusting Chromatin Accessibility. Int. J. Mol. Sci. 2020, 21, 1248. [Google Scholar] [CrossRef]
- Sanchez, M.-P.; Tribout, T.; Kadri, N.K.; Chitneedi, P.K.; Maak, S.; Hozé, C.; Boussaha, M.; Croiseau, P.; Philippe, R.; Spengeler, M.; et al. Sequence-based GWAS meta-analyses for beef production traits. Genet. Sel. Evol. 2023, 55, 70. [Google Scholar] [CrossRef]
- Cai, Z.; Wu, X.; Thomsen, B.; Lund, M.S.; Sahana, G. Genome-wide association study identifies functional genomic variants associated with young stock survival in Nordic Red Dairy Cattle. J. Dairy Sci. 2023, 106, 7832–7845. [Google Scholar] [CrossRef] [PubMed]
- Gualdrón Duarte, J.L.; Yuan, C.; Gori, A.-S.; Moreira, G.C.M.; Takeda, H.; Coppieters, W.; Charlier, C.; Georges, M.; Druet, T. Sequenced-based GWAS for linear classification traits in Belgian Blue beef cattle reveals new coding variants in genes regulating body size in mammals. Genet. Sel. Evol. 2023, 55, 83. [Google Scholar] [CrossRef]
- Horvath, S.; Lu, A.T.; Haghani, A.; Zoller, J.A.; Li, C.Z.; Lim, A.R.; Brooke, R.T.; Raj, K.; Serres-Armero, A.; Dreger, D.L.; et al. DNA methylation clocks for dogs and humans. Proc. Natl. Acad. Sci. USA 2022, 119, e2120887119. [Google Scholar] [CrossRef] [PubMed]
- Lindholm-Perry, A.K.; Kuehn, L.A.; Oliver, W.T.; Sexten, A.K.; Miles, J.R.; Rempel, L.A.; Cushman, R.A.; Freetly, H.C. Adipose and Muscle Tissue Gene Expression of Two Genes (NCAPG and LCORL) Located in a Chromosomal Region Associated with Cattle Feed Intake and Gain. PLoS ONE 2013, 8, e80882. [Google Scholar] [CrossRef] [PubMed]
- Ashkar, F.A.; Semple, E.; Schmidt, C.H.; St. John, E.; Bartlewski, P.M.; King, W.A. Thyroid hormone supplementation improves bovine embryo development in vitro. Hum. Reprod. 2009, 25, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Wondisford, F.E. Chapter 77—Thyroid Hormone Action. In Endocrinology: Adult and Pediatric, 7th ed.; Jameson, J.L., De Groot, L.J., de Kretser, D.M., Giudice, L.C., Grossman, A.B., Melmed, S., Potts, J.T., Weir, G.C., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2016; pp. 1336–1349.e1333. [Google Scholar]
- Vlahopoulos, S.; Zimmer, W.E.; Jenster, G.; Belaguli, N.S.; Balk, S.P.; Brinkmann, A.O.; Lanz, R.B.; Zoumpourlis, V.C.; Schwartz, R.J. Recruitment of the Androgen Receptor via Serum Response Factor Facilitates Expression of a Myogenic Gene. J. Biol. Chem. 2005, 280, 7786–7792. [Google Scholar] [CrossRef] [PubMed]
- Schratt, G.; Philippar, U.; Hockemeyer, D.; Schwarz, H.; Alberti, S.; Nordheim, A. SRF regulates Bcl-2 expression and promotes cell survival during murine embryonic development. EMBO J. 2004, 23, 1834–1844. [Google Scholar] [CrossRef]
- Miano, J.M. Role of serum response factor in the pathogenesis of disease. Lab. Investig. 2010, 90, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Yun, C.H.; Lim, S.H.; Kim, B.C.; Baik, K.G.; Kim, J.M.; Kim, W.H.; Kim, S.J. SRF is a nuclear repressor of Smad3-mediated TGF-β signaling. Oncogene 2007, 26, 173–185. [Google Scholar] [CrossRef]
- Kumbrink, J.; Kirsch, K.H.; Johnson, J.P. EGR1, EGR2, and EGR3 activate the expression of their coregulator NAB2 establishing a negative feedback loop in cells of neuroectodermal and epithelial origin. J. Cell. Biochem. 2010, 111, 207–217. [Google Scholar] [CrossRef]
- Baron, V.; Adamson, E.D.; Calogero, A.; Ragona, G.; Mercola, D. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFβ1, PTEN, p53, and fibronectin. Cancer Gene Ther. 2006, 13, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Lupien, M.; Eeckhoute, J.; Meyer, C.A.; Wang, Q.; Zhang, Y.; Li, W.; Carroll, J.S.; Liu, X.S.; Brown, M. FoxA1 Translates Epigenetic Signatures into Enhancer-Driven Lineage-Specific Transcription. Cell 2008, 132, 958–970. [Google Scholar] [CrossRef] [PubMed]
Variant | Location 1 | q Allele | Q Allele | Nearby Gene | Type, Consequence |
---|---|---|---|---|---|
rs109438687 | 37,214,389 | T | C | FAM184B | ATAC peak, intron |
rs109467519 | 37,214,736 | C | T | FAM184B | ATAC peak, intron |
rs109145748 | 37,301,160 | G | C | FAM184B | ATAC peak, 5′ UTR |
rs109570900 | 37,343,379 | T | G | NCAPG | Coding sequence, missense |
rs210386983 | 37,379,506 | A | G | LCORL | ATAC peak, 3′ UTR |
rs207496787 | 37,379,507 | A | T | LCORL | ATAC peak, 3′ UTR |
rs379449143 | 37,381,106 | A | G | LCORL | ATAC peak, intron |
rs384548488 | 37,401,770 | ACT | A | LCORL | Coding sequence, frameshift |
rs109696064 | 37,403,795 | C | T | LCORL | Coding sequence, missense |
rs517494305 | 37,452,882 | C | CA | LCORL | ATAC peak, intron |
rs110293947 | 37,479,269 | G | C | LCORL | ATAC peak, intron |
rs379787611 | 37,487,010 | T | C | LCORL | ATAC peak, intron |
rs109114124 | 37,555,677 | C | A | LCORL | ATAC peak, intron |
rs109092727 | 37,559,117 | A | G | LCORL | ATAC peak, upstream |
rs110470694 | 37,608,504 | C | T | ATAC peak, intergenic | |
rs109060347 | 37,627,776 | G | C | ATAC peak, intergenic | |
rs207689046 | 37,669,453 | A | G | ATAC peak, intergenic | |
rs109331793 | 37,681,968 | C | T | ATAC peak, intergenic | |
rs110458346 | 37,934,068 | C | T | ATAC peak, intergenic | |
rs110888204 | 37,946,012 | C | T | ATAC peak, intergenic | |
rs110930653 | 37,962,887 | G | T | ATAC peak, intergenic | |
rs110658468 | 37,997,160 | C | T | ATAC peak, intergenic |
Variant | Consensus Peak | Tissue | Signal Score 1 |
---|---|---|---|
rs109438687 | chr6_37214241_37214456_NMF12_0.33 | Liver & Testicle | 0.353 |
rs109467519 | chr6_37214731_37214965_NMF10_0.92 | Muscle | 0.209 |
rs109145748 | chr6_37300595_37301446_NMF10_0.14 | Ubiquitous | 0.909 |
rs210386983 & rs207496787 | chr6_37379341_37379516_NMF13_1.00 | 8-cell Embryo | 0.260 |
rs379449143 | chr6_37381082_37381259_NMF13_1.00 | 8-cell Embryo | 0.302 |
rs517494305 | chr6_37452831_37452975_NMF16_0.67 | Adipose | 0.222 |
rs110293947 | chr6_37479127_37479316_NMF7_0.58 | Cerebellum | 0.277 |
rs379787611 | chr6_37487007_37487238_NMF13_1.00 | 8-cell Embryo | 0.337 |
rs109114124 | chr6_37555562_37555843_NMF9_0.15 | Ubiquitous | 0.522 |
rs109092727 | chr6_37558579_37559199_NMF14_0.35 | Embryo | 0.866 |
rs110470694 | chr6_37608344_37608531_NMF5_1.00 | Colon & Embryo | 0.422 |
rs109060347 | chr6_37627598_37627866_NMF5_0.33 | Colon, Rumen, Epithelial, & Embryo | 0.947 |
rs207689046 | chr6_37669337_37669559_NMF5_1.00 | Colon | 0.715 |
rs109331793 | chr6_37681884_37682015_NMF13_1.00 | 8-cell Embryo | 0.294 |
rs110458346 | chr6_37933851_37934401_NMF13_1.00 | 8-cell Embryo | 0.758 |
rs110888204 | chr6_37945955_37946153_NMF10.88 | Cerebrum | 0.324 |
rs110930653 | chr6_37962696_37962988_NMF16_0.49 | Epididymis | 0.198 |
rs110658468 | chr6_37996798_37997347_NMF5_0.69 | Colon | 0.401 |
Variant | Shared TFs | qq TFs | QQ TFs |
---|---|---|---|
rs109438687 | ZNF621 | - | NR2C2, PAX6 |
rs109467519 | - | - | - |
rs109145748 | GCM1, MAZ, SP2, ZNF180, ZNF212, ZNF341, ZNF467, ZNF527, ZNF548, ZNF596, ZNF792 | PAX6, ZBTB14, ZFP64, ZNF264 | KLF11, SP1, ZBTB17, ZNF329 |
rs210386983 & rs207496787 | - | - | - |
rs379449143 | - | BATF3 | POU6F1 |
rs517494305 | NFATC1, RELA, ZNF484 | NFATC3, REST | NFYA, NFYB, NFYC, ZNF280A, ZNF619 |
rs110293947 | NFE2L2, NHLH1, NHLH2, OLIG2, TCF12, ZBTB18, ZNF273, ZNF331 | ASCL2, MYOG, ZNF549, ZNF69, ZSCAN31 | - |
rs379787611 | IRF1, STAT2, ZIM3, ZNF225, ZNF487, ZNF502 | MEF2A, ZNF394 | IRF2, IRF3, IRF4, IRF5, IRF8, IRF9, ZNF573 |
rs109114124 | RREB1, ZNF263, ZNF283, ZNF785, ZNF805 | EGR1, EGR2, MAZ, ZNF460, ZNF580 | FOXA1 |
rs109092727 | - | - | - |
rs110470694 | KLF15, ZNF383, ZNF432, ZNF880 | - | ZNF449 |
rs109060347 | ZNF335 | NKX2-5 | SOX18, ZNF200, ZNF808 |
rs207689046 | ESR1, NR1H3, NR2C2, YY1 | CREB3L1, CREB3L2, RORA | RXRG |
rs109331793 | CUX1, CUX2 | ZNF667 | ZNF605 |
rs110458346 | - | MEF2B, POU6F1, SRF, THRA, THRB, ZNF774, ZNF823 | - |
rs110888204 | ZNF768 | PPARG, ZBTB12, ZNF543, ZNF621, ZNF768 | ZNF440 |
rs110930653 | - | NR1I2 | - |
rs110658468 | - | - | - |
Population | Breed Composition | n | |||
---|---|---|---|---|---|
1 | Simmental-Angus & Angus | 30 | 18 | 12 | 0 |
2 | Shorthorn | 87 | 49 | 31 | 7 |
3 | Angus | 83 | 63 | 20 | 0 |
4 | Simmental & Simmental-Angus | 78 | 14 | 47 | 17 |
5 | Simmental-Angus | 127 | 62 | 59 | 6 |
Phenotype | n | Intercept 1 | β_Qq | β_QQ | β_Steer | Pop2 | Pop4 | Pop5 | ASE 2 | p-Value 3 |
---|---|---|---|---|---|---|---|---|---|---|
Birth Weight (BW), kg | 253 | 31.7 ± 2.3 | 0.4 ± 0.7 | 4.2 ± 1.1 | 3.1 ± 0.6 | +3.5 | −3.9 | +0.5 | 1.6 ± 0.5 | 3.67 × 10−4 (*) |
Adjusted Weaning Weight (WW), kg | 241 | 206.8 ± 17.4 | 5.3 ± 4.6 | 9.5 ± 7.2 | 13.9 ± 4.1 | +5.6 | −31.6 | +26.0 | 4.9 ± 3.3 | 0.327 |
Weight 1 (W1), kg | 247 | 161.3 ± 54.5 | 7.0 ± 2.9 | 3.7 ± 4.7 | 12.5 ± 2.7 | +108.9 | −51.1 | −57.8 | 3.5 ± 2.2 | 0.0603 |
Weight 2 (W2), kg | 242 | 476.4 ± 12.9 | 22.6 ± 5.9 | 35.6 ± 9.7 | 56.0 ± 5.5 | +20.7 | −19.3 | −1.4 | 19.4 ± 4.4 | 4.10 × 10−5 (*) |
Weight 3 (W3), kg | 157 | 517.8 ± 21.4 | 31.0 ± 7.7 | 32.2 ± 13.0 | 55.3 ± 9.6 | +37.3 | −18.1 | −19.2 | 21.7 ± 5.7 | 1.40 × 10−4 (*) |
Average Daily Gain (ADG), kg | 244 | 1.46 ± 0.12 | 0.10 ± 0.03 | 0.18 ± 0.04 | 0.37 ± 0.02 | −0.21 | +0.01 | +0.20 | 0.09 ± 0.02 | 2.27 × 10−5 (*) |
Hip Height (HH), cm | 157 | 120.9 ± 1.3 | 1.8 ± 0.7 | 2.6 ± 1.2 | 3.4 ± 0.9 | +1.6 | −1.1 | −0.6 | 1.5 ± 0.5 | 0.0185 (*) |
Dry Matter Intake (DMI), kg | 87 | 9.02 ± 0.15 | 0.31 ± 0.21 | 0.44 ± 0.36 | 0.47 ± 0.20 | - | - | - | 0.26 ± 0.15 | 0.221 |
Hot Carcass Weight (HCW), kg | 83 | 350.2 ± 5.4 | 21.4 ± 7.4 | 16.7 ± 13.6 | 32.5 ± 7.0 | - | - | - | 14.2 ± 5.5 | 0.0152 (*) |
Backfat (BF), cm | 83 | 1.59 ± 0.06 | 0.04 ± 0.09 | −0.30 ± 0.16 | −0.20 ± 0.08 | - | - | - | −0.07 ± 0.07 | 0.130 |
Ribeye Area (REA), cm2 | 83 | 82.4 ± 1.5 | 5.2 ± 2.0 | 2.8 ± 3.8 | 7.0 ± 1.9 | - | - | - | 3.1 ± 1.5 | 0.0423 |
Kidney Pelvic Heart Fat (KPH), % | 83 | 2.11 ± 0.03 | −0.06 ± 0.04 | −0.15 ± 0.08 | −0.20 ± 0.04 | - | - | - | −0.07 ± 0.03 | 0.102 |
Marbling (MB) | 83 | 538.5 ± 15.5 | 32.1 ± 21.2 | −12.5 ± 39.0 | −73.3 ± 20.2 | - | - | - | 10.9 ± 15.8 | 0.267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majeres, L.E.; Dilger, A.C.; Shike, D.W.; McCann, J.C.; Beever, J.E. Defining a Haplotype Encompassing the LCORL-NCAPG Locus Associated with Increased Lean Growth in Beef Cattle. Genes 2024, 15, 576. https://doi.org/10.3390/genes15050576
Majeres LE, Dilger AC, Shike DW, McCann JC, Beever JE. Defining a Haplotype Encompassing the LCORL-NCAPG Locus Associated with Increased Lean Growth in Beef Cattle. Genes. 2024; 15(5):576. https://doi.org/10.3390/genes15050576
Chicago/Turabian StyleMajeres, Leif E., Anna C. Dilger, Daniel W. Shike, Joshua C. McCann, and Jonathan E. Beever. 2024. "Defining a Haplotype Encompassing the LCORL-NCAPG Locus Associated with Increased Lean Growth in Beef Cattle" Genes 15, no. 5: 576. https://doi.org/10.3390/genes15050576
APA StyleMajeres, L. E., Dilger, A. C., Shike, D. W., McCann, J. C., & Beever, J. E. (2024). Defining a Haplotype Encompassing the LCORL-NCAPG Locus Associated with Increased Lean Growth in Beef Cattle. Genes, 15(5), 576. https://doi.org/10.3390/genes15050576