Comprehensive Bioinformatic Investigation of TP53 Dysregulation in Diverse Cancer Landscapes
Abstract
:1. Background
2. Introduction
3. Materials and Methods
3.1. Data Sources
- GEPIA [30]: With the use of this robust platform, we were able to conduct in-depth gene expression analyses across a variety of cancer types and normal tissues by having access to enormous datasets from the Genotype-Tissue Expression (GTEx) and the Cancer Genome Atlas (TCGA).
- UALCAN [31]: By using this resource, we were able to examine TCGA gene expression data in more detail and gain insight into the ways that various cancer types express genes differently. This has allowed us to better understand cancer biology and identify possible targets for treatment.
- STRING Database [32]: We used the STRING database to investigate the complex web of gene connections and protein–protein interactions. This made it easier for us to look into the biological importance and functional relationships of the genes linked to cancer pathways.
3.2. Analysis of TP53 Expression across Diverse Cancer Types
3.3. Exploring Survival Dynamics
3.4. Analyzing Gene Correlations: TP53’s Correlation Investigation
3.5. Constructing the TP53 Protein Network
4. Results
4.1. Unraveling the Impact of P53 Overexpression in Tumors
4.2. Mapping P53’s Journey through Pathological Stages
4.3. Decoding P53 Subtypes
4.4. Exploring the Nexus of P53 Overexpression with Histological and Molecular Subtypes
Unraveling TP53 Gene and Biological Pathways
- p53 Signaling Pathway (hsa04115): Central to TP53’s function, this pathway involves crucial proteins such as p53 apoptosis effector related to PMP22 (PERP) and Tumor protein p53 inducible protein 11 (TP53I11), pivotal in mediating TP53’s impact on cell survival, DNA repair, and apoptosis.
- Endocrine Resistance (hsa01522): Unveiling a connection between TP53 and cytochrome P450 family 2 subfamily D member 6, our study suggests a potential role for TP53 in endocrine resistance, particularly within the context of cancer therapy.
- Platinum Drug Resistance (hsa01524): Our findings shed light on TP53’s involvement in platinum drug resistance, a formidable challenge in cancer treatment. Proteins like ERCC1, MLH1, MSH2, and GSTP1 play pivotal roles in this resistance mechanism.
- MAPK Signaling Pathway (hsa04010): TP53 appears to engage with proteins associated with the MAPK signaling pathway, regulating cell growth and differentiation. This interaction hints at a broader role for TP53 in cellular responses to external signals.
- Ras Signaling Pathway (hsa04014): Within this pathway, TP53 interacts with proteins such as RAS, RAF, and MEK, suggesting its potential involvement in the regulation of cell proliferation and growth, particularly in the context of cancer.
- Cell Cycle (hsa04110): Our exploration supports the well-established role of TP53 in governing the cell cycle. Proteins like BUB1B, BUBR1, MAD3L, and others contribute to TP53-mediated control across various phases of the cell cycle.
- PI3K-Akt Signaling Pathway (hsa04151): TP53’s participation in the PI3K-Akt signaling pathway implies its role in cell survival and proliferation, potentially influencing cancer progression.
- Apoptosis (hsa04210): Recognized for its critical role in apoptosis, TP53’s association with proteins in the extrinsic apoptotic pathway enhances our understanding of how TP53 regulates programmed cell death.
- Pathways in Cancer (hsa05200): TP53’s involvement in diverse signaling cascades, including EGF-EGFR-RAS-ERK, underscores its significance in the development and progression of cancer. These pathways offer a comprehensive view of TP53’s contributions to cancer-related processes.
- Ferroptosis (hsa04216): Our investigation suggests that TP53 may influence ferroptosis, a regulated cell death process, adding to our comprehension of TP53’s role in cell fate decisions.
- Cellular Senescence (hsa04218): TP53’s presence in the cellular senescence pathway highlights its role in driving cells into a state of irreversible growth arrest—an essential mechanism to prevent uncontrolled cell division.
- Ubiquitin-Mediated Proteolysis (hsa04120): TP53’s association with proteins like BRCA1, CDC20, UBE2C, and UBE2S underscores its involvement in protein degradation, providing insights into how TP53 regulates the turnover of key cellular proteins.
4.5. Survival Analysis Figures
p53 Protein Network
5. Additional Analyses
5.1. Steady-State Analysis
5.2. Sensitivity Analysis
5.3. Parameter Sweep Analysis
5.4. Frequency Analysis
6. Discussion
7. Summary
- TP53, a crucial tumor suppressor gene, regulates cell cycle balance, but elevated expression can promote tumor development.
- Various cancers exhibit heightened TP53 expression, correlating with aggressive behavior and higher recurrence risk.
- Treatment strategies for tumors with TP53 overexpression involve a combination of targeted therapies, chemotherapy, and radiation therapy.
- Analysis of TP53 gene expression across TCGA tumors reveals significant overexpression in 13 out of 27 cancers.
- P53 expression levels categorize tumors into five pathological stages, with higher expression linked to poorer prognosis.
- TP53 manifests in four subtypes: wild-type, mutant, overexpressed, and deleted, each requiring tailored treatment approaches.
- Investigation into TP53 expression across histological and molecular cancer subtypes highlights significant upregulation compared to normal tissues.
- Detailed analysis within specific cancers reveals significant associations between TP53 expression and subtypes, grades, and patient conditions.
- The complexity and heterogeneity of TP53 expression underscores the need for nuanced analyses in cancer research.
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amundson, S.A.; Myers, T.G.; Fornace, A.J., Jr. Roles for p53 in growth arrest and apoptosis: Putting on the brakes after genotoxic stress. Oncogene 1998, 17, 3287–3299. [Google Scholar] [CrossRef] [PubMed]
- Kastenhuber, E.R.; Lowe, S.W. Putting p53 in context. Cell 2017, 170, 1062–1078. [Google Scholar] [CrossRef] [PubMed]
- Polager, S.; Ginsberg, D. p53 and E2f: Partners in life and death. Nat. Rev. Cancer 2009, 9, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.J.; Fearon, E.R.; Nigro, J.M.; Hamilton, S.R.; Preisinger, A.C.; Jessup, J.M.; van Tuinen, P.; Ledbetter, D.H.; Barker, D.F.; Nakamura, Y. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989, 244, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Nigro, J.M.; Baker, S.J.; Preisinger, A.C.; Jessup, J.M.; Hosteller, R.; Cleary, K.; Bigner, S.H.; Davidson, N.; Baylin, S. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989, 342, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Nau, M.M.; Chiba, I.; Birrer, M.J.; Rosenberg, R.K.; Vinocour, M.; Levitt, M.; Pass, H.; Gazdar, A.F.; Minna, J.D. p53: A frequent target for genetic abnormalities in lung cancer. Science 1989, 246, 491–494. [Google Scholar] [CrossRef]
- Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C.C. p53 mutations in human cancers. Science 1991, 253, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Leroy, B.; Anderson, M.; Soussi, T. TP 53 mutations in human cancer: Database reassessment and prospects for the next decade. Hum. Mutat. 2014, 35, 672–688. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404. [Google Scholar] [CrossRef]
- Bouaoun, L.; Sonkin, D.; Ardin, M.; Hollstein, M.; Byrnes, G.; Zavadil, J.; Olivier, M. TP53 variations in human cancers: New lessons from the IARC TP53 database and genomics data. Hum. Mutat. 2016, 37, 865–876. [Google Scholar] [CrossRef]
- Muller, P.A.J.; Vousden, K.H. Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell 2014, 25, 304–317. [Google Scholar] [CrossRef] [PubMed]
- Timp, W.; Feinberg, A.P. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat. Rev. Cancer 2013, 13, 497–510. [Google Scholar] [CrossRef]
- Harris, C.C. Structure and function of the p53 tumor suppressor gene: Clues for rational cancer therapeutic strategies. JNCI J. Natl. Cancer Inst. 1996, 88, 1442–1455. [Google Scholar] [CrossRef]
- Fisher, D.E. Apoptosis in cancer therapy: Crossing the threshold. Cell 1994, 78, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Pollack, I.F.; Hamilton, R.L.; Finkelstein, S.D.; Campbell, J.W.; Martinez, A.J.; Sherwin, R.N.; Bozik, M.E.; Gollin, S.M. The relationship between TP53 mutations and overexpression of p53 and prognosis in malignant gliomas of childhood. Cancer Res. 1997, 57, 304–309. [Google Scholar]
- Pijnenborg, J.M.A.; van de Broek, L.; de Veen, G.C.D.; Roemen, G.M.J.M.; de Haan, J.; van Engeland, M.; Voncken, J.W.; Groothuis, P.G. TP53 overexpression in recurrent endometrial carcinoma. Gynecol. Oncol. 2006, 100, 397–404. [Google Scholar] [CrossRef]
- Qiu, X.; You, Y.; Huang, J.; Wang, X.; Zhu, H.; Wang, Z. LAMP3 and TP53 overexpression predicts poor outcome in laryngeal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 5519. [Google Scholar] [PubMed]
- Gao, C.; Chen, F. Dynamics of p53 regulatory network in DNA damage response. Appl. Math. Model. 2020, 88, 701–714. [Google Scholar] [CrossRef]
- Lowe, S.W.; Schmitt, E.M.; Smith, S.W.; Osborne, B.A.; Jacks, T. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993, 362, 847–849. [Google Scholar] [CrossRef]
- Cadwell, C.; Zambetti, G.P. The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 2001, 277, 15–30. [Google Scholar] [CrossRef]
- Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the p53 network. Nature 2000, 408, 307–310. [Google Scholar] [CrossRef]
- Sun, T.; Chen, C.; Wu, Y.; Zhang, S.; Cui, J.; Shen, P. Modeling the role of p53 pulses in DNA damage-induced cell death decision. BMC Bioinform. 2009, 10, 1–12. [Google Scholar] [CrossRef]
- Aylon, Y.; Oren, M. Living with p53, dying of p53. Cell 2007, 130, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Vousden, K.H.; Lane, D.P. p53 in health and disease. Nat. Rev. Mol. Cell Biol. 2007, 8, 275–283. [Google Scholar] [CrossRef]
- Zhang, X.-P.; Liu, F.; Cheng, Z.; Wang, W. Cell fate decision mediated by p53 pulses. Proc. Natl. Acad. Sci. USA 2009, 106, 12245–12250. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, J.; Gan, S.; Guan, H.; Zhou, Y.; Ouyang, Q.; Shi, J. DNA damage strength modulates a bimodal switch of p53 dynamics for cell-fate control. BMC Biol. 2013, 11, 73. [Google Scholar] [CrossRef]
- Purvis, J.E.; Karhohs, K.W.; Mock, C.; Batchelor, E.; Loewer, A.; Lahav, G. p53 dynamics control cell fate. Science 2012, 336, 1440–1444. [Google Scholar] [CrossRef]
- Lowe, S.W.; Bodis, S.; McClatchey, A.; Remington, L.; Ruley, H.E.; Fisher, D.E.; Housman, D.E.; Jacks, T. p53 status and the efficacy of cancer therapy in vivo. Science 1994, 266, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Esteller, M.; Herman, J.G. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J. Pathol. J. Pathol. Soc. G. B. Irel. 2002, 196, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017, 45, W98–W102. [Google Scholar] [CrossRef]
- Chandrashekar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-Rodriguez, I.; Chakravarthi, B.V.S.K.; Varambally, S. UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia 2017, 19, 649–658. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed]
- Anbarasan, T.; Bourdon, J.C. The emerging landscape of p53 isoforms in physiology, cancer and degenerative diseases. Int. J. Mol. Sci. 2019, 20, 6257. [Google Scholar] [CrossRef] [PubMed]
- Robles, A.I.; Jen, J.; Harris, C.C. Clinical outcomes of TP53 mutations in cancers. Cold Spring Harb. Perspect. Med. 2016, 6, a026294. [Google Scholar] [CrossRef] [PubMed]
- Marei, H.E.; Althani, A.; Afifi, N.; Hasan, A.; Caceci, T.; Pozzoli, G.; Morrione, A.; Giordano, A.; Cenciarelli, C. p53 signaling in cancer progression and therapy. Cancer Cell Int. 2021, 21, 703. [Google Scholar] [CrossRef] [PubMed]
- Parikh, N.; Hilsenbeck, S.; Creighton, C.J.; Dayaram, T.; Shuck, R.; Shinbrot, E.; Xi, L.; Gibbs, R.A.; Wheeler, D.A.; Donehower, L.A. Effects of TP53 mutational status on gene expression patterns across 10 human cancer types. J. Pathol. 2014, 232, 522–533. [Google Scholar] [CrossRef] [PubMed]
- Weisenberger, D.J. Characterizing DNA methylation alterations from the cancer genome atlas. J. Clin. Investig. 2014, 124, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Whibley, C.; Pharoah, P.D.P.; Hollstein, M. p53 polymorphisms: Cancer implications. Nat. Rev. Cancer 2009, 9, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Donehower, L.A.; Soussi, T.; Korkut, A.; Liu, Y.; Schultz, A.; Cardenas, M.; Li, X.; Babur, O.; Hsu, T.; Lichtarge, O.; et al. Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. Cell Rep. 2019, 28, 1370–1384. [Google Scholar] [CrossRef] [PubMed]
- Kandioler-Eckersberger, D.; Ludwig, C.; Rudas, M.; Kappel, S.; Janschek, E.; Wenzel, C.; Schlagbauer-Wadl, H.; Mittlböck, M.; Gnant, M.; Steger, G.; et al. TP53 mutation and p53 overexpression for prediction of response to neoadjuvant treatment in breast cancer patients. Clin. Cancer Res. 2000, 6, 50–56. [Google Scholar]
- Fridman, J.S.; Lowe, S.W. Control of apoptosis by p53. Oncogene 2003, 22, 9030–9040. [Google Scholar] [CrossRef]
- Meek, D.W. Regulation of the p53 response and its relationship to cancer. Biochem. J. 2015, 469, 325–346. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Park, S.; Kim, J.; Kim, J.H.; Kim, S.Y.; Cho, S.; Park, S.G.; Park, B.C.; Kim, S.; Kim, J.H. The Tumor Suppressor, p53, Negatively Regulates Non-Canonical NF-B Signaling through miRNA-Induced Silencing of NF-B–Inducing Kinase. Mol. Cells 2020, 43, 23–33. [Google Scholar] [PubMed]
- Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni, I.; et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016, 44, e71. [Google Scholar] [CrossRef] [PubMed]
Tumor Type | Histological Subtypes | Molecular Subtypes | Tumor Grade | Other Patient Conditions |
---|---|---|---|---|
ine BRCA | N vs. IDC | |||
N vs. Luminal | ||||
N vs. Post-Menopause | ||||
N vs. Mucinous | ||||
Pre-Menopause vs. Peri-Menopause | ||||
N vs. Medullary | ||||
Pre-Menopause vs. Post-Menopause | ||||
IDC vs. ILC | ||||
IDC vs. Mucinous | ||||
IDC vs. Medullary | ||||
ILC vs. Medullary | ||||
Mixed vs. Mucinous | ||||
Other vs. Mucinous | ||||
ine OV | Grade 2 vs. Grade 3 | |||
ine TGCT | Seminoma vs. Non Seminoma | |||
ine KIRC | N vs. ccA subtype | |||
N vs. Grade 1 | ||||
N vs. ccB subtype | N vs. Grade 2 | |||
N vs. Grade 3 | ||||
N vs. Grade 4 | ||||
Grade 2 vs. Grade 4 | ||||
Grade 3 vs. Grade 4 | ||||
ine KIRP | N vs. Type1 PRCC | |||
N vs. Type2 PRCC | ||||
N vs. Other | ||||
N vs. Unclassified PRCC | ||||
Type1 PRCC vs. Type2 PRCC | ||||
Type1 PRCC vs. KIRP CIMP | ||||
Type2 PRCC vs. KIRP CIMP | ||||
Type2 PRCC vs. Unclassified PRCC | ||||
KIRP CIMP vs. Unclassified PRCC | ||||
ine PRAD | N vs. ERG fusion | |||
N vs. Gleason score 6 | ||||
N vs. Gleason score 7 | ||||
N vs. Gleason score 8 | ||||
Gleason score 7 vs. Gleason score 9 | ||||
ine BLCA | N vs. Neuronal | |||
N vs. NonPapillary tumors | ||||
N vs. Basal squamous | ||||
N vs. Mixed | < | |||
N vs. TNBC | < | |||
N vs. Post-Menopause | < | |||
N vs. Luminal | ||||
N vs. Luminal_Papillary | ||||
ine COAD | N vs. Adenocarcinoma | |||
N vs. Mucinous Adenocarcinoma | ||||
ine ESCA | N vs. Adenocarcinoma | |||
N vs. Grade 1 | ||||
N vs. Grade 2 | ||||
N vs. Grade 3 | ||||
N vs. Grade 4 | ||||
Grade 1 vs. Grade 3 | ||||
Grade 4 vs. Grade 5 | ||||
ine HNSC | N vs. Grade 1 | |||
Normal vs. HPV+ve | ||||
N vs. Grade 2 | ||||
N vs. Grade 3 | ||||
N vs. Grade 4 | ||||
Grade 1 vs. Grade 3 | ||||
Grade 4 vs. Grade 5 | ||||
ine LIHC | Grade 1 vs. Grade 3 | |||
Grade 2 vs. Grade 3 | ||||
ine READ | N vs. Adenocarcinoma | |||
N vs. Mucinous-adenocarcinoma | ||||
ine PAAD | N vs. Non Drinker | |||
N vs. Daily Drinker | ||||
N vs. Occasional Drinker | ||||
N vs. Social Drinker | ||||
ine LGG | Astrocytoma vs. Oligoastrocytoma | (p-value = 0.191464) | Grade 2 vs. Grade 3 | |
Astrocytoma vs. Oligodendroglioma | (p-value = 0.8841) | |||
Oligoastrocytoma vs. Oligodendroglioma | (p-value = 0.20204) | |||
ine STAD | N vs. Adenocarcinoma(NOS) | < | ||
N vs. Grade 1 | ||||
N vs. Tumors (with H.pylori infection) | ||||
N vs. Adenocarcinoma(Diffuse) | ||||
N vs. Grade 2 | < | |||
N vs. Tumors (without H.pylori infection) | < | |||
N vs. IntestinalAdenocarcinoma(NOS) | ||||
N vs. IntestinalAdenocarcinoma(Tubular) | ||||
N vs. IntestinalAdenocarcinoma(Mucinous) | ||||
Normal vs. IntestinalAdenocarcinoma(Papillary) | ||||
Grade 1 vs. Grade 3 | 0 | |||
ine LUAD | N vs. NOS | < | ||
Normal vs. Mixed | ||||
N vs. ClearCell | ||||
N vs. LBC-NonMucinous | ||||
N vs. Papillary | ||||
N vs. Mucinous | ||||
N vs. Acinar | ||||
ine LUSC | N vs. NOS | < | ||
Normal vs. Basaloid | ||||
ine UCEC | N vs. Endometrioid | |||
N vs. Pre-Menopause | ||||
N vs. Peri-Menopause | ||||
N vs. Post-Menopause | ||||
Endometrioid vs. Mixed serious | ||||
ine THYM | Type A vs. Type AB | |||
Type A vs. Type B1 | ||||
Type A vs. Type B2 | ||||
Type A vs. Type B2|B3 | ||||
Type A vs. Other | ||||
ine UCS | N vs. Serous-like endometrial carcinoma | |||
N vs. Endometrioid | ||||
N vs. Carcinosarcoma | ||||
N vs. Serous-like ovarian carcinoma | ||||
Serous-like endometrial carcinoma vs. Endometrioid | ||||
Serous-like endometrial carcinoma vs. Serous-like ovarian carcinoma |
Cancer Type | Unique Genes |
---|---|
BRCA | BRCA1, PALB2, ELAC2, EZH2, FOXM1, AURKA, AURKB, BUB1B |
COAD | BRCA1, PALB2, ELAC2, EZH2, FOXM1, AURKA, AURKB, BUB1B |
KICH | ELAC2, BUB3, CHEK2 |
KIRC | ELAC2, EZH2 |
KIRP | EZH2, BRCA1, ATM, AURKB, BUB3 |
LIHC | BUB1, ELAC2, PLK1, AURKB |
LUSC | ELAC2 |
DLBC | BRCA1, PALB2, ELAC2, EZH2, FOXM1, AURKA, AURKB, BUB1B |
MESO | FOXM1, BRCA1, MYBL2, TTK, AURKB |
PAAD | BUB1, BRCA1, CHEK2, E2F1, EZH2, MYBL2, TTK, AURKA, AURKB |
PCPG | ELAC2 |
PRAD | ELAC2 |
READ | ELAC2, AURKB |
TGCT | AURKB |
THCA | BRCA1, BUB1B, EZH2, PALB2 |
THYM | BRCA1, PALB2, AURKA |
UCEC | ATR, BRCA1, BRCA2, ELAC1, ELAC2 |
Type of Cancer | Comparison | Statistical Significance |
---|---|---|
ine BLCA | Normal vs. TP53-Mutant | |
Normal vs. TP53-NonMutant | ||
TP53-Mutant vs. TP53-NonMutant | ||
ine BRCA | Normal vs. TP53-Mutant | |
Normal vs. TP53-NonMutant | ||
TP53-Mutant vs. TP53-NonMutant | ||
ine COAD | Normal vs. TP53-Mutant | |
Normal vs. TP53-NonMutant | ||
TP53-Mutant vs. TP53-NonMutant | ||
ine ACC | TP53-Mutant vs. TP53-NonMutant | |
ine LGG | TP53-Mutant vs. TP53-NonMutant | |
ine BRCA based on MYC | MYC-amplification(+) vs. MYC-amplification(−) | |
BRCA based on CCND1 | CCND1-amplification(+) vs. CCND1-amplification(−) | |
BRCA based on ERBB2 | ERBB2-amplification(+) vs. ERBB2-amplification(−) | |
ine COAD | Normal vs. TP53-Mutant | |
Normal vs. TP53-NonMutant | ||
TP53-Mutant vs. TP53-NonMutant | ||
ine ESCA | Normal vs. TP53-Mutant | |
Normal vs. TP53-NonMutant | ||
TP53-Mutant vs. TP53-NonMutant | ||
ine GBM | Normal vs. TP53-Mutant | |
Normal vs. TP53-NonMutant | < | |
TP53-Mutant vs. TP53-NonMutant | ||
ine HNSC | Normal vs. TP53-Mutant | |
Normal vs. TP53-NonMutant | ||
TP53-Mutant vs. TP53-NonMutant | ||
KICH | Normal vs. TP53 Mutant | |
Normal vs. TP53 Non-Mutant | ||
TP53 Mutant vs. TP53 Non-Mutant | ||
ine LIHC | Normal vs. TP53 Mutant | |
Normal vs. TP53 Non-Mutant | < | |
TP53 Mutant vs. TP53 Non-Mutant | ||
ine LUAD | Normal vs. TP53 Mutant | |
Normal vs. TP53 Non-Mutant | ||
TP53 Mutant vs. TP53 Non-Mutant | ||
LUSC | Normal vs. TP53 Mutant | < |
Normal vs. TP53 Non-Mutant | ||
TP53 Mutant vs TP53 Non-Mutant | ||
ine DLBC | TP53 Mutant vs. TP53 Non-Mutant | |
ine MESO | TP53 Mutant vs. TP53 Non-Mutant | |
ine OV | TP53 Mutant vs. TP53 Non-Mutant | |
PAAD | Normal vs. TP53 Mutant | |
Normal vs. TP53 Non-Mutant | ||
TP53 Mutant vs. TP53 Non-Mutant | ||
ine PRAD | Normal vs. TP53 Mutant | |
Normal vs. TP53 Non-Mutant | ||
TP53 Mutant vs. TP53 Non-Mutant | ||
ine READ | Normal vs. TP53 Mutant | |
Normal vs. TP53 Non-Mutant | ||
TP53 Mutant vs. TP53 Non-Mutant | ||
ine SARC | Normal vs. TP53 Mutant | |
Normal vs. TP53 Non-Mutant | ||
TP53 Mutant vs. TP53 Non-Mutant | ||
ine SKCM | Normal vs. TP53 Mutant | N/A |
Normal vs. TP53 Non-Mutant | N/A | |
TP53 Mutant vs. TP53 Non-Mutant | ||
ine STAD | Normal vs. TP53 Mutant | |
Normal vs. TP53 Non-Mutant | < | |
TP53 Mutant vs. TP53 Non-Mutant | ||
ine UCS | TP53 Mutant vs. TP53 Non-Mutant | |
ine UCES | Normal vs. TP53 Mutant | |
Normal vs. TP53 Non-Mutant | ||
TP53 Mutant vs. TP53 Non-Mutant |
KEGG Number | Cellular Process | Protein |
---|---|---|
ine hsa04115 | p53 signaling pathway | p53 apoptosis effector related to PMP22 (PERP) |
ine hsa01522 | Endocrine resistance | cytochrome P450 family 2 subfamily D member 6 |
ine hsa01524 | Platinum drug resistance | ERCC1 MLH1 MSH2 GSTP1 |
hsa:9537 | Not assigned | Tumor protein p53 inducible protein 11 (TP53I11, PIG11) |
ine hsa:94241 | Not Included in Pathway or Brite | Tumor protein p53 inducible nuclear protein 1 (TP53INP1, SIP, TP53DINP1, TP53INP1A, TP53INP1B, Teap, p53DINP1) |
ine hsa04010 | MAPK signaling pathway | MAPK signaling |
ine hsa04014 | Ras signaling pathway, Ras signaling | RAS, RTK, GRB2, SOS, RAS |
RAF, MEK, ERK | ||
hsa04110 | Cell cycle | BUB1B, BUBR1, MAD3L, BUB3, BUB3L, hBUB3, BUB1B, BUB1beta, BUBR1, Bub1A, MAD3L, MVA1, SSK1, hBUBR1 |
ine hsa04115 | p53 signaling pathway | Serine/threonine kinases: AGC group Serine/threonine kinases: CAMK group Serine/threonine kinases: CK1 group Serine/threonine kinases: CMGC group Serine/threonine kinases: STE group Serine/threonine kinases: TKL group Serine/threonine kinases: Other Receptor serine/threonine kinases (RSTK): TKL group Receptor tyrosine kinases (RTK) Non-receptor tyrosine kinases Histidine kinases |
ine hsa04151 | PI3K-Akt signaling pathway GF-EGFR-PI3K signaling pathway | EGF; epidermal growth factor |
ine | EGFR; epidermal growth factor receptor | |
PIK3CA; phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha | ||
PIK3CB; phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta | ||
PIK3CD; phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta | ||
AKT1; AKT serine/threonine kinase 1 | ||
AKT2; AKT serine/threonine kinase 2 | ||
AKT3; AKT serine/threonine kinase 3 | ||
BAD; BCL2 associated agonist of cell death | ||
hsa04210 | Apoptosis Extrinsic apoptotic pathway | TNF; tumor necrosis factor |
TNFRSF1A; TNF receptor superfamily member 1A | ||
RIPK1; receptor interacting serine/threonine kinase 1 | ||
TRADD; TNFRSF1A associated via death domain | ||
TRAF2; TNF receptor associated factor 2 | ||
TRAF5; TNF receptor associated factor 5 | ||
FADD; Fas associated via death domain | ||
CASP8; caspase 8 | ||
CASP3; caspase 3 | ||
CASP7; caspase 7 | ||
ine hsa05200 | Pathways in cancer EGF-EGFR-RAS-ERK signaling pathway | EGF; epidermal growth factor |
EGFR; epidermal growth factor receptor | ||
GRB2; growth factor receptor bound protein 2 | ||
SOS1; SOS Ras/Rac guanine nucleotide exchange factor 1 | ||
SOS2; SOS Ras/Rho guanine nucleotide exchange factor 2 | ||
HRAS; HRas proto-oncogene, GTPase | ||
KRAS; KRAS proto-oncogene, GTPase | ||
NRAS; NRAS proto-oncogene, GTPase | ||
ARAF; A-Raf proto-oncogene, serine/threonine kinase | ||
BRAF; B-Raf proto-oncogene, serine/threonine kinase | ||
RAF1; Raf-1 proto-oncogene, serine/threonine kinase | ||
MAP2K1; mitogen-activated protein kinase kinase 1 | ||
MAP2K2; mitogen-activated protein kinase kinase 2 | ||
MAPK1; mitogen-activated protein kinase 1 | ||
MAPK3; mitogen-activated protein kinase 3 | ||
CCND1; cyclin D1 | ||
ine hsa04216 | Ferroptosis Glutathione biosynthesis | Cys+Glu – (GCLC+GCLM) » GSS -> GSH – GPX -> GSSG |
ine hsa04218 | Cellular senescence | TGF, TGFBR, SMAD, CDK, CCND, RB, E2F, PIK3CA, FOX, MHC, Ras, AKT, TSC, mTOR, PTEN, SIRT, HLA, KIR, MYB, RB, MYC, MYC, MDM2, TP53, TrCP, HIPK |
ine | PP1,RAF MAP2K1, ETS1 GADD45A, GADD45, CDK1, MRE11, ATM, RAD9A, RAD1 | |
ATR, CDC25A SQSTM1, GATA4 TRAF3IP2, NFKB1 IL1A IGFBP3 | ||
ine hsa04120 | Ubiquitin mediated proteolysis | BRCA1, CDC20, UBE2C, UBE2S |
ine hsa04068 | FoxO signaling pathway | ATM, CCNB1, CCNB2, CDKN1B, PLK1, PLK4 |
ine hsa03030 | DNA replication | FEN1, RNASEH2A |
ine hsa03440 | Homologous recombination | ATM, BRCA1, BRCA2, RAD54L |
ine hsa01522 | Endocrine resistance | E2F1, TP53 |
ine hsa03460 | Fanconi anemia pathway | ATR, BRCA1, BRCA2, UBE2T |
ine hsa05200 | Pathways in cancer | BRCA2, CKS2, E2F1, TP53 |
ine hsa04151 | PI3K-Akt signaling pathway | BRCA1, TP53 |
ine hsa05202 | Transcriptional misregulation in cancer | ATM, TP53 |
ine hsa03410 | Base excision repair | FEN1 |
ine hsa05222 | Small cell lung cancer | CKS2, E2F1, TP53 |
ine hsa05215 | Prostate cancer | E2F1, TP53 |
ine hsa05226 | Gastric cancer | E2F1, TP53 |
ine hsa05220 | Chronic myeloid leukemia | E2F1, TP53 |
ine hsa05219 | Bladder cancer | E2F1, TP53 |
ine hsa05214 | Glioma | E2F1, TP53 |
ine hsa05218 | Melanoma | E2F1, TP53 |
ine hsa05212 | Pancreatic cancer | BRCA2, E2F1, TP53 |
ine hsa05224 | Breast cancer | BRCA1, BRCA2, E2F1, TP53 |
ine hsa05223 | Non-small cell lung cancer | E2F1, TP53 |
ine hsa04151 hsa04919 | Ovarian Cancer | BRCA1 BRCA2 MSH2 MLH1 ERBB2 K-ras AKT2 PIK3CA c-MYC p53 CTNNB1 PRKN OPCML AKT1 CDH1// |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, R.; Pari, B.; Puszynski, K. Comprehensive Bioinformatic Investigation of TP53 Dysregulation in Diverse Cancer Landscapes. Genes 2024, 15, 577. https://doi.org/10.3390/genes15050577
Khan R, Pari B, Puszynski K. Comprehensive Bioinformatic Investigation of TP53 Dysregulation in Diverse Cancer Landscapes. Genes. 2024; 15(5):577. https://doi.org/10.3390/genes15050577
Chicago/Turabian StyleKhan, Ruby, Bakht Pari, and Krzysztof Puszynski. 2024. "Comprehensive Bioinformatic Investigation of TP53 Dysregulation in Diverse Cancer Landscapes" Genes 15, no. 5: 577. https://doi.org/10.3390/genes15050577
APA StyleKhan, R., Pari, B., & Puszynski, K. (2024). Comprehensive Bioinformatic Investigation of TP53 Dysregulation in Diverse Cancer Landscapes. Genes, 15(5), 577. https://doi.org/10.3390/genes15050577