Genetic Screening Revealed the Negative Regulation of miR-310~313 Cluster Members on Imd Pathway during Gram-Negative Bacterial Infection in Drosophila
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fly Stocks and Genetics
2.2. Infection and Genetic Screening
2.3. Survival Experiments
2.4. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
2.5. Bioinformatics Analysis
2.6. Luciferase Reporter Expression Assays
2.7. Statistical Analysis
3. Results
3.1. Genetic Screening of miRNAs Regulating Drosophila Imd Pathway
3.2. The Expression of miR-310~313 Cluster Members Was Upregulated in Response to Gram-Negative Bacterial Infection
3.3. miR-310~313 Cluster Members Negatively Regulated Imd Pathway and Survival of Drosophila Infected with Gram-Negative Bacteria
3.4. miR-310~313 Cluster Members Co-Targeted Imd Gene of Imd Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Troha, K.; Buchon, N. Methods for the study of innate immunity in Drosophila melanogaster. Wiley Interdiscip. Rev. Dev. Biol. 2019, 8, e344. [Google Scholar] [CrossRef]
- Khush, R.S.; Leulier, F.; Lemaitre, B. Drosophila immunity: Two paths to NF-kappaB. Trends Immunol. 2001, 22, 260–264. [Google Scholar] [CrossRef]
- Valanne, S.; Wang, J.H.; Rämet, M. The Drosophila Toll signaling pathway. J. Immunol. 2011, 186, 649–656. [Google Scholar] [CrossRef]
- Gottar, M.; Gobert, V.; Michel, T.; Belvin, M.; Duyk, G.; Hoffmann, J.A.; Ferrandon, D.; Royet, J. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 2002, 416, 640–644. [Google Scholar] [CrossRef]
- Kleino, A.; Valanne, S.; Ulvila, J.; Kallio, J.; Myllymäki, H.; Enwald, H.; Stöven, S.; Poidevin, M.; Ueda, R.; Hultmark, D.; et al. Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway. EMBO J. 2005, 24, 3423–3434. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, L.P.; Anderson, K.V. The antibacterial arm of the Drosophila innate immune response requires an IkappaB kinase. Genes Dev. 2001, 15, 104–110. [Google Scholar] [CrossRef]
- Stöven, S.; Silverman, N.; Junell, A.; Hedengren-Olcott, M.; Erturk, D.; Engström, Y.; Maniatis, T.; Hultmark, D. Caspase-mediated processing of the Drosophila NF-kappaB factor Relish. Proc. Natl. Acad. Sci. USA 2003, 100, 5991–5996. [Google Scholar] [CrossRef]
- Erturk-Hasdemir, D.; Broemer, M.; Leulier, F.; Lane, W.S.; Paquette, N.; Hwang, D.; Kim, C.H.; Stöven, S.; Meier, P.; Silverman, N. Two roles for the Drosophila IKK complex in the activation of Relish and the induction of antimicrobial peptide genes. Proc. Natl. Acad. Sci. USA 2009, 106, 9779–9784. [Google Scholar] [CrossRef]
- Hoffmann, J.A.; Kafatos, F.C.; Janeway, C.A.; Ezekowitz, R.A. Phylogenetic perspectives in innate immunity. Science 1999, 284, 1313–1318. [Google Scholar] [CrossRef]
- Myllymäki, H.; Valanne, S.; Rämet, M. The Drosophila imd signaling pathway. J. Immunol. 2014, 192, 3455–3462. [Google Scholar] [CrossRef]
- Garschall, K.; Flatt, T. The interplay between immunity and aging in Drosophila. F1000Research 2018, 7, 160. [Google Scholar] [CrossRef]
- Martin, M.; Hiroyasu, A.; Guzman, R.M.; Roberts, S.A.; Goodman, A.G. Analysis of Drosophila STING reveals an evolutionarily conserved antimicrobial function. Cell Rep. 2018, 23, 3537–3550. [Google Scholar] [CrossRef]
- Leulier, F.; Lhocine, N.; Lemaitre, B.; Meier, P. The Drosophila inhibitor of apoptosis protein DIAP2 functions in innate immunity and is essential to resist gram-negative bacterial infection. Mol. Cell Biol. 2006, 26, 7821–7831. [Google Scholar] [CrossRef]
- Cammarata-Mouchtouris, A.; Acker, A.; Goto, A.; Chen, D.; Matt, N.; Leclerc, V. Dynamic regulation of NF-κB response in innate immunity: The case of the IMD pathway in Drosophila. Biomedicines 2022, 10, 2304. [Google Scholar] [CrossRef]
- Xiong, X.P.; Kurthkoti, K.; Chang, K.Y.; Li, J.L.; Ren, X.; Ni, J.Q.; Rana, T.M.; Zhou, R. miR-34 modulates innate immunity and ecdysone signaling in Drosophila. PLoS Pathog. 2016, 12, e1006034. [Google Scholar] [CrossRef]
- Choi, I.K.; Hyun, S. Conserved microRNA miR-8 in fat body regulates innate immune homeostasis in Drosophila. Dev. Comp. Immunol. 2012, 37, 50–54. [Google Scholar] [CrossRef]
- Garbuzov, A.; Tatar, M. Hormonal regulation of Drosophila microRNA let-7 and miR-125 that target innate immunity. Fly 2010, 4, 306–311. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, S.; Liu, L.; Liu, X.; Lan, S.; Jiang, J.; Yang, W.; Jin, P.; Xia, X.; Ma, F. Drosophila Relish-mediated miR-317 expression facilitates immune homeostasis restoration via inhibiting PGRP-LC. Eur. J. Immunol. 2022, 52, 1934–1945. [Google Scholar] [CrossRef]
- Li, R.; Zhou, H.; Jia, C.; Jin, P.; Ma, F. Drosophila Myc restores immune homeostasis of Imd pathway via activating miR-277 to inhibit imd/Tab2. PLoS Genet. 2020, 16, e1008989. [Google Scholar] [CrossRef]
- Li, S.; Shen, L.; Sun, L.; Xu, J.; Jin, P.; Chen, L.; Ma, F. Small RNA-Seq analysis reveals microRNA-regulation of the Imd pathway during Escherichia coli infection in Drosophila. Dev. Comp. Immunol. 2017, 70, 80–87. [Google Scholar] [CrossRef]
- Pancratov, R.; Peng, F.; Smibert, P.; Yang, S.J.; Olson, E.R.; Guha-Gilford, C.; Kapoor, A.J.; Liang, F.X.; Lai, E.C.; Flaherty, M.S.; et al. The miR-310/13 cluster antagonizes β-catenin function in the regulation of germ and somatic cell differentiation in the Drosophila testis. Development 2013, 140, 2904–2916. [Google Scholar] [CrossRef]
- Yatsenko, A.S.; Marrone, A.K.; Shcherbata, H.R. miRNA-based buffering of the cobblestone-lissencephaly-associated extracellular matrix receptor dystroglycan via its alternative 3′-UTR. Nat. Commun. 2014, 5, 4906. [Google Scholar] [CrossRef]
- Kaschula, R.; Pinho, S.; Alonso, C.R. MicroRNA-dependent regulation of HOX gene expression sculpts fine-grain morphological patterns in a Drosophila appendage. Development 2018, 145, dev161133. [Google Scholar] [CrossRef]
- Seong, K.M.; Coates, B.S.; Pittendrigh, B.R. Post-transcriptional modulation of cytochrome P450s, Cyp6g1 and Cyp6g2, by miR-310s cluster is associated with DDT-resistant Drosophila melanogaster strain 91-R. Sci. Rep. 2020, 10, 14394. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Li, R.; Xu, J.; Jin, P.; Chen, L.; Ma, F. Genome-wide miRNA screening reveals miR-310 family members negatively regulate the immune response in Drosophila melanogaster via co-targeting Drosomycin. Dev. Comp. Immunol. 2017, 68, 34–45. [Google Scholar] [CrossRef]
- Blau, J.; Young, M.W. Cycling vrille expression is required for a functional Drosophila clock. Cell 1999, 99, 661–671. [Google Scholar] [CrossRef]
- Neyen, C.; Bretscher, A.J.; Binggeli, O.; Lemaitre, B. Methods to study Drosophila immunity. Methods 2014, 68, 116–128. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Agarwal, V.; Subtelny, A.O.; Thiru, P.; Ulitsky, I.; Bartel, D.P. Predicting microRNA targeting efficacy in Drosophila. Genome Biol. 2018, 19, 152. [Google Scholar] [CrossRef]
- Ruby, J.G.; Stark, A.; Johnston, M.; Kellis, D.; Bartel, P.; Lai, E.C. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 2007, 17, 1850–1864. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Sathyanarayanan, A.; Chandrasekaran, K.S.; Karunagaran, D. microRNA-146a inhibits proliferation, migration and invasion of human cervical and colorectal cancer cells. Biochem. Biophys. Res. Commun. 2016, 480, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.J.; Hyun, S. Multiple targets of the microRNA miR-8 contribute to immune homeostasis in Drosophila. Dev. Comp. Immunol. 2014, 45, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yao, X.; Zhou, H.; Jin, P.; Ma, F. The Drosophila miR-959-962 cluster members repress Toll signaling to regulate antibacterial defense during bacterial infection. Int. J. Mol. Sci. 2021, 22, 886. [Google Scholar] [CrossRef]
- Lu, J.; Fu, Y.; Kumar, S.; Shen, Y.; Zeng, K.; Xu, A.; Carthew, R.; Wu, C.I. Adaptive evolution of newly emerged micro-RNA genes in Drosophila. Mol. Biol. Evol. 2008, 25, 929–938. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Sun, Y.; Li, R.; Zhou, H.; Li, S.; Jin, P. Genetic Screening Revealed the Negative Regulation of miR-310~313 Cluster Members on Imd Pathway during Gram-Negative Bacterial Infection in Drosophila. Genes 2024, 15, 601. https://doi.org/10.3390/genes15050601
Li Y, Sun Y, Li R, Zhou H, Li S, Jin P. Genetic Screening Revealed the Negative Regulation of miR-310~313 Cluster Members on Imd Pathway during Gram-Negative Bacterial Infection in Drosophila. Genes. 2024; 15(5):601. https://doi.org/10.3390/genes15050601
Chicago/Turabian StyleLi, Yao, Yixuan Sun, Ruimin Li, Hongjian Zhou, Shengjie Li, and Ping Jin. 2024. "Genetic Screening Revealed the Negative Regulation of miR-310~313 Cluster Members on Imd Pathway during Gram-Negative Bacterial Infection in Drosophila" Genes 15, no. 5: 601. https://doi.org/10.3390/genes15050601
APA StyleLi, Y., Sun, Y., Li, R., Zhou, H., Li, S., & Jin, P. (2024). Genetic Screening Revealed the Negative Regulation of miR-310~313 Cluster Members on Imd Pathway during Gram-Negative Bacterial Infection in Drosophila. Genes, 15(5), 601. https://doi.org/10.3390/genes15050601