Inheritance of Resistance to Chickpea Fusarium Wilt Disease (Fusarium oxysporum f. sp. ciceris Race 2) in a Wide-Cross Cicer arietinum × Cicer reticulatum Mapping Family
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Pathogen Materials
2.2. Greenhouse Experiment
2.3. Phenotypic Data Analysis
2.4. Genotyping and Quantitative Trait Locus (QTL) Analysis
2.5. Candidate Gene Identification
3. Results
3.1. Disease Phenotypes
3.2. Disease QTLs
3.3. Candidate Disease Resistance Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ladizinsky, G.; Adler, A. The origin of chickpea Cicer arietinum L. Euphytica 1976, 25, 211–217. [Google Scholar] [CrossRef]
- Merga, B.; Haji, J. Economic importance of chickpea: Production, value, and world trade. Cogent Food Agric. 2019, 5, 1615718. [Google Scholar] [CrossRef]
- Thavarajah, D.; Thavarajah, P. Evaluation of chickpea (Cicer arietinum L.) micronutrient composition: Biofortification opportunities to combat global micronutrient malnutrition. Food Res. Int. 2012, 49, 99–104. [Google Scholar] [CrossRef]
- Kaur, K.; Grewal, S.K.; Gill, P.S.; Singh, S. Comparison of cultivated and wild chickpea genotypes for nutritional quality and antioxidant potential. J. Food Sci. Technol. 2019, 56, 1864. [Google Scholar] [CrossRef] [PubMed]
- Sahu, V.K.; Tiwari, S.; Gupta, N.; Tripathi, M.K.; Yasin, M. Evaluation of physiological and biochemical contents in desi and Kabuli chickpea. Legume Res. 2020, 45, 1197–1208. [Google Scholar] [CrossRef]
- Begum, N.; Khan, Q.U.; Liu, L.G.; Li, W.; Liu, D.; Haq, I.U. Nutritional composition, health benefits and bio-active compounds of chickpea (Cicer arietinum L.). Front. Nutr. 2023, 10, 1218468. [Google Scholar] [CrossRef] [PubMed]
- Malunga, L.N.; Bar-El, S.D.; Zinal, E.; Berkovich, Z.; Abbo, S.; Reifen, R. The potential use of chickpeas in development of infant follow-on formula. Nutr. J. 2014, 13, 8. [Google Scholar] [CrossRef]
- Navas-Cortés, J.A.; Hau, B.; Jiménez-Díaz, R.M. Yield loss in chickpeas in relation to development of Fusarium wilt epidemics. Phytopathology 2000, 90, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Sunkad, G.; Deepa, H.; Shruthi, T.H.; Singh, D. Chickpea wilt: Status, diagnostics and management. Ind. Phytopath. 2019, 72, 619–627. [Google Scholar] [CrossRef]
- Kumar, S. Inheritance of resistance to Fusarium wilt (race 2) in chickpea. Plant Breed. 1998, 117, 139–142. [Google Scholar] [CrossRef]
- Jendoubi, W.; Bouhadida, M.; Boukteb, A.; Béji, M.; Kharrat, M. Fusarium wilt affecting chickpea crop. Agriculture 2017, 7, 23. [Google Scholar] [CrossRef]
- Yadav, R.K.; Tripathi, M.K.; Tiwari, S.; Tripathi, N.; Asati, R.; Patel, V.; Sikarwar, R.S.; Payasi, D.K. Breeding and genomic approaches towards development of fusarium wilt resistance in chickpea. Life 2023, 13, 988. [Google Scholar] [CrossRef]
- Jiménez-Díaz, R.M.; Castillo, P.; del Mar Jiménez-Gasco, M.; Landa, B.B.; Navas-Cortés, J.A. Fusarium wilt of chickpeas: Biology, ecology and management. Crop Protect. 2015, 73, 16–27. [Google Scholar] [CrossRef]
- Sharma, K.D.; Muehlbauer, F.J. Fusarium wilt of chickpea: Physiological specialization, genetics of resistance and resistance gene tagging. Euphytica 2007, 157, 1–14. [Google Scholar] [CrossRef]
- Landa, B.B.; Navas-Cortes, J.A.; Jimenez-Diaz, R.M. Integrated management of Fusarium wilt of chickpea with sowing date, host resistance, and biological control. Phytopathology 2004, 94, 946–960. [Google Scholar] [CrossRef] [PubMed]
- Hotkar, S.; Jayalakshmi, S.K.; Suhas, P.D. Screening for resistant sources in chickpea entries against Fusarium wilt. J. Pharmacog. Phytochem. 2018, 7, 663–665. [Google Scholar]
- Naveed, M.; Shafiq, M.; Chaudhry, M.R.; Zahid, M.A. Genetic diversity in new chickpea accessions for fusarium wilt resistance, canopy temperature and yield components under drought milieus. Aust. J. Crop Sci. 2015, 9, 538–544. [Google Scholar]
- Gumber, R.K.; Kumar, J.; Haware, M.P. Inheritance of resistance to Fusarium wilt in chickpea. Plant Breed. 1995, 114, 277–279. [Google Scholar] [CrossRef]
- Sharma, K.D.; Chen, W.; Muehlbauer, F.J. Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Dis. 2005, 89, 385–390. [Google Scholar] [CrossRef]
- Millan, T.; Clarke, H.J.; Siddique, K.H.; Buhariwalla, H.K.; Gaur, P.M.; Kumar, J.; Gil, J.; Kahl, G.; Winter, P. Chickpea molecular breeding: New tools and concepts. Euphytica 2006, 147, 81–103. [Google Scholar] [CrossRef]
- Ratnaparkhe, M.B.; Santra, D.K.; Tullu, A.; Muehlbauer, F.J. Inheritance of inter-simple-sequence-repeat polymorphisms and linkage with a Fusarium wilt resistance gene in chickpea. Theor. Appl. Genet. 1998, 96, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Cobos, M.J.; Fernández, M.J.; Rubio, J.; Kharrat, M.; Moreno, M.T.; Gil, J.; Millán, T. A linkage map of chickpea (Cicer arietinum L.) based on populations from Kabuli × Desi crosses: Location of genes for resistance to Fusarium wilt race 0. Theor. Appl. Genet. 2005, 110, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Gowda, S.J.M.; Radhika, P.; Kadoo, N.Y.; Mhase, L.B.; Gupta, V.S. Molecular mapping of wilt resistance genes in chickpea. Mol. Breed. 2009, 24, 177–183. [Google Scholar] [CrossRef]
- Jendoubi, W.; Bouhadida, M.; Millan, T.; Kharrat, M.; Gil, J.; Rubio, J.; Madrid, E. Identification of the target region including the Foc01/foc01 gene and development of near isogenic lines for resistance to Fusarium Wilt race 0 in chickpea. Euphytica 2016, 210, 119–133. [Google Scholar] [CrossRef]
- Caballo, C.; Madrid, E.; Gil, J.; Chen, W.; Rubio, J.; Millan, T. Saturation of genomic region implicated in resistance to Fusarium oxysporum f. sp. ciceris race 5 in chickpea. Mol. Breed. 2019, 39, 16. [Google Scholar] [CrossRef]
- Lakmes, A.; Jhar, A.; Penmetsa, R.V.; Wei, W.; Brennan, A.C.; Kahriman, A. The quantitative genetics of flowering traits in wide crosses of chickpea. Agriculture 2022, 12, 486. [Google Scholar] [CrossRef]
- Von Wettberg, E.J.; Chang, P.L.; Basdemir, F.; Carrasquila-Garcia, N.; Korbu, L.B.; Moenga, S.M.; Bedada, G.; Greenlon, A.; Moriuchi, K.S.; Singh, V.; et al. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nat. Commun. 2018, 9, 649. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.G. Agricultural Field Experiments Design and Analysis; Taylor & Francis: London, UK, 1994. [Google Scholar] [CrossRef]
- Trapero Casas, A.; Jiménez Díaz, R.M. Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology 1985, 75, 1146–1151. [Google Scholar] [CrossRef]
- Campbell, C.L.; Madden, L.V. Temporal analysis of epidemics: Description and comparison of disease progress curves. In Introduction to Plant Disease Epidemiology; Campbell, C.L., Madden, L.V., Eds.; John Wiley & Sons: New York, NY, USA, 1990; pp. 161–202. [Google Scholar] [CrossRef]
- Tekeoglu, M.; Tullu, A.; Kaiser, W.J.; Muehlbauer, F.J. Inheritance and linkage of two genes that confer resistance to Fusarium wilt in chickpea. Crop Sci. 2000, 40, 1247–1251. [Google Scholar] [CrossRef]
- Hossain, S.; Ford, R.; McNeil, D.; Pittock, C.; Panozzo, J.F. Inheritance of seed size in chickpea (Cicer arietinum L.) and identification of QTL based on 100-seed weight and seed size index. Austral. J. Crop Sci. 2010, 4, 126–135. [Google Scholar] [CrossRef]
- Lakmes, A.; Jhar, A.; Brennan, A.C.; Kahriman, A. Inheritance of early and late Ascochyta blight resistance in wide crosses of chickpea. Genes 2023, 14, 316. [Google Scholar] [CrossRef] [PubMed]
- Roorkiwal, M.; Rathore, A.; Das, R.R.; Singh, M.K.; Jain, A.; Srinivasan, S.; Gaur, P.M.; Chellapilla, B.; Tripathi, S.; Li, Y.; et al. Genome-enabled prediction models for yield related traits in chickpea. Front. Plant Sci. 2016, 7, 1666. [Google Scholar] [CrossRef]
- Xia, Y.; Suzuki, H.; Borevitz, J.; Blount, J.; Guo, Z.; Patel, K.; Dixon, R.A.; Lamb, C. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 2004, 23, 980–988. [Google Scholar] [CrossRef]
- Pathak, M.M.; Singh, K.P.; Lal, S.B. Inheritance of resistance to wilt (F. oxysporum sp. ciceri) in gram. Indian J. Farm Sci. 1975, 3, 10–11. [Google Scholar]
- Tullu, A.; Muehlbauer, F.J.; Simon, C.J.; Mayer, M.S.; Kumar, J.; Kaiser, W.J.; Kraft, J.M. Inheritance and linkage of a gene for resistance to race 4 of Fusarium wilt and RAPD markers in chickpea. Euphytica 1998, 102, 227–232. [Google Scholar] [CrossRef]
- Mayer, M.S.; Tullu, A.; Simon, C.J.; Kumar, J.; Kaiser, W.J.; Kraft, J.M.; Muehlbauer, F.J. Development of DNA marker for Fusarium wilt resistance in chickpea. Crop Sci. 1997, 37, 1625–1629. [Google Scholar] [CrossRef]
- Sharma, K.D.; Winter, P.; Kahl, G.; Muehlbauer, F.J. Molecular mapping of Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea. Theor. Appl. Genet. 2004, 108, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, H.D.; Haware, M.P.; Kumar, J.; Smithson, J.B. Resistance to wilt in chickpea. Inheritance of late-wilting in response to race 1. Euphytica 1983, 32, 447–452. [Google Scholar] [CrossRef]
- Castro, P.; Piston, F.; Madrid, E.; Millan, T.; Gil, J.; Rubio, J. Development of chickpea near-isogenic lines for Fusarium wilt. Theor. Appl. Genet. 2010, 121, 1519–1526. [Google Scholar] [CrossRef]
- Halila, I.; Rubio, J.; Millan, T.; Gil, J.; Kharrat, M.; Marrakchi, M. Resistance in chickpea (Cicer arietinum) to Fusarium wilt race 0. Plant Breed. 2010, 129, 563–566. [Google Scholar] [CrossRef]
- Varshney, R.K.; Song, C.; Saxena, R.K.; Azam, S.; Yu, S.; Sharpe, A.G.; Cannon, S.; Baek, J.; Rosen, B.D.; Tar’an, B.; et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotech. 2013, 31, 240–246. [Google Scholar] [CrossRef]
- Xu, Z.-S.; Chen, M.; Li, L.-C.; Ma, Y.-Z. Functions of the ERF transcription factor family in plants. Botany 2008, 86, 969–977. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Zhu, X.; Li, D. An ERF transcription factor enhances plant resistance to Myzus persicae and Spodoptera litura. Biotech. Biotech. Equip. 2020, 34, 946–954. [Google Scholar] [CrossRef]
- Gutterson, N.; Reuber, T.L. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol. 2004, 7, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, L.; Santos, R.B.; Figueiredo, A. Defense and offense strategies: The role of aspartic proteases in plant–pathogen interactions. Biology 2021, 10, 75. [Google Scholar] [CrossRef]
- Alam, M.M.; Nakamura, H.; Ichikawa, H.; Miyao, A.; Hirochika, H.; Kobayashi, K.; Yamaoka, N.; Nishiguchi, M. Response of an aspartic protease gene OsAP77 to fungal, bacterial and viral infections in rice. Rice 2014, 7, 9. [Google Scholar] [CrossRef]
- Guevara, M.G.; Oliva, C.R.; Huarte, M.; Daleo, G.R. An aspartic protease with antimicrobial activity is induced after infection and wounding in intercellular fluids of potato tubers. Eur. J. Plant Pathol. 2002, 108, 131–137. [Google Scholar] [CrossRef]
- Xia, Y.; Ma, Z.; Qiu, M.; Guo, B.; Zhang, Q.; Jiang, H.; Zhang, B.; Lin, Y.; Xuan, M.; Sun, L.; et al. N-glycosylation shields Phytophthora sojae apoplastic effector PsXEG1 from a specific host aspartic protease. Proc. Natl. Acad. Sci. USA 2020, 117, 27685–27693. [Google Scholar] [CrossRef]
- Kankanala, P.; Nandety, R.S.; Mysore, K.S. Genomics of plant disease resistance in legumes. Front. Plant Sci. 2019, 10, 1345. [Google Scholar] [CrossRef]
- Kumar, Y.; Dholakia, B.B.; Panigrahi, P.; Kadoo, N.Y.; Giri, A.P.; Gupta, V.S. Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways. Phytochemistry 2015, 116, 12–129. [Google Scholar] [CrossRef]
- Upasani, M.L.; Limaye, B.M.; Gurjar, G.S.; Kasibhatla, S.M.; Joshi, R.R.; Kadoo, N.Y.; Gupta, V.S. Chickpea-Fusarium oxysporum interaction transcriptome reveals differential modulation of plant defense strategies. Sci. Rep. 2017, 7, 7746. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Sharma, K.; Tiwari, N.; Saxena, G.; Asif, M.H.; Singh, S.; Kumar, M. Comprehensive transcriptome analyses of Fusarium-infected root xylem tissues to decipher genes involved in chickpea wilt resistance. 3 Biotech 2023, 13, 390. [Google Scholar] [CrossRef] [PubMed]
- Gurjar, G.S.; Giri, A.P.; Gupta, V.S. Gene Expression profiling during wilting in chickpea caused by Fusarium oxysporum f. sp. ciceri. Am. J. Plant Sci. 2012, 3, 190–201. [Google Scholar] [CrossRef]
Year | Measure | Susceptible Count | Resistant Count | Inheritance Ratio Tested | Chi-Square Statistic |
---|---|---|---|---|---|
2020 | AUDPC | 39 | 29 | 1:1 | 1.47 |
3:1 | 11.29 | ||||
7:1 | 56.50 | ||||
2020 | Severity | 42 | 30 | 1:1 | 2.00 |
3:1 | 10.67 | ||||
7:1 | 56.00 | ||||
2021 | AUDPC | 18 | 15 | 1:1 | 0.27 |
3:1 | 7.36 | ||||
7:1 | 43.17 | ||||
2021 | Severity | 24 | 15 | 1:1 | 2.08 |
3:1 | 3.77 | ||||
7:1 | 24.03 |
Trait | Disease Score 7 Days | AUDPC | Severity |
---|---|---|---|
Location | 8, 0.26 (0.26–5.05) | 8, 1.26 (0.26–11.63) | 8, 1.26 (0.26–6.03) |
LOD | 3.28 | 3.03 | 3.07 |
PVE | 11.21 | 10.41 | 10.53 |
SNP | Ca1C23895 | Ca1C23895, Ca_TOG898231 | Ca1C23895, Ca_TOG898231 |
Mu | 1.48 | 57.34 | 50.52 |
RR | −0.34 | −9.66 | −8.48 |
RO | 0.79 | 25.52 | 22.63 |
OO | −0.45 | −15.855 | −14.15 |
Add. effect | −0.05 | −3.10 | −2.83 |
Gene Name | Location | Uniprot Homology | InterPro Annotation |
---|---|---|---|
Ca_15055 | Ca8: 1235430 … 1235960 | ERF20_ARATH | IPR001471, Ethylene-responsive transcription factor ERF020 |
Ca_15063 | Ca8: 1169327 … 1169752 | ERF21_ARATH | IPR001471, Ethylene-responsive transcription factor ERF021 |
Ca_15073 | Ca8: 1093219 … 1094244 | CDR1_ARATH | IPR001461, Aspartic proteinase CDR1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakmes, A.; Jhar, A.; Sadanandom, A.; Brennan, A.C.; Kahriman, A. Inheritance of Resistance to Chickpea Fusarium Wilt Disease (Fusarium oxysporum f. sp. ciceris Race 2) in a Wide-Cross Cicer arietinum × Cicer reticulatum Mapping Family. Genes 2024, 15, 819. https://doi.org/10.3390/genes15060819
Lakmes A, Jhar A, Sadanandom A, Brennan AC, Kahriman A. Inheritance of Resistance to Chickpea Fusarium Wilt Disease (Fusarium oxysporum f. sp. ciceris Race 2) in a Wide-Cross Cicer arietinum × Cicer reticulatum Mapping Family. Genes. 2024; 15(6):819. https://doi.org/10.3390/genes15060819
Chicago/Turabian StyleLakmes, Abdulkarim, Abdullah Jhar, Ari Sadanandom, Adrian Christopher Brennan, and Abdullah Kahriman. 2024. "Inheritance of Resistance to Chickpea Fusarium Wilt Disease (Fusarium oxysporum f. sp. ciceris Race 2) in a Wide-Cross Cicer arietinum × Cicer reticulatum Mapping Family" Genes 15, no. 6: 819. https://doi.org/10.3390/genes15060819
APA StyleLakmes, A., Jhar, A., Sadanandom, A., Brennan, A. C., & Kahriman, A. (2024). Inheritance of Resistance to Chickpea Fusarium Wilt Disease (Fusarium oxysporum f. sp. ciceris Race 2) in a Wide-Cross Cicer arietinum × Cicer reticulatum Mapping Family. Genes, 15(6), 819. https://doi.org/10.3390/genes15060819