Identification and Candidate Gene Evaluation of a Large Fast Neutron-Induced Deletion Associated with a High-Oil Phenotype in Soybean Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Material
2.2. Backcrossing
2.3. Tissue Sampling, Seed Composition, and DNA Extraction
2.4. NMR Methods
2.5. CGH Analysis
2.6. Functional Analysis
3. Results
3.1. Oil and Protein Content of Backcrosses
3.2. CGH Analysis Reveals a Strong Candidate Deletion for the High-Oil Mutant Phenotype
3.3. Functional Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldberg, R.B.; Barker, S.J.; Perez-Grau, L. Regulation of gene expression during plant embryogenesis. Cell 1989, 56, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Harwood, J.L.; Page, R.A. Biochemistry of oil synthesis. In Designer Oil Crops; Murphy, D.J., Ed.; VCH: Weinheim, Germany, 1994; pp. 165–194. [Google Scholar]
- Le, B.H.; Wagmaister, J.A.; Kawashima, T.; Bui, A.Q.; Harada, J.J.; Goldberg, R.B. Using genomics to study legume seed development. Plant Physiol. 2007, 144, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Hatanaka, T.; Yu, K.; Wu, Y.; Fukushige, H.; Hildebrand, D. Soybean oil biosynthesis: Role of diacylglycerol acyltransferases. Funct. Integr. Genom. 2013, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Flyckt, K.S.; Roesler, K.; Haug Collet, K.; Jaureguy, L.; Booth, R.; Thatcher, S.R.; Everard, J.D.; Ripp, K.G.; Liu, Z.-B.; Shen, B. A Novel Soybean Diacylglycerol Acyltransferase 1b Variant with Three Amino Acid Substitutions Increases Seed Oil Content. Plant Cell Physiol. 2023, 65, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Torabi, S.; Sukumaran, A.; Dhaubhadel, S.; Johnson, S.E.; LaFayette, P.; Parrott, W.A.; Rajcan, I.; Eskandari, M. Effects of type I Diacylglycerol O-acyltransferase (DGAT1) genes on soybean (Glycine max L.) seed composition. Sci. Rep. 2021, 11, 2556. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Hildebrand, D. Changes in Oil Content of Transgenic Soybeans Expressing the Yeast SLC1 Gene. Lipids 2009, 44, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.C.; Yan, Z.; Kumar, A.; Francis, T.; Giblin, E.M.; Barton, D.L.; Ferrie, J.R.; Laroche, A.; Shah, S.; Weiming, Z.; et al. Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions. Botany 2009, 87, 533–543. [Google Scholar] [CrossRef]
- Andrianov, V.; Borisjuk, N.; Pogrebnyak, N.; Brinker, A.; Dixon, J.; Spitsin, S.; Flynn, J.; Matyszczuk, P.; Andryszak, K.; Laurelli, M.; et al. Tobacco as a production platform for biofuel: Overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol. J. 2010, 8, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Van Erp, H.; Kelly, A.A.; Menard, G.; Eastmond, P.J. Multigene engineering of triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol. 2014, 165, 30–36. [Google Scholar] [CrossRef]
- Vanhercke, T.; El Tahchy, A.; Shrestha, P.; Zhou, X.-R.; Singh, S.P.; Petrie, J.R. Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. FEBS Lett. 2013, 587, 364–369. [Google Scholar] [CrossRef]
- Vanhercke, T.; El Tahchy, A.; Liu, Q.; Zhou, X.-R.; Shrestha, P.; Divi, U.K.; Ral, J.-P.; Mansour, M.P.; Nichols, P.D.; James, C.N.; et al. Metabolic engineering of biomass for high energy density: Oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol. J. 2014, 12, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Rotundo, J.L.; Borrás, L.; Westgate, M.E. Linking assimilate supply and seed developmental processes that determine soybean seed composition. Eur. J. Agron. 2011, 35, 184–191. [Google Scholar] [CrossRef]
- Carter, T.E.; Rzewnicki, P.E.; Burton, J.W.; Villagarcia, M.R.; Bowman, D.T.; Taliercio, E.; Kwanyuen, P. Registration of N6202 soybean germplasm with high protein, favorable yield potential, large seed, and diverse pedigree. J. Plant Regist. 2010, 4, 73–79. [Google Scholar] [CrossRef]
- Vollmann, J.; Fritz, C.N.; Wagentristl, H.; Ruckenbauer, P. Environmental and genetic variation of soybean seed protein content under Central European growing conditions. J. Sci. Food Agric. 2000, 80, 1300–1306. [Google Scholar] [CrossRef]
- Bezie, Y.; Tilahun, T.; Atnaf, M.; Taye, M. The potential applications of site-directed mutagenesis for crop improvement: A review. J. Crop Sci. Biotechnol. 2021, 24, 229–244. [Google Scholar] [CrossRef]
- Bolon, Y.-T.; Haun, W.J.; Xu, W.W.; Grant, D.; Stacey, M.G.; Nelson, R.T.; Gerhardt, D.J.; Jeddeloh, J.A.; Stacey, G.; Muehlbauer, G.J.; et al. Phenotypic and Genomic Analyses of a Fast Neutron Mutant Population Resource in Soybean. Plant Physiol. 2011, 156, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Dobbels, A.A.; Michno, J.-M.; Campbell, B.W.; Virdi, K.S.; Stec, A.O.; Muehlbauer, G.J.; Naeve, S.L.; Stupar, R.M. An induced chromosomal translocation in soybean disrupts a KASI ortholog and is associated with a high-sucrose and low-oil seed phenotype. G3 Genes Genomes Genet. 2017, 7, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Wyant, S.R.; Rodriguez, M.F.; Carter, C.K.; Parrott, W.A.; Jackson, S.A.; Stupar, R.M.; Morrell, P.L. Fast neutron mutagenesis in soybean enriches for small indels and creates frameshift mutations. G3 Genes Genomes Genet. 2022, 12, jkab431. [Google Scholar] [CrossRef]
- Campbell, B.W.; Hofstad, A.N.; Sreekanta, S.; Fu, F.; Kono, T.J.Y.; O’Rourke, J.A.; Vance, C.P.; Muehlbauer, G.J.; Stupar, R.M. Fast neutron-induced structural rearrangements at a soybean NAP1 locus result in gnarled trichomes. Theor. Appl. Genet. 2016, 129, 1725–1738. [Google Scholar] [CrossRef]
- Prenger, E.M.; Ostezan, A.; Mian, M.A.R.; Stupar, R.M.; Glenn, T.; Li, Z. Identification and characterization of a fast-neutron-induced mutant with elevated seed protein content in soybean. Theor. Appl. Genet. 2019, 132, 2965–2983. [Google Scholar] [CrossRef]
- Ostezan, A.; Prenger, E.M.; Rosso, L.; Zhang, B.; Stupar, R.M.; Glenn, T.; Mian, M.A.R.; Li, Z. A chromosome 16 deletion conferring a high sucrose phenotype in soybean. Theor. Appl. Genet. 2023, 136, 109. [Google Scholar] [CrossRef] [PubMed]
- Islam, N.; Stupar, R.M.; Qijian, S.; Luthria, D.L.; Garrett, W.; Stec, A.O.; Roessler, J.; Natarajan, S.S. Genomic changes and biochemical alterations of seed protein and oil content in a subset of fast neutron induced soybean mutants. BMC Plant Biol. 2019, 19, 420. [Google Scholar] [CrossRef] [PubMed]
- Bolon, Y.-T.; Stec, A.O.; Michno, J.-M.; Roessler, J.; Bhaskar, P.B.; Ries, L.; Dobbels, A.A.; Campbell, B.W.; Young, N.P.; Anderson, J.E.; et al. Genome Resilience and Prevalence of Segmental Duplications Following Fast Neutron Irradiation of Soybean. Genetics 2014, 198, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, P.R.; Tallada, J.G.; Hurburgh, C.; Hildebrand, D.F.; Specht, J.E. Development of single-seed near-infrared spectroscopic predictions of corn and soybean constituents using bulk reference values and mean spectra. Trans. ASABE 2011, 54, 1529–1535. [Google Scholar] [CrossRef]
- Jiang, G.-L. Comparison and application of non-destructive NIR evaluations of seed protein and oil content in soybean breeding. Agronomy 2020, 10, 77. [Google Scholar] [CrossRef]
- Serson, W.; Armstrong, P.; Maghirang, E.; Al-Bakri, A.; Phillips, T.; Al-Amery, M.; Su, K.; Hildebrand, D. Development of Whole and Ground Seed Near-Infrared Spectroscopy Calibrations for Oil, Protein, Moisture, and Fatty Acids in Salvia hispanica. J. Am. Oil Chem. Soc. 2020, 97, 3–13. [Google Scholar] [CrossRef]
- Orf, J.H.; Denny, R.L. Registration of ‘MN1302’ Soybean. Crop Sci. 2004, 44, 693. [Google Scholar] [CrossRef]
- Till, B.J.; Jankowicz-Cieslak, J.; Huynh, O.A.; Beshir, M.M.; Laport, R.G.; Hofinger, B.J.; Till, B.J.; Jankowicz-Cieslak, J.; Huynh, O.A.; Beshir, M.M. Sample collection and storage. In Low-Cost Methods for Molecular Characterization of Mutant Plants: Tissue Desiccation, DNA Extraction and Mutation Discovery: Protocols; Till, B.J., Jankowicz-Cieslak, J., Huynh, O.A., Beshir, M.M., Laport, R.G., Hofinger, B.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 9–11. [Google Scholar]
- Omasits, U.; Ahrens, C.H.; Müller, S.; Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 2014, 30, 884–886. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef]
- Yang, Z.; Lasker, K.; Schneidman-Duhovny, D.; Webb, B.; Huang, C.C.; Pettersen, E.F.; Goddard, T.D.; Meng, E.C.; Sali, A.; Ferrin, T.E. UCSF Chimera, MODELLER, and IMP: An integrated modeling system. J. Struct. Biol. 2012, 179, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Turek, I.; Wheeler, J.; Bartels, S.; Szczurek, J.; Wang, Y.H.; Taylor, P.; Gehring, C.; Irving, H. A natriuretic peptide from Arabidopsis thaliana (AtPNP-A) can modulate catalase 2 activity. Sci. Rep. 2020, 10, 19632. [Google Scholar] [CrossRef] [PubMed]
- Eudes, A.; Kunji, E.R.; Noiriel, A.; Klaus, S.M.; Vickers, T.J.; Beverley, S.M.; Gregory, J.F.; Hanson, A.D. Identification of transport-critical residues in a folate transporter from the folate-biopterin transporter (FBT) family. J. Biol. Chem. 2010, 285, 2867–2875. [Google Scholar] [CrossRef] [PubMed]
- Ozyigit, I.I.; Filiz, E.; Vatansever, R.; Kurtoglu, K.Y.; Koc, I.; Öztürk, M.X.; Anjum, N.A. Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front. Plant Sci. 2016, 7, 301. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Slesak, I.; Jordá, L.; Sotnikov, A.; Melzer, M.; Miszalski, Z.; Mullineaux, P.M.; Parker, J.E.; Karpinska, B.; Karpinski, S. Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol. 2009, 150, 670–683. [Google Scholar] [CrossRef] [PubMed]
- Santamaría, M.E.; Arnaiz, A.; Velasco-Arroyo, B.; Grbic, V.; Diaz, I.; Martinez, M. Arabidopsis response to the spider mite Tetranychus urticae depends on the regulation of reactive oxygen species homeostasis. Sci. Rep. 2018, 8, 9432. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Matus, J.T.; Wong, D.C.J.; Wang, Z.; Chai, F.; Zhang, L.; Fang, T.; Zhao, L.; Wang, Y.; Han, Y. The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides. J. Exp. Bot. 2018, 69, 1749–1764. [Google Scholar] [CrossRef] [PubMed]
- Koschmieder, J.; Wüst, F.; Schaub, P.; Álvarez, D.; Trautmann, D.; Krischke, M.; Rustenholz, C.; Mano, J.i.; Mueller, M.J.; Bartels, D. Plant apocarotenoid metabolism utilizes defense mechanisms against reactive carbonyl species and xenobiotics. Plant Physiol. 2021, 185, 331–351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Dai, X.; Wang, H.; Wang, F.; Tang, D.; Jiang, C.; Zhang, X.; Guo, W.; Lei, Y.; Ma, C. Transcriptomic Profiling Provides Molecular Insights into Hydrogen Peroxide-Enhanced Arabidopsis Growth and Its Salt Tolerance. Front. Plant Sci. 2022, 13, 866063. [Google Scholar] [CrossRef]
- Lazzarotto, F.; Wahni, K.; Piovesana, M.; Maraschin, F.; Messens, J.; Margis-Pinheiro, M. Arabidopsis APx-R is a plastidial ascorbate-independent peroxidase regulated by photomorphogenesis. Antioxidants 2021, 10, 65. [Google Scholar] [CrossRef]
- Stock, J.; Bräutigam, A.; Melzer, M.; Bienert, G.P.; Bunk, B.; Nagel, M.; Overmann, J.; Keller, E.J.; Mock, H.-P. The transcription factor WRKY22 is required during cryo-stress acclimation in Arabidopsis shoot tips. J. Exp. Bot. 2020, 71, 4993–5009. [Google Scholar] [CrossRef] [PubMed]
- Passaia, G.; Queval, G.; Bai, J.; Margis-Pinheiro, M.; Foyer, C.H. The effects of redox controls mediated by glutathione peroxidases on root architecture in Arabidopsis thaliana. J. Exp. Bot. 2014, 65, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, X.; Su, H.; Li, M.; Li, M.; Wei, J. Regulatory Networks of Flowering Genes in Angelica sinensis during Vernalization. Plants 2022, 11, 1355. [Google Scholar] [CrossRef] [PubMed]
- Jia, F.; Gampala, S.S.; Mittal, A.; Luo, Q.; Rock, C.D. Cre-lox univector acceptor vectors for functional screening in protoplasts: Analysis of Arabidopsis donor cDNAs encoding ABSCISIC ACID INSENSITIVE1-like protein phosphatases. Plant Mol. Biol. 2009, 70, 693–708. [Google Scholar] [CrossRef]
- Suzuki, M.; Ketterling, M.G.; Li, Q.-B.; McCarty, D.R. Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiol. 2003, 132, 1664–1677. [Google Scholar] [CrossRef] [PubMed]
- Ramel, F.; Sulmon, C.; Cabello-Hurtado, F.; Taconnat, L.; Martin-Magniette, M.-L.; Renou, J.-P.; El Amrani, A.; Couée, I.; Gouesbet, G. Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana: Novel insights into atrazine toxicity and sucrose-induced tolerance. BMC Genom. 2007, 8, 450. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Xiong, F.; Que, Y.; Wang, K.; Yu, L.; Li, Z.; Ren, M. Expression profiling and functional analysis reveals that TOR is a key player in regulating photosynthesis and phytohormone signaling pathways in Arabidopsis. Front. Plant Sci. 2015, 6, 677. [Google Scholar] [CrossRef]
- Leonhardt, N.; Kwak, J.M.; Robert, N.; Waner, D.; Leonhardt, G.; Schroeder, J.I. Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 2004, 16, 596–615. [Google Scholar] [CrossRef]
- Luna, E.; Van Hulten, M.; Zhang, Y.; Berkowitz, O.; López, A.; Pétriacq, P.; Sellwood, M.A.; Chen, B.; Burrell, M.; Van De Meene, A. Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nat. Chem. Biol. 2014, 10, 450–456. [Google Scholar] [CrossRef]
- Fabro, G.; Di Rienzo, J.A.; Voigt, C.A.; Savchenko, T.; Dehesh, K.; Somerville, S.; Alvarez, M.E. Genome-wide expression profiling Arabidopsis at the stage of Glovinomyces cichoracearum haustorium formation. Plant Physiol. 2008, 146, 1421–1439. [Google Scholar] [CrossRef]
- Bai, B.; Van Der Horst, S.; Cordewener, J.H.; America, T.A.; Hanson, J.; Bentsink, L. Seed-stored mRNAs that are specifically associated to monosomes are translationally regulated during germination. Plant Physiol. 2020, 182, 378–392. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbacher, R.E.; Wardell, G.; Stassen, J.; Guest, E.; Zhang, P.; Luna, E.; Ton, J. The IBI1 receptor of β-aminobutyric acid interacts with VOZ transcription factors to regulate abscisic acid signaling and callose-associated defense. Mol. Plant 2020, 13, 1455–1469. [Google Scholar] [CrossRef] [PubMed]
- Knuesting, J.; Riondet, C.; Maria, C.; Kruse, I.; Bécuwe, N.; König, N.; Berndt, C.; Tourrette, S.; Guilleminot-Montoya, J.; Herrero, E. Arabidopsis glutaredoxin S17 and its partner, the nuclear factor Y subunit C11/negative cofactor 2α, contribute to maintenance of the shoot apical meristem under long-day photoperiod. Plant Physiol. 2015, 167, 1643–1658. [Google Scholar] [CrossRef] [PubMed]
- Duchêne, A.-M.; Giritch, A.; Hoffmann, B.; Cognat, V.; Lancelin, D.; Peeters, N.M.; Zaepfel, M.; Maréchal-Drouard, L.; Small, I.D. Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2005, 102, 16484–16489. [Google Scholar] [CrossRef] [PubMed]
- Waterworth, W.M.; Latham, R.; Wang, D.; Alsharif, M.; West, C.E. Seed DNA damage responses promote germination and growth in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2022, 119, e2202172119. [Google Scholar] [CrossRef] [PubMed]
- Mróz, T.L.; Eves-van den Akker, S.; Bernat, A.; Skarzyńska, A.; Pryszcz, L.; Olberg, M.; Havey, M.J.; Bartoszewski, G. Transcriptome analyses of mosaic (MSC) mitochondrial mutants of cucumber in a highly inbred nuclear background. G3 Genes Genomes Genet. 2018, 8, 953–965. [Google Scholar] [CrossRef] [PubMed]
- Dietzen, C.; Koprivova, A.; Whitcomb, S.J.; Langen, G.; Jobe, T.O.; Hoefgen, R.; Kopriva, S. The transcription factor EIL1 participates in the regulation of sulfur-deficiency response. Plant Physiol. 2020, 184, 2120–2136. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Lim, J.Y.; Shin, H.; Kim, B.-G.; Yoo, S.-D.; Kim, W.T.; Huh, J.H. ROS1-dependent DNA demethylation is required for ABA-inducible NIC3 expression. Plant Physiol. 2019, 179, 1810–1821. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, S.; Bashir, K.; Kim, J.-M.; Ando, M.; Tanaka, M.; Seki, M. The modulation of acetic acid pathway genes in Arabidopsis improves survival under drought stress. Sci. Rep. 2018, 8, 7831. [Google Scholar] [CrossRef]
- Lian, J.-l.; Ren, L.-S.; Zhang, C.; Yu, C.-Y.; Huang, Z.; Xu, A.-X.; Dong, J.-G. How exposure to ALS-inhibiting gametocide tribenuron-methyl induces male sterility in rapeseed. BMC Plant Biol. 2019, 19, 124. [Google Scholar] [CrossRef]
- Lange, H.; Holec, S.; Cognat, V.; Pieuchot, L.; Le Ret, M.; Canaday, J.; Gagliardi, D. Degradation of a polyadenylated rRNA maturation by-product involves one of the three RRP6-like proteins in Arabidopsis thaliana. Mol. Cell. Biol. 2008, 28, 3038–3044. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, Y.; Hou, Y.; Zhou, Z.; Sun, R.; Qin, T.; Wang, K.; Liu, F.; Wang, Y.; Huang, Z. Genome-wide dissection of the genetic basis for drought tolerance in Gossypium hirsutum L. races. Front. Plant Sci. 2022, 13, 876095. [Google Scholar] [CrossRef] [PubMed]
- Lange, H.; Gagliardi, D. Catalytic activities, molecular connections, and biological functions of plant RNA exosome complexes. Plant Cell 2022, 34, 967–988. [Google Scholar] [CrossRef] [PubMed]
- Duruflé, H.; Ranocha, P.; Balliau, T.; Zivy, M.; Albenne, C.; Burlat, V.; Déjean, S.; Jamet, E.; Dunand, C. An integrative study showing the adaptation to sub-optimal growth conditions of natural populations of Arabidopsis thaliana: A focus on cell wall changes. Cells 2020, 9, 2249. [Google Scholar] [CrossRef] [PubMed]
- Pasoreck, E.K.; Su, J.; Silverman, I.M.; Gosai, S.J.; Gregory, B.D.; Yuan, J.S.; Daniell, H. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling. Plant Biotechnol. J. 2016, 14, 1862–1875. [Google Scholar] [CrossRef]
- Roomi, S.; Masi, A.; Conselvan, G.B.; Trevisan, S.; Quaggiotti, S.; Pivato, M.; Arrigoni, G.; Yasmin, T.; Carletti, P. Protein profiling of Arabidopsis roots treated with humic substances: Insights into the metabolic and interactome networks. Front. Plant Sci. 2018, 9, 1812. [Google Scholar] [CrossRef]
- Nintemann, S.J.; Vik, D.; Svozil, J.; Bak, M.; Baerenfaller, K.; Burow, M.; Halkier, B.A. Unravelling protein-protein interaction networks linked to aliphatic and indole glucosinolate biosynthetic pathways in Arabidopsis. Front. Plant Sci. 2017, 8, 2028. [Google Scholar] [CrossRef]
- Haga, N.; Kobayashi, K.; Suzuki, T.; Maeo, K.; Kubo, M.; Ohtani, M.; Mitsuda, N.; Demura, T.; Nakamura, K.; Jürgens, G. Mutations in MYB3R1 and MYB3R4 cause pleiotropic developmental defects and preferential down-regulation of multiple G2/M-specific genes in Arabidopsis. Plant Physiol. 2011, 157, 706–717. [Google Scholar] [CrossRef]
- Teaster, N.D.; Motes, C.M.; Tang, Y.; Wiant, W.C.; Cotter, M.Q.; Wang, Y.-S.; Kilaru, A.; Venables, B.J.; Hasenstein, K.H.; Gonzalez, G. N-Acylethanolamine metabolism interacts with abscisic acid signaling in Arabidopsis thaliana seedlings. Plant Cell 2007, 19, 2454–2469. [Google Scholar] [CrossRef]
- Shaar-Moshe, L.; Hübner, S.; Peleg, Z. Identification of conserved drought-adaptive genes using a cross-species meta-analysis approach. BMC Plant Biol. 2015, 15, 111. [Google Scholar] [CrossRef]
- Movahedi, S.; Van de Peer, Y.; Vandepoele, K. Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice. Plant Physiol. 2011, 156, 1316–1330. [Google Scholar] [CrossRef] [PubMed]
- Verdier, J.; Lalanne, D.; Pelletier, S.; Torres-Jerez, I.; Righetti, K.; Bandyopadhyay, K.; Leprince, O.; Chatelain, E.; Vu, B.L.; Gouzy, J. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds. Plant Physiol. 2013, 163, 757–774. [Google Scholar] [CrossRef] [PubMed]
- Amil-Ruiz, F.; Garrido-Gala, J.; Gadea, J.; Blanco-Portales, R.; Muñoz-Mérida, A.; Trelles, O.; de Los Santos, B.; Arroyo, F.T.; Aguado-Puig, A.; Romero, F. Partial activation of SA-and JA-defensive pathways in strawberry upon Colletotrichum acutatum interaction. Front. Plant Sci. 2016, 7, 1036. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Balmant, K.; Geng, S.; Zhu, N.; Zhang, T.; Dufresne, C.; Dai, S.; Chen, S. Bicarbonate induced redox proteome changes in Arabidopsis suspension cells. Front. Plant Sci. 2017, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.; Main, D.; Staton, M.; Cho, I.; Zhebentyayeva, T.; Arús, P.; Abbott, A. Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genom. 2006, 7, 81. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Xi, W.; Shen, J.; Bi, T.; Li, L. Characterization of the plasma membrane proteins and receptor-like kinases associated with secondary vascular differentiation in poplar. Plant Mol. Biol. 2011, 76, 97–115. [Google Scholar] [CrossRef] [PubMed]
- Petridis, A.; Döll, S.; Nichelmann, L.; Bilger, W.; Mock, H.P. Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation. New Phytol. 2016, 211, 912–925. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yang, H.; Kuang, R.; Zhou, C.; Huang, B.; Wei, Y. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in papaya (Carica papaya L.). PeerJ 2019, 8, e9319. [Google Scholar] [CrossRef] [PubMed]
- Cifuentes-Esquivel, N.; Bou-Torrent, J.; Galstyan, A.; Gallemí, M.; Sessa, G.; Salla Martret, M.; Roig-Villanova, I.; Ruberti, I.; Martínez-García, J.F. The b HLH proteins BEE and BIM positively modulate the shade avoidance syndrome in Arabidopsis seedlings. Plant J. 2013, 75, 989–1002. [Google Scholar] [CrossRef]
- Pathak, A.K.; Singh, S.P.; Sharma, R.; Nath, V.; Tuli, R. Transcriptome analysis at mid-stage seed development in litchi with contrasting seed size. 3 Biotech 2022, 12, 47. [Google Scholar] [CrossRef]
- Yuan, L.-B.; Chen, L.; Zhai, N.; Zhou, Y.; Zhao, S.-S.; Shi, L.-L.; Xiao, S.; Yu, L.-J.; Xie, L.-J. The anaerobic product ethanol promotes autophagy-dependent submergence tolerance in Arabidopsis. Int. J. Mol. Sci. 2020, 21, 7361. [Google Scholar] [CrossRef] [PubMed]
- Friedrichsen, D.M.; Nemhauser, J.; Muramitsu, T.; Maloof, J.N.; Alonso, J.; Ecker, J.R.; Furuya, M.; Chory, J. Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 2002, 162, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiao, S.; Sui, S.; Huang, R.; Wang, X.; Wu, H.; Liu, X. A tandem CCCH type zinc finger protein gene CpC3H3 from Chimonanthus praecox promotes flowering and enhances drought tolerance in Arabidopsis. BMC Plant Biol. 2022, 22, 506. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, Y.; Liu, Y.; Zhang, X.; Gu, X.; Ma, D.; Zhao, Z.; Yuan, Z.; Xue, H.; Liu, H. BES1-regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in Arabidopsis. New Phytol. 2019, 223, 1407–1419. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Liang, Y.; Yan, T.; Wang, X.; Zhou, H.; Chen, C.; Zhang, Y.; Zhang, B.; Zhang, S.; Liao, J. The photomorphogenic repressors BBX28 and BBX29 integrate light and brassinosteroid signaling to inhibit seedling development in Arabidopsis. Plant Cell 2022, 34, 2266–2285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Y.; Qiu, J.-Y.; Hui, Q.-L.; Xu, Y.-Y.; He, Y.-Z.; Peng, L.-Z.; Fu, X.-Z. Systematic analysis of the basic/helix-loop-helix (bHLH) transcription factor family in pummelo (Citrus grandis) and identification of the key members involved in the response to iron deficiency. BMC Genom. 2020, 21, 233. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, P.J.; Parfitt, D.E.; Bostock, R.M.; Fresnedo-Ramirez, J.; Vazquez-Lobo, A.; Ogundiwin, E.A.; Gradziel, T.M.; Crisosto, C.H. Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach. PLoS ONE 2013, 8, e78634. [Google Scholar] [CrossRef]
- Herbert, D.B.; Gross, T.; Rupp, O.; Becker, A. Transcriptome analysis reveals major transcriptional changes during regrowth after mowing of red clover (Trifolium pratense). BMC Plant Biol. 2021, 21, 95. [Google Scholar] [CrossRef] [PubMed]
- Lestari, P.; Van, K.; Lee, J.; Kang, Y.J.; Lee, S.-H. Gene divergence of homeologous regions associated with a major seed protein content QTL in soybean. Front. Plant Sci. 2013, 4, 176. [Google Scholar] [CrossRef]
- Luttgeharm, K.D.; Chen, M.; Mehra, A.; Cahoon, R.E.; Markham, J.E.; Cahoon, E.B. Overexpression of Arabidopsis ceramide synthases differentially affects growth, sphingolipid metabolism, programmed cell death, and mycotoxin resistance. Plant Physiol. 2015, 169, 1108–1117. [Google Scholar] [CrossRef]
- Corral, J.M.; Vogel, H.; Aliyu, O.M.; Hensel, G.; Thiel, T.; Kumlehn, J.; Sharbel, T.F. A conserved apomixis-specific polymorphism is correlated with exclusive exonuclease expression in premeiotic ovules of apomictic Boechera species. Plant Physiol. 2013, 163, 1660–1672. [Google Scholar] [CrossRef] [PubMed]
- Vargas, J.; Gómez, I.; Vidal, E.A.; Lee, C.P.; Millar, A.H.; Jordana, X.; Roschzttardtz, H. Growth Developmental Defects of Mitochondrial Iron Transporter 1 and 2 Mutants in Arabidopsis in Iron Sufficient Conditions. Plants 2023, 12, 1176. [Google Scholar] [CrossRef]
- Krishnatreya, D.B.; Ray, D.; Baruah, P.M.; Dowarah, B.; Bordoloi, K.S.; Agarwal, H.; Agarwala, N. Identification of putative miRNAs from expressed sequence tags of Gnetum gnemon L. and their cross-kingdom targets. BioTechnologia 2021, 102, 179. [Google Scholar] [CrossRef]
- Xie, Y.; Straub, D.; Eguen, T.; Brandt, R.; Stahl, M.; Martínez-García, J.F.; Wenkel, S. Meta-analysis of Arabidopsis KANADI1 direct target genes identifies a basic growth-promoting module acting upstream of hormonal signaling pathways. Plant Physiol. 2015, 169, 1240–1253. [Google Scholar] [CrossRef] [PubMed]
- Sakai, T.; Haga, K. Molecular genetic analysis of phototropism in Arabidopsis. Plant Cell Physiol. 2012, 53, 1517–1534. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Harrar, Y.; Lin, C.; Reinhart, B.; Newell, N.R.; Talavera-Rauh, F.; Hokin, S.A.; Barton, M.K.; Kerstetter, R.A. Arabidopsis KANADI1 acts as a transcriptional repressor by interacting with a specific cis-element and regulates auxin biosynthesis, transport, and signaling in opposition to HD-ZIPIII factors. Plant Cell 2014, 26, 246–262. [Google Scholar] [CrossRef]
- Li, Y.; Dai, X.; Cheng, Y.; Zhao, Y. NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol. Plant 2011, 4, 171–179. [Google Scholar] [CrossRef]
- Cheng, Y.; Qin, G.; Dai, X.; Zhao, Y. NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2008, 105, 21017–21022. [Google Scholar] [CrossRef]
- Cheng, Y.; Qin, G.; Dai, X.; Zhao, Y. NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 18825–18829. [Google Scholar] [CrossRef]
- Gipson, A.B.; Morton, K.J.; Rhee, R.J.; Simo, S.; Clayton, J.A.; Perrett, M.E.; Binkley, C.G.; Jensen, E.L.; Oakes, D.L.; Rouhier, M.F. Disruptions in valine degradation affect seed development and germination in Arabidopsis. Plant J. 2017, 90, 1029–1039. [Google Scholar] [CrossRef]
- Zhu, F.; Alseekh, S.; Koper, K.; Tong, H.; Nikoloski, Z.; Naake, T.; Liu, H.; Yan, J.; Brotman, Y.; Wen, W. Genome-wide association of the metabolic shifts underpinning dark-induced senescence in Arabidopsis. Plant Cell 2022, 34, 557–578. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; King, G.J.; Liu, X.; Shan, N.; Borpatragohain, P.; Baten, A.; Wang, P.; Luo, S.; Zhou, Q. Identification of SNP loci and candidate genes related to four important fatty acid composition in Brassica napus using genome wide association study. PLoS ONE 2019, 14, e0221578. [Google Scholar] [CrossRef] [PubMed]
- Carrie, C.; Venne, A.S.; Zahedi, R.P.; Soll, J. Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana. J. Exp. Bot. 2015, 66, 2691–2708. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.M.; Lexer, C.; Hiscock, S.J. Comparative analysis of pistil transcriptomes reveals conserved and novel genes expressed in dry, wet, and semidry stigmas. Plant Physiol. 2010, 154, 1347–1360. [Google Scholar] [CrossRef] [PubMed]
- Binder, S. Branched-Chain Amino Acid Metabolism in Arabidopsis thaliana; The Arabidopsis Book/American Society of Plant Biologists: Rockville, MD, USA, 2010; Volume 8. [Google Scholar]
- Almeida, J.; Quadrana, L.; Asís, R.; Setta, N.; De Godoy, F.; Bermudez, L.; Otaiza, S.N.; Correa da Silva, J.V.; Fernie, A.R.; Carrari, F. Genetic dissection of vitamin E biosynthesis in tomato. J. Exp. Bot. 2011, 62, 3781–3798. [Google Scholar] [CrossRef] [PubMed]
- Le Boulch, P.; Poëssel, J.-L.; Roux, D.; Lugan, R. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. Front. Plant Sci. 2022, 13, 992544. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, R.; de Oliveira, M.V.; Kleven, B.; Maeda, H.A. The entry reaction of the plant shikimate pathway is subjected to highly complex metabolite-mediated regulation. Plant Cell 2021, 33, 671–696. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Lynch, J.H.; Guo, L.; Rhodes, D.; Morgan, J.A.; Dudareva, N. Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants. Nat. Commun. 2019, 10, 15. [Google Scholar] [CrossRef]
- Tohge, T.; Watanabe, M.; Hoefgen, R.; Fernie, A.R. Shikimate and phenylalanine biosynthesis in the green lineage. Front. Plant Sci. 2013, 4, 62. [Google Scholar] [CrossRef]
- Tzin, V.; Galili, G. The Biosynthetic Pathways for Shikimate and Aromatic Amino Acids in Arabidopsis thaliana; The Arabidopsis Book/American Society of Plant Biologists: Rockville, MD, USA, 2010; Volume 8. [Google Scholar]
- Less, H.; Galili, G. Principal transcriptional programs regulating plant amino acid metabolism in response to abiotic stresses. Plant Physiol. 2008, 147, 316–330. [Google Scholar] [CrossRef]
- Less, H.; Galili, G. Coordinations between gene modules control the operation of plant amino acid metabolic networks. BMC Syst. Biol. 2009, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Schmid, M.W.; Heichinger, C.; Coman Schmid, D.; Guthörl, D.; Gagliardini, V.; Bruggmann, R.; Aluri, S.; Aquino, C.; Schmid, B.; Turnbull, L.A. Contribution of epigenetic variation to adaptation in Arabidopsis. Nat. Commun. 2018, 9, 4446. [Google Scholar] [CrossRef]
- Cvrčková, F.; Novotný, M.; Pícková, D.; Žárský, V. Formin homology 2 domains occur in multiple contexts in angiosperms. BMC Genom. 2004, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Janssen, B.J.; Thodey, K.; Schaffer, R.J.; Alba, R.; Balakrishnan, L.; Bishop, R.; Bowen, J.H.; Crowhurst, R.N.; Gleave, A.P.; Ledger, S. Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol. 2008, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Shang, G.-D.; Xu, Z.-G.; Wan, M.-C.; Wang, F.-X.; Wang, J.-W. FindIT2: An R/Bioconductor package to identify influential transcription factor and targets based on multi-omics data. BMC Genom. 2022, 23, 272. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Q.; Shi, L.P.; Yang, S.; Qiu, S.S.; Ma, X.L.; Cai, J.S.; Guan, D.Y.; Wang, Z.H.; He, S.L. A conserved double-W box in the promoter of CaWRKY40 mediates autoregulation during response to pathogen attack and heat stress in pepper. Mol. Plant Pathol. 2021, 22, 3–18. [Google Scholar] [CrossRef]
- Bergmann, T.; Menkhaus, J.; Ye, W.; Schemmel, M.; Hasler, M.; Rietz, S.; Leckband, G.; Cai, D. QTL mapping and transcriptome analysis identify novel QTLs and candidate genes in Brassica villosa for quantitative resistance against Sclerotinia sclerotiorum. Theor. Appl. Genet. 2023, 136, 86. [Google Scholar] [CrossRef]
- Xu, X.; Chen, C.; Fan, B.; Chen, Z. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell 2006, 18, 1310–1326. [Google Scholar] [CrossRef] [PubMed]
- Kashima, M.; Kamitani, M.; Nomura, Y.; Mori-Moriyama, N.; Betsuyaku, S.; Hirata, H.; Nagano, A.J. DeLTa-Seq: Direct-lysate targeted RNA-Seq from crude tissue lysate. Plant Methods 2022, 18, 99. [Google Scholar] [CrossRef]
- Che, Y.; Sun, Y.; Lu, S.; Zhao, F.; Hou, L.; Liu, X. AtWRKY40 functions in drought stress response in Arabidopsis thaliana. J. Plant Physiol. 2018, 54, 456–464. [Google Scholar]
- Chen, H.; Lai, Z.; Shi, J.; Xiao, Y.; Chen, Z.; Xu, X. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biol. 2010, 10, 281. [Google Scholar] [CrossRef] [PubMed]
- Carrera, C.; Martínez, M.J.; Dardanelli, J.; Balzarini, M. Environmental Variation and Correlation of Seed Components in Nontransgenic Soybeans: Protein, Oil, Unsaturated Fatty Acids, Tocopherols, and Isoflavones. Crop Sci. 2011, 51, 800–809. [Google Scholar] [CrossRef]
- Ergo, V.V.; Veas, R.E.; Vega, C.R.C.; Lascano, R.; Carrera, C.S. Ecophysiological mechanisms underlying the positive relationship between seed protein concentration and yield in soybean under field heat and drought stress. J. Agron. Crop Sci. 2024, 210, e12703. [Google Scholar] [CrossRef]
- Fields, J.; Saxton, A.M.; Beyl, C.A.; Kopsell, D.A.; Cregan, P.B.; Hyten, D.L.; Cuvaca, I.; Pantalone, V.R. Seed Protein and Oil QTL in a Prominent Glycine max Genetic Pedigree: Enhancing Stability for Marker Assisted Selection. Agronomy 2023, 13, 567. [Google Scholar] [CrossRef]
- Allen, D.K.; Young, J.D. Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos. Plant Physiol. 2013, 161, 1458–1475. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, T.; Margarit, E.; Müller, G.L.; Saenz, E.; Ruzzo, A.I.; Drincovich, M.F.; Borrás, L.; Saigo, M.; Wheeler, M.C.G. Differential metabolic reprogramming in developing soybean embryos in response to nutritional conditions and abscisic acid. Plant Mol. Biol. 2023, 113, 89–103. [Google Scholar] [CrossRef]
- Schwender, J. Walking the ‘design–build–test–learn’cycle: Flux analysis and genetic engineering reveal the pliability of plant central metabolism. New Phytol. 2023, 239, 1539–1541. [Google Scholar] [CrossRef] [PubMed]
- Focks, N.; Benning, C. wrinkled1: A Novel, Low-Seed-Oil Mutant of Arabidopsis with a Deficiency in the Seed-Specific Regulation of Carbohydrate Metabolism. Plant Physiol. 1998, 118, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Jo, L.; Pelletier, J.; Harada, J.J. Genome-Wide Profiling of Soybean WRINKLED1 Transcription Factor Binding Sites Provides Insight into the Regulation of Fatty Acid and Triacylglycerol Biosynthesis Program in Seeds. bioRxiv 2024. [CrossRef]
- Sidorov, R.A.; Tsydendambaev, V.D. Biosynthesis of fatty oils in higher plants. Russ. J. Plant Physiol. 2014, 61, 1–18. [Google Scholar] [CrossRef]
- Weselake, R.J.; Shah, S.; Tang, M.; Quant, P.A.; Snyder, C.L.; Furukawa-Stoffer, T.L.; Zhu, W.; Taylor, D.C.; Zou, J.; Kumar, A.; et al. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J. Exp. Bot. 2008, 59, 3543–3549. [Google Scholar] [CrossRef] [PubMed]
- Roesler, K.; Shen, B.; Bermudez, E.; Li, C.; Hunt, J.; Damude, H.G.; Ripp, K.G.; Everard, J.D.; Booth, J.R.; Castaneda, L.; et al. An Improved Variant of Soybean Type 1 Diacylglycerol Acyltransferase Increases the Oil Content and Decreases the Soluble Carbohydrate Content of Soybeans. Plant Physiol. 2016, 171, 878–893. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Serson, W.; Li, R.; Armstrong, P.; Yu, K.; Pfeiffer, T.; Li, X.-L.; Hildebrand, D. A Vernonia Diacylglycerol Acyltransferase Can Increase Renewable Oil Production. J. Agric. Food Chem. 2016, 64, 7188–7194. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.A.; Shaw, E.; Powers, S.J.; Kurup, S.; Eastmond, P.J. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.). Plant Biotechnol. J. 2013, 11, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Kong, Q.; Grix, M.; Mantyla, J.J.; Yang, Y.; Benning, C.; Ohlrogge, J.B. Deletion of a C–terminal intrinsically disordered region of WRINKLED 1 affects its stability and enhances oil accumulation in Arabidopsis. Plant J. 2015, 83, 864–874. [Google Scholar] [CrossRef] [PubMed]
- Kavanagh, K.L.; Jörnvall, H.; Persson, B.; Oppermann, U. Medium-and short-chain dehydrogenase/reductase gene and protein families: The SDR superfamily: Functional and structural diversity within a family of metabolic and regulatory enzymes. Cell. Mol. Life Sci. 2008, 65, 3895–3906. [Google Scholar] [CrossRef]
- Fei, W.; Du, X.; Yang, H. Seipin, adipogenesis and lipid droplets. Trends Endocrinol. Metab. 2011, 22, 204–210. [Google Scholar] [CrossRef]
ID | Gen | MN Oil (2013) | KY Oil (2015) | Notes |
---|---|---|---|---|
1R22C28Cgadbr355aMN13 | M8 | 22.0 ± 0.6 | 20.4 ± 1.3 | High-oil, short, bushy, indeterminate, late maturity |
5R12C21Dar387dMN13 | M5 | 22.4 ± 0.8 | 20.1 ± 0.9 | High-oil, erect petioles and lateral branches, slightly chlorotic small lanceolate leaves, late maturity |
5R16C01Dar388eMN13 | M5 | 21.9 ± 1.1 | 22.3 ± 1.2 | High-oil, short, slightly chlorotic smaller lanceolate leaves, petioles long compared to plant ht., late maturity |
M92-220 | Parent | 19.0 ± 0.7 | 19.4 ± 0.6 | Parent of mutant lines |
Name | Parents | Mass (g) | OIL (% db) |
---|---|---|---|
A1 | 1R22×WT | 0.2544 | 22.5 (0.19) |
A2 | 1R22×WT | 0.2181 | 22.8 (0.30) |
A3 | 1R22×WT | 0.2401 | 22.5 (0.26) |
A4 | 5R12×WT | 0.1742 | 19.3 (0.26) |
A5 | 5R12×WT | 0.2092 | 19.6 (0.33) |
A6 | 5R12×WT | 0.2027 | 21.6 (0.11) |
A7 | 5R12×WT | 0.2741 | 18.9 (0.27) |
A8 | WT×1R22 | 0.2734 | 19.3 (0.21) |
B1 | WT×1R22 | 0.1562 | 17.3 (0.37) |
B2 | WT×1R22 | 0.2771 | 18.9 (0.22) |
WT | N/A | 0.2051 | 20.5 (0.23) |
1R22 | N/A | 0.1716 | 22.9 (0.36) |
5R12 | N/A | 0.1706 | 20.5 (1.3) |
Plant ID | Cross | Mean Protein | SE | Mean Oil | SE |
---|---|---|---|---|---|
A1 | 1R22×WT | 43.6 | 0.8 | 22.4 | 0.2 |
A2 | 1R22×WT | 43.1 | 0.1 | 22.3 | 0.3 |
A3 | 1R22×WT | 42.5 | 0.3 | 22.6 | 0.3 |
A4 | 5R12×WT | 41.3 | 0.5 | 25.1 | 0.3 |
A7 | 5R12×WT | 42.4 | 0.0 | 22.1 | 0.0 |
A8 | WT×1R22 | 44.3 | 0.1 | 19.1 | 0.2 |
B1 | WT×1R22 | 42.7 | 0.8 | 22.1 | 0.4 |
B2 | WT×1R22 | 43.8 | 0.2 | 21.6 | 0.2 |
M92-220 | Parent | 42.6 | 0.2 | 22.5 | 0.2 |
5R12 | Mutant | 42.7 | 0.5 | 21.8 | 0.1 |
1R22 | Mutant | 38.6 | 0.5 | 24.6 | 0.4 |
Line | Field # (ID) | AVG Prot | SE Prot | AVG Oil | SE Oil |
---|---|---|---|---|---|
A1 | 1 | 45.8 | 0.5 | 20.9 | 0.2 |
A1 | 2 | 44.8 | 0.5 | 20.7 | 0.6 |
A1 | 3 | 46.1 | 0.6 | 21.1 | 0.2 |
A1 | 4 | 45.2 | 0.9 | 18.1 | 0.3 |
A1 | 5 | 45.1 | 0.6 | 20.7 | 0.1 |
A1 | 6 | 38.5 | 0.7 | 22.4 | 0.3 |
A1 | 7 | 42.6 | 0.4 | 22.2 | 0.5 |
A1 | 8 | 46.1 | 0.3 | 20.0 | 0.0 |
A1 | 9 | 41.2 | 0.3 | 22.3 | 0.4 |
A1 | 10 | 50.6 | 0.4 | 17.5 | 0.2 |
A1 | 11 | 47.3 | 0.3 | 19.6 | 0.1 |
A1 | 12 | 42.0 | 0.2 | 22.7 | 0.2 |
A1 | 13 | 38.6 | 1.0 | 22.4 | 0.6 |
A1 | 14 | 48.2 | 0.5 | 19.1 | 0.4 |
A1 | 15 | 44.0 | 1.2 | 21.0 | 0.5 |
A1 | 16 | 46.3 | 0.2 | 20.1 | 0.2 |
A1 | 17 | 53.1 | 0.9 | 17.3 | 0.6 |
A1 | 18 | 45.7 | 0.0 | 20.9 | 0.0 |
A1 | 19 | 48.3 | 0.2 | 19.7 | 0.7 |
A1 | 20 | 45.6 | 0.4 | 21.1 | 0.5 |
A1 | 21 | 45.5 | 0.4 | 19.8 | 0.4 |
A1 | 22 | 37.1 | 0.8 | 24.3 | 0.3 |
A1 | 23 | 46.1 | 0.3 | 19.6 | 0.4 |
A1 | 24 | 51.1 | 1.1 | 18.0 | 0.0 |
A1 | 25 | 46.9 | 0.4 | 19.7 | 0.2 |
A1 | 26 | 43.5 | 0.7 | 20.4 | 0.2 |
A1 | 27 | 43.3 | 0.3 | 23.7 | 0.5 |
A1 | 28 | 42.2 | 1.0 | 22.2 | 0.3 |
A1 | 29 | 49.8 | 1.0 | 19.0 | 0.4 |
A1 | 30 | 40.8 | 0.1 | 22.1 | 0.2 |
Plant ID | Mean Protein | Mean Oil |
---|---|---|
MNA1: 37.5 | 40.1 | 24.2 |
MNA1: 11 | 39.3 | 24.2 |
MNA1: 14 | 40.2 | 24.1 |
MNA1: 16 | 39.0 | 24.0 |
MNA1: 44 | 38.6 | 24.0 |
MNA1: 33 | 39.0 | 23.3 |
MNA1: 15 | 43.9 | 21.7 |
MNA1: 3 | 45.3 | 21.4 |
MNA1: 26 | 43.9 | 21.3 |
MNA1: 12 | 45.2 | 21.0 |
MNA1: 3 | 43.8 | 20.6 |
MNA1: 41.5 | 46.3 | 20.2 |
MNA2: 8 | 40.1 | 24.1 |
MNA2: 28 | 39.9 | 23.9 |
MNA2: 29 | 39.6 | 23.8 |
MNA2: 40 | 38.9 | 23.8 |
MNA2: 4 | 39.2 | 23.7 |
MNA2: 43 | 39.8 | 23.7 |
MNA2: 31 | 38.6 | 23.4 |
MNA2: 5 | 39.5 | 23.4 |
MNA2: 25 | 40.2 | 23.2 |
MNA2: 33 | 39.8 | 23.2 |
MNA2: 21 | 45.3 | 22.4 |
MNA2: 30 | 43.9 | 21.9 |
MNA2: 44.5 | 45.1 | 21.7 |
MNA2: 10 | 44.9 | 21.7 |
MNA2: 33.5 | 43.8 | 21.5 |
MNA2: 15 | 45.0 | 21.5 |
MNA2: 42 | 45.2 | 21.0 |
MNA2: 44 | 44.5 | 20.4 |
MNA3: 7 | 39.5 | 24.3 |
MNA3: 42.5 | 39.0 | 24.0 |
MNA3: 3 | 40.2 | 23.6 |
MNA3: 8 | 40.9 | 23.5 |
MNA3: 14 | 39.1 | 23.4 |
MNA3: 34 | 44.0 | 21.2 |
MNA3: 38.5 | 44.5 | 21.1 |
MNA3: 30.5 | 44.4 | 20.9 |
MNA3: 4 | 45.1 | 20.7 |
MNA3: 37.5 | 44.5 | 20.4 |
MNA3: 25 | 44.3 | 20.4 |
MNA3: 16 | 44.9 | 20.2 |
MNA3: 33 | 46.0 | 19.2 |
MNA3: 34.5 | 45.1 | 19.2 |
Arabidopsis Homologue ID, NCBI Protein ID, KEGG ID | Chr: Gm14 | Predicted Functions | ||||
---|---|---|---|---|---|---|
Pfam, KEGG | GO, KOG, AT | PantherFam | UniProt | |||
Glyma.14G101000 | AT5G10810.1, NP_001241623, gmx:548093 | Start: 10254421 Stop: 10258523, 128 orthologues 3 paralogues 7 domains and features, 45 oligo probes | Enhancer of rudimentary (PF01133), Glutaredoxin 2, C terminal domain (PF04399). | Positive regulation of Notch signaling pathway (GO:0045747), cell cycle (GO:0007049), pyrimidine nucleotide biosynthetic process (GO:0006221), enhancer of rudimentary (KOG1766) | Enhancer of rudimentary (PTHR12373) | Enhancer of rudimentary homolog (C6TKU9) |
Glyma.14G101100 | AT5G10820.1, XP_003545404, gmx:100806186 | Start: 10268501 Stop: 10272945, 101 orthologues 12 paralogues. 23 domains and features, 49 oligo probes | Major Facilitator Superfamily (PF07690), The biopterin/folate transporter (PF03092) | Transmembrane transport (GO:0055085), integral component of membrane (GO:0016021) | Folate biopterin transporter 1, chloroplastic (PTHR31585) | Folate-biopterin transporter 6 (I1M978) |
Glyma.14G101200 | AT4G31870.1, KAH1212471 | Start: 10274782 Stop: 10276509, 138 orthologues 13 paralogues. 12 domains and features, 11 oligo probes. | Glutathione peroxidase (PF00255) | Response to oxidative stress (GO:0006979), obsolete oxidation–reduction process (GO:0055114), Glutathione peroxidase activity (GO:0004602) | Glutathione peroxidase (PTHR11592) | Glutathione peroxidase (A0A0R0GIC5), Biological process: response to oxidative stress |
Glyma.14G101300 | AT4G31870.1 KAH1093928 | Start: 10277857 Stop: 10278815, 1 orthologue 7 domains and features, 20 oligo probes. | Glutathione peroxidase (PF00255) | Response to oxidative stress (GO:0006979), obsolete oxidation–reduction process (GO:0055114), Glutathione peroxidase activity (GO:0004602) | Glutathione peroxidase, (PF00255) | Glutathione peroxidase (A0A0R0GNK4), Biological process: response to oxidative stress |
Glyma.14G101400 | AT4G31860.1, KAH1212475 gmx: K17499 | Start: 10285154 Stop: 10291084, 63 orthologues 153 paralogues. 13 domains and features, 34 oligo probes | Protein phosphatase 2C (PF00481) | Protein dephosphorylation (GO:0006470), catalytic activity (GO:0003824), protein serine/threonine phosphatase activity (GO:0004722), serine/threonine protein phosphatase (KOG0699) | Protein phosphatase 2C (PTHR13832) | protein serine/threonine phosphatase (I1M981), Mg2+ Mn2+ metal-ion binding, myosin phosphatase activity, Biological process: protein dephosphorylation |
Glyma.14G101500 | AT4G31180.1, XP_003544559, gmx:100788164 | Start: 10297083 Stop: 10303442, 255 orthologues 14 paralogues 21 domains and features, 56 oligo probes. | tRNA synthetases class II (D, K and N) (PF00152), tRNA-synt_2d (PF01409), tRNA anti-codon (PF01336), KEGG: Mitochondrial biogenesis (K01876) | tRNA aminoacylation for protein translation (GO:0006418), nucleotide binding (GO:0000166), aminoacyl-tRNA ligase activity (GO:0004812), ATP binding (GO:0005524) | Aspartyl/lysyl-tRNA synthetase (PTHR22594) | Aspartate—tRNA ligase (I1M984), [ATP + L-aspartate + tRNA (Asp) = AMP + diphosphate + L-aspartyl-tRNA (Asp)] Cellular component: aminoacyl-tRNA synthetase multienzyme complex, cytosol Molecular function: aspartate-tRNA ligase activity, ATP binding, DNA binding, RNA binding Biological process: aspartyl-tRNA aminoacylation |
Glyma.14G101600 | AT2G18193.1, KAH1212479.1 | Start: 10306650 Stop: 10310815, 492 orthologues 34 paralogues 8 domains and features, 6 oligo probes. | ATPase family associated with various cellular activities (AAA) (PF00004) | ATP binding (GO:0005524) | BCS1 AAA-type ATPase (PTHR23070) | ATPase AAA-type core domain-containing protein (A0A0R0GCB5), Molecular function: ATP binding, ATP hydrolysis activity |
Glyma.14G101700 | AT5G25080.1 NP_001237643.1, gmx:100500667 | Start: 10314547 Stop: 10319982, 13 orthologues. Five domains and features, 53 oligo probes | Sas10/Utp3/C1D family (PF04000) KEGG: Eukaryotic RNA degradation (100500667), Messenger RNA biogenesis (K12592) | KOG: DNA-binding protein C1D involved in regulation of double-strand break repair (KOG4835),AT: Sas10/Utp3/C1D family (AT5G25080.1) | Sun-cor steroid hormone receptor co-repressor, (PTHR15341), Nuclear nucleic acid-binding protein (PTHR15341:S3) | Nuclear nucleic acid-binding protein C1D (C6T2F3). Plays a role in the recruitment of the exosome to pre-rRNA to mediate the 3′-5′ end processing of the 5.8S rRNA. Cellular component: cytoplasm, exosome, nucleolus Molecular function: DNA binding, RNA binding Biological process: maturation of 5.8S rRNA, regulation of gene expression |
Glyma.14G101800 | AT4G31840.1, KAG4962690.1 | Start: 10327216 Stop: 10328729, 57 orthologues and 5 paralogues 14 domains and features, 40 oligo probes | Plastocyanin-like domain (PF02298) | Electron transfer activity (GO:0009055) AT: Early nodulin-like protein 15 (AT4G31840.1) | Blue copper protein JGI N/A IEA (PTHR33021), | Phytocyanin domain-containing protein (I1M987) Cellular component: plasma membrane. Molecular function: electron transfer activity |
Glyma.14G101900 | AT4G31830.1, KAG4962691.1 | Start: 10329690 Stop: 10330667, 101 orthologues and 1 paralogue 5 domains and features, 26 oligo probes | AT: Transmembrane protein (AT4G31830.1) | OS09G0127700 PROTEIN (PTHR33919) | Transmembrane protein (I1M988). Cellular component: membrane | |
Glyma.14G102000 | AT5G10840.1, XP_003544560.1, gmx:100788693 | Start: 10332624 Stop: 10337739, 286 orthologues and 28 paralogues. Twenty domains and features, 34 oligo probes | Endomembrane protein 70 (PF02990), Major Facilitator Superfamily (PF07690) KEGG: Exosome (K17086) | Integral component of membrane (GO:0016021) AT: Endomembrane protein 70 protein family (AT5G10840.1) | Transmembrane 9 superfamily protein (PTHR10766) | Transmembrane 9 superfamily member (I1M989) Cellular component: endosome membrane, Golgi membrane, membrane Biological process: protein localization to membrane |
Glyma.14G102100 | None KAH1093938.1 | Start: 10093844 Stop: 10094237, 34 paralogues. One domain and feature | Uncharacterized protein (A0A0R0GBJ6) | |||
Glyma.14G102200 * | AT1G18400.1, KAH1093939.1 | Start: 10350687 Stop: 10352402, 119 orthologues and 79 paralogues. Ten domains and features, 9 oligo probes | AT: Encodes the brassinosteroid signaling component BEE1 (BR-ENHANCED EXPRESSION 1). Positively modulates the shade avoidance syndrome in Arabidopsis seedlings. (AT1G18400.1) | Sterol regulatory element-binding protein (PTHR12565) Transcription factor bee 3 1 hit (PTHR12565:SF340) | BHLH domain-containing protein (A0A0R0GBI9), Cellular component: nucleus Molecular function: DNA-binding transcription factor activity, protein dimerization activity | |
Glyma.14G102300 | AT1G21280.1 | Start: 10115205 Stop: 10116250, 1 orthologue and 4 paralogues. Four domains and features | Retrotran_gag_2 1 hit (PF14223) | AT: Copia-like polyprotein/retrotransposon (AT1G21280.1) | Retrotran_gag_3 domain-containing protein 1 hit (PTHR47481:SF19) | Retrotran_gag_3 domain-containing protein (A0A0R0GBC5) |
Glyma.14G102400 | AT1G19260.1 XP_014622176.2 gmx:102660685 | Start: 10409336 Stop: 10412210, 53 orthologues and 83 paralogues. Seven domains and features. | Domain of unknown function DUF4371 (PF14291) hAT family C-terminal dimerisation region (PF05699) KEEG: LOW QUALITY PROTEIN: zinc finger MYM-type protein 1 (102660685) | AT: Encodes a ceramide synthase that uses very long chain fatty acyl-CoA and trihydroxy LCB substrates (AT1G19260.1) | General transcription factor 2-related zinc finger protein (PTHR11697) Zinc finger, mym domain-containing 1 1 hit (PTHR11697:SF227) | TTF-type domain-containing protein (K7M603) |
Glyma.14G102500 | AT4G31820.1, XP_003544563.1, gmx:100790291 | Start: 10424224 Stop: 10429543, 159 orthologues and 75 paralogues, 18 domains and features and maps to 29 oligo probes. | BTB/POZ domain (PF00651) NPH3 family (PF03000) KEGG: BTB/POZ domain-containing protein NPY1 (100790291) | Animal organ development (GO:0048513) auxin transport (GO:0060918) obsolete signal transducer activity (GO:0004871) protein binding (GO:0005515) AT: A member of the NPY family genes (NPY1/AT4G31820, NPY2/AT2G14820, NPY3/AT5G67440, NPY4/AT2G23050, NPY5/AT4G37590). Encodes a protein with similarity to NHP3. Contains BTB/POZ domain. Promoter region has canonical auxin response element-binding site and Wus-binding site. Co-localizes to the late endosome with PID. Regulates cotyledon development through control of PIN1 polarity in concert with PID. Also involved in sepal and gynoecia development. AT4G31820.1 | OS12G0117600 Protein (PTHR32370) BTB/POZ Domain-containing protein NPY1 (PTHR32370:SF7) | NPH3 domain-containing protein (K7M604), Pathway: Protein modification, protein ubiquitination Biological process: protein ubiquitination |
Glyma.14G102600 | AT4G31810.1, XP_028198380.1 | Start: 10431488 Stop: 10441267 117 orthologues and 19 paralogues. Eight domains and features, 31 oligo probes | Enoyl-CoA hydratase/isomerase (PF00378), ECH_2 1 hit (PF16113) KEGG: beta-Alanine metabolism (K05605), Valine, leucine and isoleucine degradation (map00280), beta-Alanine metabolism (map00410), Propanoate metabolism (map00640), Metabolic pathways (map01100), Carbon metabolism (map01200) | Metabolic process (GO:0008152), Catalytic activity (GO:0003824) AT: ATP-dependent caseinolytic (Clp) protease/crotonase family protein (AT4G31810.1) | Enoyl-coa hydratase-related (PTHR11941) | 3-hydroxyisobutyryl-CoA hydrolase (I1M992) Hydrolyzes 3-hydroxyisobutyryl-CoA (HIBYL-CoA), a saline catabolite. Has high activity toward isobutyryl-CoA. Could be an isobutyryl-CoA dehydrogenase that functions in valine catabolism. Catalytic activity 3-hydroxy-2-methylpropanoyl-CoA + H2O = 3-hydroxy-2-methylpropanoate + CoA + H+, Molecular function 3-hydroxyisobutyryl-CoA hydrolase activity. Biological process: valine catabolic process, mitochondrial |
Glyma.14G102700 | AT5G10870.1, XP_006596036.1 | Start: 10445611 Stop: 10448775 174 orthologues and 9 paralogues, 9 domains and features 19 oligo probes. | KEGG: Phenylalanine, tyrosine and tryptophan biosynthesis (K01850), Phenylalanine, tyrosine and tryptophan biosynthesis (map00400), metabolic pathways (map01100), Biosynthesis of secondary metabolites (map01110), biosynthesis of amino acids (map01230) | Aromatic amino acid family biosynthetic process (GO:0009073), Chorismate mutase activity (GO:0004106), Chorismate mutase (KOG0795) AT: Encodes chorismate mutase AtCM2 (AT5G10870.1) | Chorismate mutase (PTHR21145) | Chorismate mutase (A0A0R0GIU8), Cellular component: cytoplasm, Molecular function: Chorismate mutase activity. Biological process: amino acid biosynthetic process, aromatic amino acid family biosynthetic process, chorismate metabolic process |
Glyma.14G102800 | AT2G25050.1, KAG5110165.1 | Start: 10486626 Stop: 10508579, 240 orthologues and 36 paralogues, 57 domains and features, 28 oligo probes. | C2 domain of PTEN tumor-suppressor protein (PF10409), DUF4283 1 (PF14111), FH2 2 (PF02181), PTEN_C2 1 (PF10409), RVT_1 1 (PF00078) | AT: Class II formin; modulator of pollen tube elongation (AT5G58160.1) | Formin-related (PTHR23213), FORMIN-J 1 (PTHR45733) FORMIN-J 1 (PTHR45733) | Formin-like protein A0A368UH40 Cellular component: membrane Molecular function: phosphoprotein phosphatase activity |
Glyma.14G102900 * | AT1G80840.1, XP_014622429.1, gmx:100791870 | Start: 10511024 Stop: 10513622 80 orthologues and 44 paralogues. 10 domains and features, 47 oligo probes. | WRKY DNA-binding domain (PF03106), Takusan (PF04822) NUDE_C (PF04880) | Regulation of transcription, DNA-templated (GO:0006355), DNA-binding transcription factor activity (GO:0003700), Sequence-specific DNA binding (GO:0043565), AT: WRKY DNA-BINDING PROTEIN 40 (AT1G80840.1) Pathogen-induced transcription factor | WRKY transcription factor 36-related (PTHR31429), WRKY transcription factor 40-related 1 (PTHR31429:SF38) | WRKY domain-containing protein (I1M995), Cellular component: nucleus Molecular function: DNA-binding transcription factor activity, sequence-specific DNA binding |
Gene ID | Protein Seq | Confidence and Coverage PDB Molecule | PDB Header | Details | ||
---|---|---|---|---|---|---|
Glyma.14G101900 | MDPQKAQAEASKRPPGHGATEVLHQKKSLPFSFTTMTIAGLLITAAVGYSVLYVKKKPEASAKDVTKVSVGVAKPEETHPEN | 82 | Confidence: 5.2% Coverage: 33% | na(+)/h(+) antiporter subunit b | Structure of bacillus pseudofirmus Mrp antiporter complex, monomer | 61% of this sequence is predicted to be disordered. Disordered-region structures cannot be meaningfully predicted. |
Glyma.14G102100 | MVGEEEEPDWMTPYKNFLTQGVLPSHDNEVRCLKWKANYYIILDGELLKRGLIASLLKCLNNQQTDYVIRELHEGICALYIGGRSLATKVTLLTLQRDVDDARSLQTFRAPLLTISIV | 118 | Confidence: 99.4% Coverage: 88% | Transposon ty3-g gag-pol polyprotein | DNA-binding protein |
Name of Gene | Function Reported | References |
---|---|---|
AT5G10810 | As one of 25 candidate AtPNP-As which showed weak interaction strength in the yeast two-hybrid (Y2H) analysis. AtPNP-A = plant natriuretic peptides (PNPs), which comprise a novel class of hormones that systemically affect salt and water balance and responses to plant pathogens. | [34] |
AT5G10820 | A Folate–Biopterin Transporter (FBT) family member. FBTs are essential cofactors in one-carbon metabolism. The FBT family belongs to the major facilitator superfamily (MFS) and contains 12 transmembrane α-helices. | [35] |
AT4G31870 | Glutathione peroxidases 7(GPX7) is one of the major ROS-scavenging enzymes which catalyze the reduction of H2O2 in order to prevent potential H2O2-induced cellular damage. GPX7 (Cys-108, Gln-143, and Trp-197) residues are potential catalytic residues found to be strictly conserved. | [36] |
GPX7 is linked to the establishment of the photooxidative stress tolerance and the basal resistance to P. syringae infection. | [37] | |
GPX7 belongs to a family of thiol-based glutathione peroxidases that catalyzes the reduction of H2O2 and hydroperoxides to H2O or alcohols using glutathione as an electron donor. Plant GPXs are implicated in redox signal transduction. | [38] | |
VaAQ (a putative GARP-type transcription factor of Amur grape (Vitis amurensis) overexpression increases antioxidant enzyme activities and upregulates ROS scavenging-related genes such as GPX7 under cold stress. | [39] | |
Strongly induced in carotenoid-accumulating Arabidopsis roots. | [40] | |
Expressed highly in response to oxidation–reduction processes | [41] | |
Molecular analysis indicates that glutathione peroxidase 7 (GPX7) is specifically induced to compensate for the absence of APx-R (ascorbate peroxidase-related). (Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide, thus minimizing cell injury and modulating signaling pathways in response to this reactive oxygen species.) | [42] | |
The transcript abundance of the GPX7 (At4g31870) was increased by a cryoprotectant treatment. | [43] | |
GPX7 (At4g31870) is increased upon auxin application. | [44] | |
AT4G31860 | A protein phosphatase DEGs involved in Cold Response. | [45] |
AP2C18, highly ABA-inducible. | [46,47] | |
Potentially involved in sucrose-induced atrazine tolerance. Protein phosphatase 2C, putative/PP2C, putative. | [48] | |
One of the differentially expressed genes related to plant hormone signal transduction pathways. Putative function: abscisic acid (aba) signal transduction. | [49] | |
ABA-induced genes in guard cells of Arabidopsis. | [50] | |
AT4G31180 | Mutations in At4g31180 cause the ibi1 (induced disease immunity) phenotype and can block BABA-IR in the background of SA-producing Col-0. (β-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection.) An aspartyl tRNA synthase (AspRS) orthologue (At4g31180) that improves tolerance to biotic stress. The At4g31180 is a target of a synthetic isomer of GABA, called BABA (β-Amino Butyric Acid). Aspartyl tRNA synthetase (AspRS) IBI1 in Arabidopsis thaliana (Arabidopsis) acts as an enantiomer-specific receptor of BABA. The primary function of AspRS enzymes is the charging of tRNAAsp with L-aspartic acid (L-Asp) for protein biosynthesis. | [51] |
One of the genes that is sensitive to infection through the NPR1- or JAR1-dependent pathways. | [52] | |
AT4G31180 (IBI1: impaired in BABA-Induced Disease Immunity 1) is one of the proteins identified in the seed monosome and polysome fractions that, based on their annotation, have been associated with RNA binding. | [53] | |
The IBI1 Receptor of β-Aminobutyric Acid interacts with VOZ transcription factors to regulate abscisic acid signaling and callose-associated defense. | [54] | |
AT4G31180 is a putative interaction partner of AtGRXS17 (Arabidopsis Glutaredoxin S17). | [55] | |
One of the fifty-three predicted genes with similarities to aminoacyl-tRNA synthetases identified in A. thaliana. | [56] | |
AT2G18193 | AT2G18193 is a P-loop nucleoside triphosphate hydrolases that only displayed significant induction upon X-irradiation in wild-type seedlings and not in imbibed seeds or sog1 mutants. (The transcription factor SUPPRESSOR OF GAMMA 1 (SOG1), which is unique to plants but functionally similar to the mammalian tumor suppressor p53.) | [57] |
Expression level of (AAA-ATPase At2g18193-like, P-loop containing nucleoside triphosphate hydrolases superfamily protein) genes that are elevated in MSC (Transcriptome Analyses of Mosaic) mitochondrial mutants of cucumber lines. (DNA repair mechanisms are the regulation of proteolytic processes.) | [58] | |
A gene regulated by sulfur deficiency encoding a protein with possible ATPase activity and metal-ion binding. | [59] | |
A gene whose expression is ABA-inducible in the wild type of Arabidopsis but not in the ros1-4 (REPRESSOR OF SILENCING 1 (ROS1)) mutant. | [60] | |
A gene that is significantly upregulated in pTSPO-PDC1 under drought stress compared to WT plants. (TSPO: tryptophan-rich sensory protein.) | [61] | |
One of the 50 genes upregulated by TBM treatment. (Acetolactate synthase (ALS)-inhibiting herbicide tribenuron methyl (TBM).) | [62] | |
AT5G25080 | Encodes a protein with high homology to Rrp47p and is encoded by At5g25080. (Rrp47p is an exosome-associated protein required for the 3′ processing of stable RNAs, Mitchell et al., 2003.) | [63] |
Candidate gene that includes significantly associated SNPs for traits involved in drought tolerance. Sas10/Utp3/C1D family. | [64] | |
AT5G25080 (RRP47) is a known RNA exosome component with the RRP6 cofactor in plants that mediates protein–protein interactions. | [65] | |
AT4G31840 | Oxido-reductases family: blue copper-binding proteins. A CWP or CW transcript differentially accumulated at a given growth temperature in floral stems. | [66] |
Highly repressed under FPS and SQS expression on the transcription of nuclear genes. (Squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum. | [67] | |
Early nodulin-like protein 15, increased abundance in HS (Humic Substances) treated vs. untreated roots of Arabidopsis. | [68] | |
AT4G31840 (ENODL15). Protein–protein interaction networks linked to aliphatic and indole glucosinolate biosynthetic pathways in Arabidopsis. | [69] | |
One of the top 30 genes that are most downregulated in myb3r1 myb3r4 seedlings. (Mutations in MYB3R1 and MYB3R4 cause pleiotropic developmental defects and preferential downregulation of multiple G2/M-specific genes in Arabidopsis.) | [70] | |
AT4G31830 | A gene that may be involved in the drought response and upregulated in leaf tissue. | [64] |
A gene upregulated in the NAE (N-Acylethanolamines) (and ABA-seedling arrays) annotated as “embryo associated” (e.g., late embryogenesis abundant genes, dehydrins, globulins, oleosins, and vicilins). | [71] | |
A conserved drought-adaptive gene whose function is unclassified. | [72] | |
A gene that shows tissue specificity, as well as expression conservation in rice and Arabidopsis seeds. | [73] | |
Homologue to (Mtr.17894.1.S1_at) a putative ABI3 regulon of Medicago truncatula. | [74] | |
AT5G10840 | Endomembrane protein (70 protein family) that is downregulated by Colletotrichum acutatum in strawberry crown tissue. | [75] |
AT5G10840 encodes a highly altered redox-regulated protein in response to 3 mM bicarbonate treatment in A. thalina var. Landsberg erecta. | [76] | |
A conserved syntenic region that pairs between the pseudo-ancestral Arabidopsis genome and Prunus genetic maps. Endomembrane protein 70, putative TM4 family. | [77] | |
The transmembrane proteins identified from the plasma membrane of poplar differentiating xylem and phloem. Endomembrane protein 70, putative. | [78] | |
AT1G18400 | BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1) (At1g18400) is a low-temperature regulator of flavonoid accumulation. BEE1 and GFR (G2-LIKE FLAVONOID REGULATOR) were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. | [79] |
Arabidopsis BEE1 (AT1G18400) is the orthologue of bHLH056 in papaya. bHLH056 may be involved in the process of ABA stress but has different function compared to Arabidopsis. | [80] | |
A positive regulator of flavonoid accumulation at low temperatures. | [79] | |
A brassinosteroid signaling component and a positive regulator of shade avoidance syndrome. | [81] | |
The putative BEE1 (c42857_g1_i1_AT1G18400) showed lower expression in ovules at 16 DAA (days after anthesis) in small-seeded litchi. | [82] | |
A gene encoding the BR (brassinosteroid) signaling components EE3 (AT1G73830) and EE1 (AT1G18400) that are significantly upregulated by ethanol treatment, suggesting that the BR pathway is also involved in plant responses to ethanol. | [83] | |
BEE1, BR-related transcription factor that are upregulated by BR which encode putative AtMYC2 (bHLH) proteins in A. thaliana. | ||
One of the three redundant brassinosteroid early response genes that encode putative bHLH transcription factors required for normal growth. | [84] | |
One of differential expression genes related to flowering in the Photoperiod pathway. | [85] | |
BEE1 is a positive regulator of photoperiod flowering and promotes flowering by directly binding to the floral integrator FT. | [86] | |
BEE1, -2, and -3 are negative regulators of photomorphogenesis. | [87] | |
Involved in the response to iron deficiency. | [88] | |
AT1G21280 | A SNP predicted to be associated with brown rot resistance in peach. | [89] |
Homologue to Tp57577_TGAC_v2_mRNA41271.v2 gene transcription involved in regrowth influenced by location and environmental conditions response after mowing of red clover (Trifolium pratense). | [90] | |
Is a duplicated region in Chr 10 of soybean associated with seed protein content. | [91] | |
AT1G19260 | LOH3 (At1g19260)-encoded ceramide synthases use very long chain fatty acyl-CoA and trihydroxy long-chain base) LCB (substrates. Overexpression of LOH1 and LOH3 resulted in a significant increase in plant size. LOH1 and LOH3 overexpression results in a significant increase in cell number of root meristems. In contrast to results from LOH2 overexpression lines, LOH1 and LOH3 overexpression results in little change in total sphingolipid content and composition of plants relative to wild-type controls, although small but significant reductions in C16 fatty acid-containing sphingolipids were detected as a result of minor changes throughout the sphingolipidome. | [92] |
Is a zinc finger protein-coding gene. Transposes transcription factor-type zinc finger protein with a HAT dimerization domain. | [93] | |
AT4G31820 | Upregulation related to either auxin metabolism, transport, signaling, or response. | [94] |
Predicted target genes of Gnetum gnemon miRNAs against Arabidopsis thaliana. | [95] | |
One of the shade-regulated KAN1 target genes | [96] | |
Functions redundantly in auxin-mediated organogenesis and root gravitropism with the AGC3 (protein kinase A, cGMP-dependent protein kinase, and protein kinase C) kinase family | [97] | |
AT4G31820 (ENP1/NPY1) is in the PGP Family of Auxin Transport Facilitators. Role in regulation of Auxin Pathway Genes by REV and KAN. (KANADI1 (KAN1), a member of the GARP family of transcription factors, a key regulator of abaxial identity, leaf growth, and meristem formation in Arabidopsis thaliana., REVOLUTA (REV).) | [98] | |
All five NPY genes (NPY1 = At4g31820, NPY2 = At2g14820, NPY3 = At5g67440, NPY4 = At2g23050, and NPY5 = At4g37590) were expressed in tips of Arabidopsis primary roots, but they displayed unique and overlapping patterns. NPY genes play an essential role in root gravitropic responses in Arabidopsis. | [99] | |
NPY genes and AGC kinases define 2 key steps in a pathway that controls YUC-mediated organogenesis in Arabidopsis. | [100] | |
Plays a critical role in auxin-regulated organogenesis in Arabidopsis. | [101] | |
AT4G31810 | (CHY4, At4g31810) is a putative mitochondrial enzyme in valine degradation. A null mutant of 3-hydroxyisobutyryl-CoA hydrolase (CHY4, At4g31810) resulting in an embryo lethal phenotype. CHY4 is essential for embryo development. | [102] |
CHY4 involved in leucine degradation and exhibited a strong association with leucine levels in dark-related datasets. | [103] | |
Candidate gene tagged by the associated SNPs related to four important fatty acid (erucic acid, oleic acid, linoleic acid, and linolenic acid) biosynthesis and metabolism in Brassica napus. Homologue to BnaA08g12350D. Enoyl-CoA hydratase/isomerase family protein. | [104] | |
Downregulated as substrates of the AtICP55 protein. AtICP55 is a secondary processing mitochondrial peptidase. | [105] | |
Identified as one of conserved syntenic regions pairs between the pseudo-ancestral Arabidopsis genome and Prunus genetic maps. Function: enoyl-CoA hydratase/isomerase family protein. | [77] | |
Candidate stigma-specific gene from S. squalidus. Function: Cys protease | [106] | |
Involved in Leu degradation. Function: enoyl-CoA hydratases. | [107] | |
AT5G10870 | Chorismate mutase gene involved in VTE (vitamin E) biosynthesis. Chloroplastic. | [108] |
Upregulated gene in the resistant genotype (Myzus persicae) after GPA infestation. Shikimate pathway, chorismate mutase 2 | [109] | |
AthCM2 (AT5G10870) involved in the shikimate pathway that directs bulk carbon flow toward biosynthesis of aromatic amino acids. | [110] | |
Contributes to phenylalanine biosynthesis in Arabidopsis. | [111] | |
Involved in shikimate and phenylalanine biosynthesis in plants and algae. | [112] | |
The activity of AtCM2 appears to be insensitive to Phe and Tyr. (The first committed step of Phe biosynthesis from chorismate is catalyzed by chorismate mutase (CM).) | [113] | |
Involved in metabolic pathways of amino acids and their associated genes. | [114] | |
Belonging to the Asp family and the aromatic amino acid (AAA) networks. | [115] | |
AT2G25050 | Encoding the actin-binding formin homology FH2 protein. Around one-third of these CHG-DMCs (cytosine methylation sequence) located within a 3.3 kb region on chromosome 2 within the gene At2g25050. | [116] |
AT2G25050 (AtFH18) is 81% close phylogenetic relationships to GmFH3 in G. max. | [117] | |
Associated with the cell cycle classification and involves the division of specific cells to form the final apple fruit shape. | [118] | |
AT1G80840 | AT1G80840 (WRKY40) encodes a pathogen-induced TF and harbors five associated distal peaks with its promoter. | [119] |
A conserved double-W box in the promoter of CaWRKY40 mediates autoregulation during response to pathogen attack and heat stress in pepper. | [120] | |
Associated with plant defense response. | [121] | |
Codes for a pathogen-induced transcription factor. | [122] | |
Common downstream gene of SA and upregulation of this gene diminished at high temperature by SA. | [123] | |
Overexpression of AtWRKY40 enhanced drought stress responses, presumably by interfering with the reactive oxygen species (ROS)-scavenging pathway and osmolyte accumulation process. | [124] | |
Involved in the response to abiotic stresses. | [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serson, W.R.; Gishini, M.F.S.; Stupar, R.M.; Stec, A.O.; Armstrong, P.R.; Hildebrand, D. Identification and Candidate Gene Evaluation of a Large Fast Neutron-Induced Deletion Associated with a High-Oil Phenotype in Soybean Seeds. Genes 2024, 15, 892. https://doi.org/10.3390/genes15070892
Serson WR, Gishini MFS, Stupar RM, Stec AO, Armstrong PR, Hildebrand D. Identification and Candidate Gene Evaluation of a Large Fast Neutron-Induced Deletion Associated with a High-Oil Phenotype in Soybean Seeds. Genes. 2024; 15(7):892. https://doi.org/10.3390/genes15070892
Chicago/Turabian StyleSerson, William R., Mohammad Fazel Soltani Gishini, Robert M. Stupar, Adrian O. Stec, Paul R. Armstrong, and David Hildebrand. 2024. "Identification and Candidate Gene Evaluation of a Large Fast Neutron-Induced Deletion Associated with a High-Oil Phenotype in Soybean Seeds" Genes 15, no. 7: 892. https://doi.org/10.3390/genes15070892
APA StyleSerson, W. R., Gishini, M. F. S., Stupar, R. M., Stec, A. O., Armstrong, P. R., & Hildebrand, D. (2024). Identification and Candidate Gene Evaluation of a Large Fast Neutron-Induced Deletion Associated with a High-Oil Phenotype in Soybean Seeds. Genes, 15(7), 892. https://doi.org/10.3390/genes15070892