The CRISPR-Cas System and Clinical Applications of CRISPR-Based Gene Editing in Hematology with a Focus on Inherited Germline Predisposition to Hematologic Malignancies
Abstract
:1. Introduction
2. The CRISPR-Cas System in Prokaryotes
2.1. Discovery of the CRISPR-Cas System
2.2. Discovery of CRISPR as a Mediator of Adaptive Immunity in Microbial Organisms
2.3. Mechanisms of CRISPR: How These Loci Work to Produce Adaptive Immunity
2.3.1. Mechanisms Involving Cas Proteins and Direct Interaction with DNA
- Adaptation: the invading foreign DNA sequences, or the progenitor spacers (protospacers) are recognized by Cas proteins and those sequences are integrated into the host genome as spacers in the CRISPR loci.
- Expression: the spacers integrated into the host genome are expressed as crRNA, which form a ribonucleoprotein unit with the Cas protein complex described above to process as single-guide RNA sequences.
- Interference: the crRNA sequences cause interference with subsequently invading phage or plasmid genetic material to prevent the foreign genetic materials from infecting the host microorganism.
2.3.2. Novel Mechanism: The Discovery of an Alternative Pathway of CRISPR Activation Using trans-Activating CRISPR RNA (tracrRNA)
2.3.3. Reclassification of the CRISPR-Cas Proteins in 2011
3. Development of CRISPR-Cas9 Single-Guide RNA-Mediated Gene Editing
Further Developments: Additional CRISPR-Cas Systems, Base Editing, and Prime Editing
4. Hematopoietic Stem Cell Transplantation with Gene-Edited Hematopoietic Stem Cells
5. Clinical Applications of CRISPR-Cas-Based Gene Editing
5.1. Ethical Considerations: Meeting in Napa, California
5.2. Selected Clinical Research Applications
5.2.1. Chimeric Antigen Receptor (CAR)-T Cell Therapies in Hematologic Malignancies
5.2.2. Ex Vivo Adenine Base Editor Gene Therapy in a Primary Immunodeficiency Disorder
5.2.3. In Vivo CRISPR-Based Gene Editing, Including Editing Hematopoietic Stem Cells
5.2.4. Sickle Cell Disease and Transfusion-Dependent β-Thalassemia
5.2.5. First Clinical Trial Using Prime Editing Gene Therapy: Chronic Granulomatous Disease
6. Known Inherited Germline Predispositions to Hematologic Malignancies
6.1. Diseases with Germline Predisposition to Hematologic Malignancies in the Pediatric and Adult Age Groups:
6.2. Gene Therapy Applications in Inherited Bone Marrow Syndromes
7. Why Select CRISPR-Based Gene Editing to Treat Individuals with an Inherited or Germline Predisposition to Hematologic Cancers?
- Individual carriers of germline predisposition to cancer who have developed a hematologic malignancy such as AML or myelodysplastic neoplasm or any other hematolymphoid malignancy associated with that germline defect.
- Family members of a proband diagnosed with a malignancy and carrying the germline predisposition, but the related members are healthy and have not developed any malignancy.
- Potential donors for an allogeneic HSCT to be given to a patient with a germline predisposition with developed cancer such as AML, including related (familial) or unrelated donors.
8. When Could Patients Be Considered for CRISPR-Based Gene Editing to Treat Individuals with an Inherited or Germline Predisposition to Hematologic Cancers?
- Individuals diagnosed with an aggressive hematologic malignancy such as AML and found to have an underlying germline genetic predisposition to malignancy are often offered an allogeneic HSCT. For example, AML with germline CEBPA mutations, included in Table 3 as the first entry in the familial AML and myelodysplastic neoplasm group, has a natural history of relapsed AML, which can only be treated to prevent future relapses by an allogeneic HSCT [163]. An autologous HSCT with gene-edited hematopoietic stem cells in individuals carrying these germline mutations, if performed in complete remission after the first occurrence of AML, would cure these individuals of their germline predisposition and prevent relapsed AML.
- Defects in the other genes shown in Table 3 in this same group predispose to both myelodysplastic neoplasms and AML, and similar considerations as in AML with germline mutated CEBPA described above could be applied to developing gene therapies in individuals in each of these groups after the development of a hematologic malignancy.
- Other individuals carrying a pathogenic germline mutation and identified clinically as having a high risk of developing a malignancy, in whom a pre-emptive allogeneic HSCT is currently attempted before the development of other complications such as in GATA2 germline abnormalities, may also benefit from CRISPR-based gene-edited autologous HSCT.
- Further, gene-edited hematopoietic stem cells from an HLA-matched familial donor could be used for a matched donor allogeneic HSCT for a patient with a hematologic malignancy carrying a familial germline mutation, to prevent the possibility of transmitting a leukemic predisposition through the donor’s transplanted cells and eliminating the possibility of a donor-derived leukemia in the recipient.
9. Which Patients with an Inherited or Germline Predisposition to Hematologic Cancers Could Be Selected for CRISPR-Based Gene Editing?
- All patients with inherited bone marrow failure syndromes would benefit since bone marrow failure is a serious condition, and if progressive bone marrow failure could be prevented by a CRISPR-based genetically edited autologous transplant, that would be a huge breakthrough for these patients.
- Most diseases in the group with inherited tumor syndromes shown in Table 3 would also benefit from this treatment when developed. For example, patients with Li–Fraumeni syndrome have a high lifetime risk of developing cancer, which can even include multiple types of cancer, and these patients and family members undergo a lifetime of surveillance for cancer in various body sites. The cancers arise due to the loss of the tumor suppressor function of TP53, the protein encoded by the TP53 gene, which normally preserves genomic stability by acting on many downstream targets (see cited references [195,196,197,198,199]). Germline defects in TP53 in Li-Fraumeni syndrome are often missense mutations. The toughest part of developing any gene therapy to treat or cure this hereditary disease would be the fact that the TP53 mutations in this disease are present in many non-hematologic tissues. Nonetheless, with so many technological advances in gene editing and multiple clinical trials using base editing currently in progress in humans, and showing clinical results unimaginable even a decade ago, including in treating inherited diseases of the eye and retina, the author hopes that worldwide experts in the field will design preclinical studies to bring to clinical studies eventually.
- In the group with familial AML and myelodysplastic neoplasms shown in Table 3, despite much progress in the last decade in our understanding of these genetic predispositions to AML and myelodysplastic neoplasms, it is not yet known throughout this genetic spectrum which individuals harboring a germline predisposition are at the highest risk for developing a malignancy. Inherited thrombocytopenias due to RUNX1, ANKRD26, or ETV6 germline mutations have variable disease penetrance, with a maximum of 40–60%, and highly variable inter-familial and intra-familial clinical features that may be mild to severe. The risk of developing a malignancy is often identified only after the individual carrying a pathogenic germline mutation develops a hematologic malignancy. Therefore, as described above, patients who need an allogeneic HSCT could benefit from a CRISPR-based gene-editing approach, which requires study.
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, E.; Doudna, J.A. Biotechnology: Rewriting a genome. Nature 2013, 495, 50–51. [Google Scholar] [CrossRef] [PubMed]
- Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef] [PubMed]
- Knott, G.J.; Doudna, J.A. CRISPR-Cas guides the future of genetic engineering. Science 2018, 361, 866–869. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Doudna, J.A. CRISPR technology: A decade of genome editing is only the beginning. Science 2023, 379, eadd8643. [Google Scholar] [CrossRef] [PubMed]
- Gragert, L.; Eapen, M.; Williams, E.; Freeman, J.; Spellman, S.; Baitty, R.; Hartzman, R.; Rizzo, J.D.; Horowitz, M.; Confer, D.; et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N. Engl. J. Med. 2014, 371, 339–348. [Google Scholar] [CrossRef] [PubMed]
- New York State Department of Health. The Need for Blood Stem Cell Donors. Available online: https://www.health.ny.gov/professionals/patients/donation/bone_marrow/ (accessed on 22 June 2024).
- Copelan, E.A. Hematopoietic stem-cell transplantation. N. Engl. J. Med. 2006, 354, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.A.; Gray, D.; Lomova, A.; Kohn, D.B. Hematopoietic Stem Cell Gene Therapy: Progress and Lessons Learned. Cell Stem Cell 2017, 21, 574–590. [Google Scholar] [CrossRef] [PubMed]
- National Marrow Donor Program. Available online: https://bethematch.org/transplant-basics/how-blood-stem-cell-transplants-work/how-does-a-patients-ethnic-background-affect-matching/ (accessed on 22 June 2024).
- Malard, F.; Holler, E.; Sandmaier, B.M.; Huang, H.; Mohty, M. Acute graft-versus-host disease. Nat. Rev. Dis. Primers 2023, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Holtan, S.G.; Yu, J.; Paranagama, D.; Tang, J.; Choe, H.K.; Naim, A.; Joachim Deeg, H.; Galvin, J. Disease progression, hospital readmissions, and clinical outcomes for patients with steroid-refractory acute graft-versus-host disease: A multicenter, retrospective study. Bone Marrow Transplant. 2022, 57, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Arora, M.; Wang, T.; Spellman, S.R.; He, W.; Couriel, D.R.; Urbano-Ispizua, A.; Cutler, C.S.; Bacigalupo, A.A.; Battiwalla, M.; et al. Graft-vs-Host Disease Working Committee of the CIBMTR. Increasing incidence of chronic graft-versus-host disease in allogeneic transplantation: A report from the Center for International Blood and Marrow Transplant Research. Biol. Blood Marrow Transplant. 2015, 21, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Cooke, K.R.; Luznik, L.; Sarantopoulos, S.; Hakim, F.T.; Jagasia, M.; Fowler, D.H.; van den Brink, M.R.M.; Hansen, J.A.; Parkman, R.; Miklos, D.B.; et al. The Biology of Chronic Graft-versus-Host Disease: A Task Force Report from the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Biol. Blood Marrow Transplant. 2017, 23, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, B.K. Updates in chronic graft-versus-host disease. Hematology Am. Soc. Hematol. Educ. Program. 2021, 2021, 648–654. [Google Scholar] [CrossRef] [PubMed]
- DeFilipp, Z.; Alousi, A.M.; Pidala, J.A.; Carpenter, P.A.; Onstad, L.E.; Arai, S.; Arora, M.; Cutler, C.S.; Flowers, M.E.D.; Kitko, C.L.; et al. Nonrelapse mortality among patients diagnosed with chronic GVHD: An updated analysis from the Chronic GVHD Consortium. Blood Adv. 2021, 5, 4278–4284. [Google Scholar] [CrossRef] [PubMed]
- The UK Medicines and Healthcare Products Regulatory Agency Press Release. MHRA Authorises World-First Gene Therapy That Aims to Cure Sickle-Cell Disease and Transfusion-Dependent β-Thalassemia. 16 November 2023. Available online: https://www.gov.uk/government/news/mhra-authorises-world-first-gene-therapy-that-aims-to-cure-sickle-cell-disease-and-transfusion-dependent-thalassemia (accessed on 22 June 2024).
- U.S. Food and Drug Administration News Release. FDA Approves First Gene Therapies to Treat Patients with Sickle Cell Disease. 8 December 2023. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-first-gene-therapies-treat-patients-sickle-cell-disease (accessed on 30 May 2024).
- The European Medicines Agency (EMA). First Gene Editing Therapy to Treat Beta Thalassemia and Severe Sickle Cell Disease. 15 December 2024. Available online: https://www.ema.europa.eu/en/news/first-gene-editing-therapy-treat-beta-thalassemia-and-severe-sickle-cell-disease%20Accessed%20June%2022 (accessed on 22 June 2024).
- Kansal, R. Germline predisposition in hematologic malignancies. In Comprehensive Hematology and Stem Cell Research; Rezaei, N., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–38, In press. [Google Scholar] [CrossRef]
- Faber, M.G.; Griffiths, E.A.; Roy, A.M.; Faisal, M.S.; Patel, R. Inherited germline predisposition in hematologic malignancy. In Acute Myeloid Leukemia: Diagnosis, Prognosis, Treatment and Outcomes; Kansal, R., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2024; pp. 313–375. [Google Scholar] [CrossRef]
- Niederwieser, D.; Baldomero, H.; Bazuaye, N.; Bupp, C.; Chaudhri, N.; Corbacioglu, S.; Elhaddad, A.; Frutos, C.; Galeano, S.; Hamad, N.; et al. One and a half million hematopoietic stem cell transplants: Continuous and differential improvement in worldwide access with the use of non-identical family donors. Haematologica 2022, 107, 1045–1053. [Google Scholar] [CrossRef] [PubMed]
- Tokaz, M.C.; Baldomero, H.; Cowan, A.J.; Saber, W.; Greinix, H.; Koh, M.B.C.; Kröger, N.; Mohty, M.; Galeano, S.; Okamoto, S.; et al. An Analysis of the Worldwide Utilization of Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia. Transplant. Cell Ther. 2023, 29, e1–e279. [Google Scholar] [CrossRef] [PubMed]
- Nasri, M.; Ritter, M.U.; Mir, P.; Dannenmann, B.; Kaufmann, M.M.; Arreba-Tutusaus, P.; Xu, Y.; Borbaran-Bravo, N.; Klimiankou, M.; Lengerke, C.; et al. CRISPR-Cas9n-mediated ELANE promoter editing for gene therapy of severe congenital neutropenia. Mol. Ther. 2024, 32, 1628–1642. [Google Scholar] [CrossRef] [PubMed]
- Ishino, Y.; Shinagawa, H.; Makino, K.; Amemura, M.; Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987, 169, 5429–5433. [Google Scholar] [CrossRef] [PubMed]
- Mojica, F.J.; Juez, G.; Rodríguez-Valera, F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol. Microbiol. 1993, 9, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Mojica, F.J.; Ferrer, C.; Juez, G.; Rodríguez-Valera, F. Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 1995, 17, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Mojica, F.J.; Rodriguez-Valera, F. The discovery of CRISPR in archaea and bacteria. FEBS J. 2016, 283, 3162–3169. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Fernandez, C. Francis Mojica, the Spanish Scientist Who Discovered CRISPR. Labiotech. 8 April 2019, Updated 23 June 2022. Available online: https://www.labiotech.eu/interview/francis-mojica-crispr-interview/ (accessed on 22 May 2024).
- Jansen, R.; Embden, J.D.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002, 43, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Ishino, Y.; Krupovic, M.; Forterre, P. History of CRISPR-Cas from Encounter with a Mysterious Repeated Sequence to Genome Editing Technology. J. Bacteriol. 2018, 200, e00580-17. [Google Scholar] [CrossRef] [PubMed]
- Haft, D.H.; Selengut, J.; Mongodin, E.F.; Nelson, K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 2005, 1, e60. [Google Scholar] [CrossRef] [PubMed]
- Mojica, F.J.; Díez-Villaseñor, C.; García-Martínez, J.; Soria, E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005, 60, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Pourcel, C.; Salvignol, G.; Vergnaud, G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 2005, 151 Pt 3, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Bolotin, A.; Quinquis, B.; Sorokin, A.; Ehrlich, S.D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005, 151 Pt 8, 2551–2561. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Horvath, P.; Romero, D.A.; Coûté-Monvoisin, A.C.; Richards, M.; Deveau, H.; Moineau, S.; Boyaval, P.; Fremaux, C.; Barrangou, R. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 2008, 190, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Brouns, S.J.; Jore, M.M.; Lundgren, M.; Westra, E.R.; Slijkhuis, R.J.; Snijders, A.P.; Dickman, M.J.; Makarova, K.S.; Koonin, E.V.; van der Oost, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Carte, J.; Wang, R.; Li, H.; Terns, R.M.; Terns, M.P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes. Dev. 2008, 22, 3489–3496. [Google Scholar] [CrossRef] [PubMed]
- Carte, J.; Pfister, N.T.; Compton, M.M.; Terns, R.M.; Terns, M.P. Binding and cleavage of CRISPR RNA by Cas6. RNA 2010, 16, 2181–2188. [Google Scholar] [CrossRef] [PubMed]
- Marraffini, L.A.; Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 2008, 322, 1843–1845. [Google Scholar] [CrossRef] [PubMed]
- Furuya, E.Y.; Lowy, F.D. Antimicrobial-resistant bacteria in the community setting. Nat. Rev. Microbiol. 2006, 4, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Mojica, F.J.M.; Díez-Villaseñor, C.; García-Martínez, J.; Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 2009, 155 Pt 3, 733–740. [Google Scholar] [CrossRef] [PubMed]
- van der Oost, J.; Jore, M.M.; Westra, E.R.; Lundgren, M.; Brouns, S.J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 2009, 34, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Garneau, J.E.; Dupuis, M.È.; Villion, M.; Romero, D.A.; Barrangou, R.; Boyaval, P.; Fremaux, C.; Horvath, P.; Magadán, A.H.; Moineau, S. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 2010, 468, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Sontheimer, E.J.; Marraffini, L.A. Microbiology: Slicer for DNA. Nature 2010, 468, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Haurwitz, R.E.; Jinek, M.; Wiedenheft, B.; Zhou, K.; Doudna, J.A. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 2010, 329, 1355–1358. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, S.H.; Haurwitz, R.E.; Doudna, J.A. Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. RNA 2012, 18, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Abbott, A. The quiet revolutionary: How the co-discovery of CRISPR explosively changed Emmanuelle Charpentier’s life. Nature 2016, 532, 432–434. [Google Scholar] [CrossRef] [PubMed]
- Deltcheva, E.; Chylinski, K.; Sharma, C.M.; Gonzales, K.; Chao, Y.; Pirzada, Z.A.; Eckert, M.R.; Vogel, J.; Charpentier, E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 2011, 471, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Haft, D.H.; Barrangou, R.; Brouns, S.J.; Charpentier, E.; Horvath, P.; Moineau, S.; Mojica, F.J.; Wolf, Y.I.; Yakunin, A.F.; et al. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 2011, 9, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Ledford, H.; Callaway, E. Pioneers of revolutionary CRISPR gene editing win chemistry Nobel. Nature 2020, 586, 346–347. [Google Scholar] [CrossRef] [PubMed]
- Sapranauskas, R.; Gasiunas, G.; Fremaux, C.; Barrangou, R.; Horvath, P.; Siksnys, V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 2011, 39, 9275–9282. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, S.H.; Redding, S.; Jinek, M.; Greene, E.C.; Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014, 507, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Mussolino, C.; Cathomen, T. RNA guides genome engineering. Nat. Biotechnol. 2013, 31, 208–209. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013, 339, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; East, A.; Cheng, A.; Lin, S.; Ma, E.; Doudna, J. RNA-programmed genome editing in human cells. Elife 2013, 2, e00471. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liang, D.; Wang, Y.; Bai, M.; Tang, W.; Bao, S.; Yan, Z.; Li, D.; Li, J. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 2013, 13, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Nishimasu, H.; Ran, F.A.; Hsu, P.D.; Konermann, S.; Shehata, S.I.; Dohmae, N.; Ishitani, R.; Zhang, F.; Nureki, O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014, 156, 935–949. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, J.K.; Kranzusch, P.J.; Noeske, J.; Wright, A.V.; Davies, C.W.; Doudna, J.A. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat. Struct. Mol. Biol. 2014, 21, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, J.K.; Lee, A.S.; Engelman, A.; Doudna, J.A. Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity. Nature 2015, 519, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Sharon, I.; Banfield, J.F. Microbiology. Genomes from metagenomics. Science 2013, 342, 1057–1058. [Google Scholar] [CrossRef] [PubMed]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Shmakov, S.; Abudayyeh, O.O.; Makarova, K.S.; Wolf, Y.I.; Gootenberg, J.S.; Semenova, E.; Minakhin, L.; Joung, J.; Konermann, S.; Severinov, K.; et al. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Mol. Cell 2015, 60, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L.; et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353, aaf5573. [Google Scholar] [CrossRef] [PubMed]
- East-Seletsky, A.; O’Connell, M.R.; Knight, S.C.; Burstein, D.; Cate, J.H.; Tjian, R.; Doudna, J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016, 538, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Burstein, D.; Harrington, L.B.; Strutt, S.C.; Probst, A.J.; Anantharaman, K.; Thomas, B.C.; Doudna, J.A.; Banfield, J.F. New CRISPR-Cas systems from uncultivated microbes. Nature 2017, 542, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Shmakov, S.; Smargon, A.; Scott, D.; Cox, D.; Pyzocha, N.; Yan, W.; Abudayyeh, O.O.; Gootenberg, J.S.; Makarova, K.S.; Wolf, Y.I.; et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 2017, 15, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Makarova, K.S.; Zhang, F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 2017, 37, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.X.; Chong, S.; Zhang, H.; Makarova, K.S.; Koonin, E.V.; Cheng, D.R.; Scott, D.A. Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol. Cell 2018, 70, 327–339.e5. [Google Scholar] [CrossRef] [PubMed]
- Harrington, L.B.; Burstein, D.; Chen, J.S.; Paez-Espino, D.; Ma, E.; Witte, I.P.; Cofsky, J.C.; Kyrpides, N.C.; Banfield, J.F.; Doudna, J.A. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018, 362, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.X.; Hunnewell, P.; Alfonse, L.E.; Carte, J.M.; Keston-Smith, E.; Sothiselvam, S.; Garrity, A.J.; Chong, S.; Makarova, K.S.; Koonin, E.V.; et al. Functionally diverse type V CRISPR-Cas systems. Science 2019, 363, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Murugan, K.; Babu, K.; Sundaresan, R.; Rajan, R.; Sashital, D.G. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Mol. Cell 2017, 68, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; Alkhnbashi, O.S.; Costa, F.; Shah, S.A.; Saunders, S.J.; Barrangou, R.; Brouns, S.J.; Charpentier, E.; Haft, D.H.; et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 2015, 13, 722–736. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; Iranzo, J.; Shmakov, S.A.; Alkhnbashi, O.S.; Brouns, S.J.J.; Charpentier, E.; Cheng, D.; Haft, D.H.; Horvath, P.; et al. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants. Nat. Rev. Microbiol. 2020, 18, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Pillon, M.C.; Gordon, J.; Frazier, M.N.; Stanley, R.E. HEPN RNases—An emerging class of functionally distinct RNA processing and degradation enzymes. Crit. Rev. Biochem. Mol. Biol. 2021, 56, 88–108. [Google Scholar] [CrossRef] [PubMed]
- Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79, 181–211. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.D.; Richardson, C.D.; Corn, J.E. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol. 2019, 21, 1468–1478. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ren, S.; Yu, S.; Pan, H.; Li, T.; Ge, S.; Zhang, J.; Xia, N. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks. Int. J. Mol. Sci. 2020, 21, 6461. [Google Scholar] [CrossRef] [PubMed]
- Komor, A.C.; Kim, Y.B.; Packer, M.S.; Zuris, J.A.; Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424. [Google Scholar] [CrossRef] [PubMed]
- Gaudelli, N.M.; Komor, A.C.; Rees, H.A.; Packer, M.S.; Badran, A.H.; Bryson, D.I.; Liu, D.R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 2017, 551, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, A.V.; Koblan, L.W.; Liu, D.R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 2020, 38, 824–844. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.J.; Hussmann, J.A.; Yan, J.; Knipping, F.; Ravisankar, P.; Chen, P.F.; Chen, C.; Nelson, J.W.; Newby, G.A.; Sahin, M.; et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 2021, 184, 5635–5652.e29. [Google Scholar] [CrossRef] [PubMed]
- Doman, J.L.; Pandey, S.; Neugebauer, M.E.; An, M.; Davis, J.R.; Randolph, P.B.; McElroy, A.; Gao, X.D.; Raguram, A.; Richter, M.F.; et al. Phage-assisted evolution and protein engineering yield compact, efficient prime editors. Cell 2023, 186, 3983–4002.e26. [Google Scholar] [CrossRef] [PubMed]
- Ledford, H. Super-precise new CRISPR tool could tackle a plethora of genetic diseases. Nature 2019, 574, 464–465. [Google Scholar] [CrossRef] [PubMed]
- Pickar-Oliver, A.; Gersbach, C.A. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 2019, 20, 490–507. [Google Scholar] [CrossRef] [PubMed]
- Kan, M.J.; Doudna, J.A. Treatment of Genetic Diseases With CRISPR Genome Editing. JAMA 2022, 328, 980–981. [Google Scholar] [CrossRef] [PubMed]
- Ledford, H. CRISPR 2.0: A new wave of gene editors heads for clinical trials. Nature 2023, 624, 234–235. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.; Thrasher, A.J.; Aiuti, A. Gene therapy using haematopoietic stem and progenitor cells. Nat. Rev. Genet. 2021, 22, 216–234. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Romito, M.; Rivers, E.; Turchiano, G.; Blattner, G.; Vetharoy, W.; Ladon, D.; Andrieux, G.; Zhang, F.; Zinicola, M.; et al. Targeted gene correction of human hematopoietic stem cells for the treatment of Wiskott-Aldrich Syndrome. Nat. Commun. 2020, 11, 4034. [Google Scholar] [CrossRef] [PubMed]
- Cowan, M.J.; Yu, J.; Facchino, J.; Fraser-Browne, C.; Sanford, U.; Kawahara, M.; Dara, J.; Long-Boyle, J.; Oh, J.; Chan, W.; et al. Lentiviral Gene Therapy for Artemis-Deficient SCID. N. Engl. J. Med. 2022, 387, 2344–2355. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. Gene-editing pipeline takes off. Nat. Rev. Drug Discov. 2020, 19, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Move over ZFNs. Nat. Biotechnol. 2011, 29, 681–684. [CrossRef] [PubMed]
- Rusk, N. TALEs for the masses. Nat. Methods 2011, 8, 197. [Google Scholar] [CrossRef] [PubMed]
- Wah, D.A.; Bitinaite, J.; Schildkraut, I.; Aggarwal, A.K. Structure of FokI has implications for DNA cleavage. Proc. Natl. Acad. Sci. USA 1998, 95, 10564–10569. [Google Scholar] [CrossRef] [PubMed]
- Doudna, J. Genome-editing revolution: My whirlwind year with CRISPR. Nature 2015, 528, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Baltimore, D.; Berg, P.; Botchan, M.; Carroll, D.; Charo, R.A.; Church, G.; Corn, J.E.; Daley, G.Q.; Doudna, J.A.; Fenner, M.; et al. Biotechnology. A prudent path forward for genomic engineering and germline gene modification. Science 2015, 348, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.S.; Domm, J.; Eustace, B.K.; Foell, J.; de la Fuente, J.; Grupp, S.; Handgretinger, R.; et al. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. N. Engl. J. Med. 2021, 384, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Kingwell, K. Base editors hit the clinic. Nat. Rev. Drug Discov. 2022, 21, 545–547. [Google Scholar] [CrossRef] [PubMed]
- Gundry, M.; Sankaran, V.G. Hacking hematopoiesis—Emerging tools for examining variant effects. Dis. Model. Mech. 2023, 16, dmm049857. [Google Scholar] [CrossRef] [PubMed]
- June, C.H.; Sadelain, M. Chimeric Antigen Receptor Therapy. N. Engl. J. Med. 2018, 379, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Kansal, R. Novel immunotherapies in hematologic and non-hematologic cancers. In Precision Medicine: Where Are We And Where Are We Going? Kansal, R., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2023; pp. 247–282. [Google Scholar] [CrossRef]
- Chiesa, R.; Georgiadis, C.; Syed, F.; Zhan, H.; Etuk, A.; Gkazi, S.A.; Preece, R.; Ottaviano, G.; Braybrook, T.; Chu, J.; et al. Base-Edited CAR7 T Cells for Relapsed T-Cell Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2023, 389, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Casirati, G.; Cosentino, A.; Mucci, A.; Salah Mahmoud, M.; Ugarte Zabala, I.; Zeng, J.; Ficarro, S.B.; Klatt, D.; Brendel, C.; Rambaldi, A.; et al. Epitope editing enables targeted immunotherapy of acute myeloid leukaemia. Nature 2023, 621, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Wellhausen, N.; O’Connell, R.P.; Lesch, S.; Engel, N.W.; Rennels, A.K.; Gonzales, D.; Herbst, F.; Young, R.M.; Garcia, K.C.; Weiner, D.; et al. Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Sci. Transl. Med. 2023, 15, eadi1145. [Google Scholar] [CrossRef] [PubMed]
- Marone, R.; Landmann, E.; Devaux, A.; Lepore, R.; Seyres, D.; Zuin, J.; Burgold, T.; Engdahl, C.; Capoferri, G.; Dell’Aglio, A.; et al. Epitope-engineered human hematopoietic stem cells are shielded from CD123-targeted immunotherapy. J. Exp. Med. 2023, 220, e20231235. [Google Scholar] [CrossRef] [PubMed]
- Bras, A.E.; de Haas, V.; van Stigt, A.; Jongen-Lavrencic, M.; Beverloo, H.B.; Te Marvelde, J.G.; Zwaan, C.M.; van Dongen, J.J.M.; Leusen, J.H.W.; van der Velden, V.H.J. CD123 expression levels in 846 acute leukemia patients based on standardized immunophenotyping. Cytometry B Clin. Cytom. 2019, 96, 134–142. [Google Scholar] [CrossRef] [PubMed]
- McAuley, G.E.; Yiu, G.; Chang, P.C.; Newby, G.A.; Campo-Fernandez, B.; Fitz-Gibbon, S.T.; Wu, X.; Kang, S.L.; Garibay, A.; Butler, J.; et al. Human T cell generation is restored in CD3δ severe combined immunodeficiency through adenine base editing. Cell 2023, 186, 1398–1416.e23. [Google Scholar] [CrossRef] [PubMed]
- Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N. Engl. J. Med. 2021, 385, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Breda, L.; Papp, T.E.; Triebwasser, M.P.; Yadegari, A.; Fedorky, M.T.; Tanaka, N.; Abdulmalik, O.; Pavani, G.; Wang, Y.; Grupp, S.A.; et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 2023, 381, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Piel, F.B.; Steinberg, M.H.; Rees, D.C. Sickle Cell Disease. N. Engl. J. Med. 2017, 376, 1561–1573. [Google Scholar] [CrossRef] [PubMed]
- Kattamis, A.; Kwiatkowski, J.L.; Aydinok, Y. Thalassaemia. Lancet 2022, 399, 2310–2324. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. A Study Evaluating the Safety and Efficacy of bb1111 in Severe Sickle Cell Disease. #NCT02140554. Available online: https://clinicaltrials.gov/study/NCT02140554#study-overview (accessed on 25 June 2024).
- Bluebird Bio Inc. LyfgeniaTM (Lovotibeglogene Autotemcel) U.S. Resident Website. Studies and Results. Available online: https://www.lyfgenia.com/clinical-trial-results (accessed on 25 June 2024).
- Bauer, D.E.; Orkin, S.H. Hemoglobin switching’s surprise: The versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr. Opin. Genet. Dev. 2015, 33, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Vertex Pharmaceuticals Incorporated Website for Casgevy. Available online: https://www.casgevy.com/ (accessed on 31 May 2024).
- Stein, R. Sickle Cell Patient’s Success with Gene Editing Raises Hopes and Questions. Available online: https://www.npr.org/sections/health-shots/2023/03/16/1163104822/crispr-gene-editing-sickle-cell-success-cost-ethics (accessed on 3 May 2024).
- Ye, L.; Wang, J.; Tan, Y.; Beyer, A.I.; Xie, F.; Muench, M.O.; Kan, Y.W. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Proc. Natl. Acad. Sci. USA 2016, 113, 10661–10665. [Google Scholar] [CrossRef] [PubMed]
- Newby, G.A.; Yen, J.S.; Woodard, K.J.; Mayuranathan, T.; Lazzarotto, C.R.; Li, Y.; Sheppard-Tillman, H.; Porter, S.N.; Yao, Y.; Mayberry, K.; et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 2021, 595, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Georgakopoulou, A.; Newby, G.A.; Chen, P.J.; Everette, K.A.; Paschoudi, K.; Vlachaki, E.; Gil, S.; Anderson, A.K.; Koob, T.; et al. In vivo HSC prime editing rescues sickle cell disease in a mouse model. Blood 2023, 141, 2085–2099. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine Clinical Trials website. EDIT-301 for Autologous Hematopoietic Stem Cell Transplant (HSCT) in Participants with Transfusion-Dependent Beta Thalassemia (TDT). Available online: https://clinicaltrials.gov/study/NCT05444894 (accessed on 4 June 2024).
- Sharma, A.; Boelens, J.J.; Cancio, M.; Hankins, J.S.; Bhad, P.; Azizy, M.; Lewandowski, A.; Zhao, X.; Chitnis, S.; Peddinti, R.; et al. CRISPR-Cas9 Editing of the HBG1 and HBG2 Promoters to Treat Sickle Cell Disease. N. Engl. J. Med. 2023, 389, 820–832. [Google Scholar] [CrossRef] [PubMed]
- FDA clears prime editors for testing in humans. Nat. Biotechnol. 2024, 42, 691. [CrossRef]
- Taylor, A.M.R.; Rothblum-Oviatt, C.; Ellis, N.A.; Hickson, I.D.; Meyer, S.; Crawford, T.O.; Smogorzewska, A.; Pietrucha, B.; Weemaes, C.; Stewart, G.S. Chromosome instability syndromes. Nat. Rev. Dis. Primers 2019, 5, 64. [Google Scholar] [CrossRef] [PubMed]
- Altintas, B.; Giri, N.; McReynolds, L.J.; Best, A.; Alter, B.P. Genotype-phenotype and outcome associations in patients with Fanconi anemia: The National Cancer Institute cohort. Haematologica 2023, 108, 69–82. [Google Scholar] [CrossRef] [PubMed]
- Wlodarski, M.W.; Vlachos, A.; Farrar, J.E.; Da Costa, L.M.; Kattamis, A.; Dianzani, I.; Belendez, C.; Unal, S.; Tamary, H.; Pasauliene, R.; et al. Diagnosis, treatment, and surveillance of Diamond-Blackfan anaemia syndrome: International consensus statement. Lancet Haematol. 2024, 11, e368–e382. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, L.; Leblanc, T.; Mohandas, N. Diamond-Blackfan anemia. Blood 2020, 136, 1262–1273. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Karlsson, S. Perspectives of current understanding and therapeutics of Diamond-Blackfan anemia. Leukemia 2024, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Warren, A.J. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv. Biol. Regul. 2018, 67, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Reilly, C.R.; Shimamura, A. Predisposition to myeloid malignancies in Shwachman-Diamond syndrome: Biological insights and clinical advances. Blood 2023, 141, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, N.; Oyarbide, U.; Cipolli, M.; Bezzerri, V.; Corey, S.J. Shwachman-Diamond syndromes: Clinical, genetic, and biochemical insights from the rare variants. Haematologica 2023, 108, 2594–2605. [Google Scholar] [CrossRef] [PubMed]
- Tummala, H.; Walne, A.; Dokal, I. The biology and management of dyskeratosis congenita and related disorders of telomeres. Expert. Rev. Hematol. 2022, 15, 685–696. [Google Scholar] [CrossRef] [PubMed]
- Team Telomere—An International Community for Telomere Biology Disorders. Telomere Biology Disorders: Diagnosis and Management Guidelines, 2nd ed.; Team Telomere: New York, NY, USA, 2022; Available online: https://teamtelomere.org/diagnosis-management-guidelines (accessed on 24 April 2024).
- Warren, J.T.; Link, D.C. Impaired myelopoiesis in congenital neutropenia: Insights into clonal and malignant hematopoiesis. Hematology Am. Soc. Hematol. Educ. Program. 2021, 2021, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Donadieu, J.; Bellanné-Chantelot, C. Genetics of severe congenital neutropenia as a gateway to personalized therapy. Hematology Am. Soc. Hematol. Educ. Program. 2022, 2022, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Balduini, C.L. The name counts: The case of ‘congenital amegakaryocytic thrombocytopenia’. Haematologica 2023, 108, 1216–1219. [Google Scholar] [CrossRef] [PubMed]
- Germeshausen, M.; Ballmaier, M. Congenital amegakaryocytic thrombocytopenia—Not a single disease. Best. Pract. Res. Clin. Haematol. 2021, 34, 101286. [Google Scholar] [CrossRef] [PubMed]
- Bluteau, O.; Sebert, M.; Leblanc, T.; Peffault de Latour, R.; Quentin, S.; Lainey, E.; Hernandez, L.; Dalle, J.H.; Sicre de Fontbrune, F.; Lengline, E.; et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood 2018, 131, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Baccelli, F.; Leardini, D.; Cerasi, S.; Messelodi, D.; Bertuccio, S.N.; Masetti, R. ERCC6L2-related disease: A novel entity of bone marrow failure disorder with high risk of clonal evolution. Ann. Hematol. 2023, 102, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Hakkarainen, M.; Kaaja, I.; Douglas, S.P.M.; Vulliamy, T.; Dokal, I.; Soulier, J.; Larcher, L.; Peffault de Latour, R.; Leblanc, T.; de Fontbrune, F.S.; et al. The clinical picture of ERCC6L2 disease: From bone marrow failure to acute leukemia. Blood 2023, 141, 2853–2866. [Google Scholar] [CrossRef] [PubMed]
- Frebourg, T.; Bajalica Lagercrantz, S.; Oliveira, C.; Magenheim, R.; Evans, D.G.; European Reference Network GENTURIS. Guidelines for the Li-Fraumeni and heritable TP53-related cancer syndromes. Eur. J. Hum. Genet. 2020, 28, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, K.C.; Khincha, P.P.; Hatton, J.N.; Frone, M.N.; Wegman-Ostrosky, T.; Mai, P.L.; Best, A.F.; Savage, S.A. Cancer incidence, patterns, and genotype-phenotype associations in individuals with pathogenic or likely pathogenic germline TP53 variants: An observational cohort study. Lancet Oncol. 2021, 22, 1787–1798. [Google Scholar] [CrossRef] [PubMed]
- Rocca, V.; Blandino, G.; D’Antona, L.; Iuliano, R.; Di Agostino, S. Li-Fraumeni Syndrome: Mutation of TP53 Is a Biomarker of Hereditary Predisposition to Tumor: New Insights and Advances in the Treatment. Cancers 2022, 14, 3664. [Google Scholar] [CrossRef] [PubMed]
- Sandner, A.S.; Weggel, R.; Mehraein, Y.; Schneider, S.; Hiddemann, W.; Spiekermann, K. Frequency of hematologic and solid malignancies in the family history of 50 patients with acute myeloid leukemia—A single center analysis. PLoS ONE 2019, 14, e0215453. [Google Scholar] [CrossRef] [PubMed]
- Aronson, M.; Colas, C.; Shuen, A.; Hampel, H.; Foulkes, W.D.; Baris Feldman, H.; Goldberg, Y.; Muleris, M.; Wolfe Schneider, K.; McGee, R.B.; et al. Diagnostic criteria for constitutional mismatch repair deficiency (CMMRD): Recommendations from the international consensus working group. J. Med. Genet. 2022, 59, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Gallon, R.; Brekelmans, C.; Martin, M.; Bours, V.; Schamschula, E.; Amberger, A.; Muleris, M.; Colas, C.; Dekervel, J.; De Hertogh, G.; et al. Constitutional mismatch repair deficiency mimicking Lynch syndrome is associated with hypomorphic mismatch repair gene variants. NPJ Precis. Oncol. 2024, 8, 119. [Google Scholar] [CrossRef] [PubMed]
- Langer, K.; Cunniff, C.M.; Kucine, N. Bloom Syndrome. [updated 2023 Oct 12]. In GeneReviews® [Internet]; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 2023. [Google Scholar] [PubMed]
- Oshima, J.; Sidorova, J.M.; Monnat, R.J., Jr. Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Res. Rev. 2017, 33, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Lauper, J.M.; Krause, A.; Vaughan, T.L.; Monnat, R.J., Jr. Spectrum and risk of neoplasia in Werner syndrome: A systematic review. PLoS ONE 2013, 8, e59709. [Google Scholar] [CrossRef] [PubMed]
- Petley, E.; Yule, A.; Alexander, S.; Ojha, S.; Whitehouse, W.P. The natural history of ataxia-telangiectasia (A-T): A systematic review. PLoS ONE 2022, 17, e0264177. [Google Scholar] [CrossRef] [PubMed]
- Guijarro, F.; López-Guerra, M.; Morata, J.; Bataller, A.; Paz, S.; Cornet-Masana, J.M.; Banús-Mulet, A.; Cuesta-Casanovas, L.; Carbó, J.M.; Castaño-Díez, S.; et al. Germ line variants in patients with acute myeloid leukemia without a suspicion of hereditary hematologic malignancy syndrome. Blood Adv. 2023, 7, 5799–5811. [Google Scholar] [CrossRef] [PubMed]
- Riboldi, G.M.; Samanta, D.; Asuncion, R.M.D.; Frucht, S. Ataxia-Telangiectasia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Elitzur, S.; Shiloh, R.; Loeffen, J.L.C.; Pastorczak, A.; Takagi, M.; Bomken, S.; Baruchel, A.; Lehrnbecher, T.; Tasian, S.K.; Abla, O.; et al. ATM germline pathogenic variants affect outcomes in children with ataxia-telangiectasia and hematological malignancies. Blood 2024. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Altmann, T.; Gennery, A.R. DNA ligase IV syndrome; a review. Orphanet J. Rare Dis. 2016, 11, 137. [Google Scholar] [CrossRef] [PubMed]
- Schober, S.; Schilbach, K.; Doering, M.; Cabanillas Stanchi, K.M.; Holzer, U.; Kasteleiner, P.; Schittenhelm, J.; Schaefer, J.F.; Mueller, I.; Lang, P.; et al. Allogeneic hematopoietic stem cell transplantation in two brothers with DNA ligase IV deficiency: A case report and review of the literature. BMC Pediatr. 2019, 19, 346. [Google Scholar] [CrossRef] [PubMed]
- Riller, Q.; Rieux-Laucat, F. RASopathies: From germline mutations to somatic and multigenic diseases. Biomed. J. 2021, 44, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Wintering, A.; Dvorak, C.C.; Stieglitz, E.; Loh, M.L. Juvenile myelomonocytic leukemia in the molecular era: A clinician’s guide to diagnosis, risk stratification, and treatment. Blood Adv. 2021, 5, 4783–4793. [Google Scholar] [CrossRef] [PubMed]
- Hecht, A.; Meyer, J.A.; Behnert, A.; Wong, E.; Chehab, F.; Olshen, A.; Hechmer, A.; Aftandilian, C.; Bhat, R.; Choi, S.W.; et al. Molecular and phenotypic diversity of CBL-mutated juvenile myelomonocytic leukemia. Haematologica 2022, 107, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Pabst, T.; Mueller, B.U.; Zhang, P.; Radomska, H.S.; Narravula, S.; Schnittger, S.; Behre, G.; Hiddemann, W.; Tenen, D.G. Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/EBPalpha), in acute myeloid leukemia. Nat. Genet. 2001, 27, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Tawana, K.; Wang, J.; Renneville, A.; Bödör, C.; Hills, R.; Loveday, C.; Savic, A.; Van Delft, F.W.; Treleaven, J.; Georgiades, P.; et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 2015, 126, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Tarlock, K.; Lamble, A.J.; Wang, Y.C.; Gerbing, R.B.; Ries, R.E.; Loken, M.R.; Brodersen, L.E.; Pardo, L.; Leonti, A.; Smith, J.L.; et al. CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: A report from the Children’s Oncology Group. Blood 2021, 138, 1137–1147. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Li, Y.; Gao, H.; Lai, X.; Cai, Y.; Chen, Z.; Li, X.; Wang, S.Y. Clinical features and management of germline CEBPA-mutated carriers. Leuk. Res. 2024, 138, 107453. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.L.; Arts, P.; Carmichael, C.L.; Babic, M.; Dobbins, J.; Chong, C.E.; Schreiber, A.W.; Feng, J.; Phillips, K.; Wang, P.P.S.; et al. RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv. 2020, 4, 1131–1144. [Google Scholar] [CrossRef] [PubMed]
- Homan, C.C.; King-Smith, S.L.; Lawrence, D.M.; Arts, P.; Feng, J.; Andrews, J.; Armstrong, M.; Ha, T.; Dobbins, J.; Drazer, M.W.; et al. The RUNX1 database (RUNX1db): Establishment of an expert curated RUNX1 registry and genomics database as a public resource for familial platelet disorder with myeloid malignancy. Haematologica 2021, 106, 3004–3007. [Google Scholar] [CrossRef] [PubMed]
- Pecci, A.; Balduini, C.L. Inherited thrombocytopenias: An updated guide for clinicians. Blood Rev. 2021, 48, 100784. [Google Scholar] [CrossRef] [PubMed]
- Homan, C.C.; Scott, H.S.; Brown, A.L. Hereditary platelet disorders associated with germ line variants in RUNX1, ETV6, and ANKRD26. Blood 2023, 141, 1533–1543. [Google Scholar] [CrossRef] [PubMed]
- Bluteau, D.; Balduini, A.; Balayn, N.; Currao, M.; Nurden, P.; Deswarte, C.; Leverger, G.; Noris, P.; Perrotta, S.; Solary, E.; et al. Thrombocytopenia-associated mutations in the ANKRD26 regulatory region induce MAPK hyperactivation. J. Clin. Investig. 2014, 124, 580–591. [Google Scholar] [CrossRef] [PubMed]
- Melazzini, F.; Palombo, F.; Balduini, A.; De Rocco, D.; Marconi, C.; Noris, P.; Gnan, C.; Pippucci, T.; Bozzi, V.; Faleschini, M.; et al. Clinical and pathogenic features of ETV6-related thrombocytopenia with predisposition to acute lymphoblastic leukemia. Haematologica 2016, 101, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Shinriki, S.; Hirayama, M.; Nagamachi, A.; Yokoyama, A.; Kawamura, T.; Kanai, A.; Kawai, H.; Iwakiri, J.; Liu, R.; Maeshiro, M.; et al. DDX41 coordinates RNA splicing and transcriptional elongation to prevent DNA replication stress in hematopoietic cells. Leukemia 2022, 36, 2605–2620. [Google Scholar] [CrossRef] [PubMed]
- Makishima, H.; Saiki, R.; Nannya, Y.; Korotev, S.; Gurnari, C.; Takeda, J.; Momozawa, Y.; Best, S.; Krishnamurthy, P.; Yoshizato, T.; et al. Germ line DDX41 mutations define a unique subtype of myeloid neoplasms. Blood 2023, 141, 534–549. [Google Scholar] [CrossRef] [PubMed]
- Huo, L.; Zhang, Z.; Zhou, H.; Xie, J.; Jiang, A.; Wang, Q.; Ding, Z.; Dai, H.; Liu, D.; Wu, N.; et al. Causative germline variant p.Y259C of DDX41 recurrently identified in acute lymphoblastic leukaemia. Br. J. Haematol. 2023, 202, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Cheloor Kovilakam, S.; Gu, M.; Dunn, W.G.; Marando, L.; Barcena, C.; Nik-Zainal, S.; Mohorianu, I.; Kar, S.P.; Fabre, M.A.; Quiros, P.M.; et al. Prevalence and significance of DDX41 gene variants in the general population. Blood 2023, 142, 1185–1192. [Google Scholar] [CrossRef] [PubMed]
- Winstone, L.; Jung, Y.; Wu, Y. DDX41: Exploring the roles of a versatile helicase. Biochem. Soc. Trans. 2024, 52, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Vicente, C.; Conchillo, A.; García-Sánchez, M.A.; Odero, M.D. The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit. Rev. Oncol. Hematol. 2012, 82, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wlodarski, M.W.; Hirabayashi, S.; Pastor, V.; Starý, J.; Hasle, H.; Masetti, R.; Dworzak, M.; Schmugge, M.; van den Heuvel-Eibrink, M.; Ussowicz, M.; et al. Prevalence, clinical characteristics, and prognosis of GATA2-related myelodysplastic syndromes in children and adolescents. Blood 2016, 127, 1387–1397; quiz 1518. [Google Scholar] [CrossRef] [PubMed]
- Homan, C.C.; Venugopal, P.; Arts, P.; Shahrin, N.H.; Feurstein, S.; Rawlings, L.; Lawrence, D.M.; Andrews, J.; King-Smith, S.L.; Harvey, N.L.; et al. GATA2 deficiency syndrome: A decade of discovery. Hum. Mutat. 2021, 42, 1399–1421. [Google Scholar] [CrossRef] [PubMed]
- Santiago, M.; Liquori, A.; Such, E.; Zúñiga, Á.; Cervera, J. The Clinical Spectrum, Diagnosis, and Management of GATA2 Deficiency. Cancers 2023, 15, 1590. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.S.; Pastor, V.B.; Goodings, C.; Voss, R.K.; Kozyra, E.J.; Szvetnik, A.; Noellke, P.; Dworzak, M.; Starý, J.; Locatelli, F.; et al. Clinical evolution, genetic landscape and trajectories of clonal hematopoiesis in SAMD9/SAMD9L syndromes. Nat. Med. 2021, 27, 1806–1817. [Google Scholar] [CrossRef] [PubMed]
- Narumi, S. Discovery of MIRAGE syndrome. Pediatr. Int. 2022, 64, e15283. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Aldoss, I.; Clark, M.; Marcucci, G.; Forman, S.J. Donor derived leukemia in allogeneic transplantation. Leuk. Lymphoma 2021, 62, 2823–2830. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Shi, J.; Luo, Y.; Tan, Y.; He, J.; Xie, W.; Zhang, L.; Wang, Y.; Liu, L.; Wu, K.; et al. First report of multiple CEBPA mutations contributing to donor origin of leukemia relapse after allogeneic hematopoietic stem cell transplantation. Blood 2011, 117, 5257–5260. [Google Scholar] [CrossRef] [PubMed]
- Berger, G.; van den Berg, E.; Sikkema-Raddatz, B.; Abbott, K.M.; Sinke, R.J.; Bungener, L.B.; Mulder, A.B.; Vellenga, E. Re-emergence of acute myeloid leukemia in donor cells following allogeneic transplantation in a family with a germline DDX41 mutation. Leukemia 2017, 31, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Kobayashi, A.; Osawa, Y.; Nagao, S.; Takano, K.; Okada, Y.; Tachi, N.; Teramoto, M.; Kawamura, T.; Horiuchi, T.; et al. Donor cell leukemia arising from preleukemic clones with a novel germline DDX41 mutation after allogeneic hematopoietic stem cell transplantation. Leukemia 2017, 31, 1020–1022. [Google Scholar] [CrossRef] [PubMed]
- Rolles, B.; Meyer, R.; Begemann, M.; Elbracht, M.; Jost, E.; Stelljes, M.; Kurth, I.; Brümmendorf, T.H.; Silling, G. DDX41 germline variants causing donor cell leukemia indicate a need for further genetic workup in the context of hematopoietic stem cell transplantation. Blood Cancer J. 2023, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Dokal, I.; Tummala, H.; Vulliamy, T. Inherited bone marrow failure in the pediatric patient. Blood 2022, 140, 556–570. [Google Scholar] [CrossRef] [PubMed]
- Vissers, L.T.W.; van der Burg, M.; Lankester, A.C.; Smiers, F.J.W.; Bartels, M.; Mohseny, A.B. Pediatric Bone Marrow Failure: A Broad Landscape in Need of Personalized Management. J. Clin. Med. 2023, 12, 7185. [Google Scholar] [CrossRef] [PubMed]
- Río, P.; Navarro, S.; Wang, W.; Sánchez-Domínguez, R.; Pujol, R.M.; Segovia, J.C.; Bogliolo, M.; Merino, E.; Wu, N.; Salgado, R.; et al. Successful engraftment of gene-corrected hematopoietic stem cells in non-conditioned patients with Fanconi anemia. Nat. Med. 2019, 25, 1396–1401. [Google Scholar] [CrossRef] [PubMed]
- Giménez, Y.; Palacios, M.; Sánchez-Domínguez, R.; Zorbas, C.; Peral, J.; Puzik, A.; Ugalde, L.; Alberquilla, O.; Villanueva, M.; Río, P.; et al. Lentivirus-mediated gene therapy corrects ribosomal biogenesis and shows promise for Diamond Blackfan anemia. JCI Insight 2024, 9, e171650. [Google Scholar] [CrossRef] [PubMed]
- Siegner, S.M.; Ugalde, L.; Clemens, A.; Garcia-Garcia, L.; Bueren, J.A.; Rio, P.; Karasu, M.E.; Corn, J.E. Adenine base editing efficiently restores the function of Fanconi anemia hematopoietic stem and progenitor cells. Nat. Commun. 2022, 13, 6900. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.F.; Zhao, K.T.; Eton, E.; Lapinaite, A.; Newby, G.A.; Thuronyi, B.W.; Wilson, C.; Koblan, L.W.; Zeng, J.; Bauer, D.E.; et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 2020, 38, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Kastenhuber, E.R.; Lowe, S.W. Putting p53 in Context. Cell 2017, 170, 1062–1078. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.F.; Kelly, G.L.; Strasser, A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ. 2022, 29, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Bieging-Rolett, K.T.; Attardi, L.D. Zmat3 splices together p53-dependent tumor suppression. Mol. Cell Oncol. 2021, 8, 1898523. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.S.; Brinkmann, K.; Romero Sola, G.; Healey, G.; Gibson, L.; Gangoda, L.; Potts, M.A.; Lieschke, E.; Wilcox, S.; Strasser, A.; et al. Combined absence of TRP53 target genes ZMAT3, PUMA and p21 cause a high incidence of cancer in mice. Cell Death Differ. 2024, 31, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Indeglia, A.; Murphy, M.E. Elucidating the chain of command: Our current understanding of critical target genes for p53-mediated tumor suppression. Crit. Rev. Biochem. Mol. Biol. 2024, 59, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.; Thomas, S.; Hamblin, A.; Talley, P.; Kulasekararaj, A.; Grinfeld, J.; Speight, B.; Snape, K.; McVeigh, T.P.; Snowden, J.A. Management of patients with germline predisposition to haematological malignancies considered for allogeneic blood and marrow transplantation: Best practice consensus guidelines from the UK Cancer Genetics Group (UKCGG), CanGene-CanVar, NHS England Genomic Laboratory Hub (GLH) Haematological Malignancies Working Group and the British Society of Blood and Marrow Transplantation and cellular therapy (BSBMTCT). Br. J. Haematol. 2023, 201, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, I.; Avagyan, S.; Stetson, A.; Guo, D.; Al-Sayegh, H.; London, W.B.; Lehmann, L. Comparison of Outcomes of Myeloablative Allogeneic Stem Cell Transplantation for Pediatric Patients with Bone Marrow Failure, Myelodysplastic Syndrome and Acute Myeloid Leukemia with and without Germline GATA2 Mutations. Biol. Blood Marrow Transplant. 2020, 26, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
CRISPR-Cas Systems | Genes | Encoded Proteins | Functions |
---|---|---|---|
Type I (Bacteria and Archaea) included 6 subtypes | Signature: cas3 | Large protein with helicase and DNase activity | DNA target cleaved by the HD endonuclease domain of Cas3 |
Other genes | Cascade complex proteins, including Cas5, Cas6, Cas7, and Cas8 in the RAMP superfamily | Two subtypes of Cas6 cleave pre-crRNA to generate crRNAs | |
Type II (exclusively in Bacteria until 2011) included 2 subtypes | Signature: cas9 | Single, large protein with two nuclease domains: a RuvC-like domain near the amino-terminus and an HNH domain in the middle of the protein | Cleave pre-crRNA by dual trans-activating RNA and part of the repeat in the pre-crRNA [50] |
Type III (more common in Archaea) included 2 subtypes | Signature: cas10 | RAMP proteins | Mediate DNA cleavage |
Unclassified loci | Signature gene not identified; not classifiable as any Type |
CRISPR-Cas Systems | Types | Hallmarks of Types of CRISPR-Cas Systems | Subtypes | Targets |
---|---|---|---|---|
Class 1 | Type I | Cas3 | I-A, I-B, I-C, I-D, I-E (I-E of E. coli is best characterized), I-F1, I-F2, I-F3, I-G * | DNA |
Type III | Cas10 | III-A (usually contain cas1, cas2, and cas6), III-B, III-C, III-D, III-E, III-F | DNA and RNA | |
Type IV (putative in 2015) | Genes resembling cas5, cas7, and cas8 | IV-A, IV-B, IV-C | ||
Class 2 | Type II | Cas9; cas9 in the vicinity of cas1 and cas2 genes | II-A: also contain csn2 gene; II-B: also contain cas4 gene; lack csn2 gene; II-C: contain only cas1, cas2, and cas9; the most common system in bacteria, including II-C1, II-C2 | DNA |
Type V | Cas12 | V-A: Cas12a (Cpf1); V-B: Cas12b (C2c1); V-C: Cas12c (C2c3); V-D; V-E; V-F1 (V-U3); V-F2; V-F3; V-G; V-H; V-I; V-J; V-K (V-U5); V-U1; V-U2; V-U4 | DNA | |
Type VI | Cas 13 | VI-A; VI-B1; VI-B2; VI-C; VI-D | RNA |
Disease Groups | Diseases | Identified Defective Germline Genes | Defective Function or Cellular Pathways | Selected References |
---|---|---|---|---|
Inherited bone marow failure syndromes | Fanconi anemia | At least 22 genes; FANCA most common | DNA repair and DNA damage response | Taylor et al., 2019 [127]; Altintas et al., 2023 [128] |
Diamond-Blackfan anemia | RPS19 most common | Ribosome biogenesis | Wlodarski et al., 2024 [129]; Da Costa et al., 2020 [130]; Liu and Karlsson, 2024 [131] | |
Schwachman-Diamond syndrome | SBDS, DNAJC21, SRP54 | Ribosome biogenesis | Warren, 2018 [132]; Reilly and Shimamura, 2023 [133]; Kawashima et al., 2023 [134] | |
Dyskeratosis congenita and other telomere biology disorders | At least 18 genes; DKC1 most common | Telomere maintenance | Tummala et al., 2022 [135]; Team Telomere, 2022 [136] | |
Severe congenital neutropenia | ELANE, CLPB, HAX1, and G6PC3 | Myeloid maturation arrest | Warren and Link, 2021 [137]; Donadieu and Bellanné-Chantelot, 2022 [138] | |
Congenital amegakaryocytic thrombocytopenia 1 | MPL, THPO, HOXA11, MECOM, RBM8A | Megakaryocyic maturation | Balduini, 2023 [139]; Germeshausen and Ballmaier, 2021 [140] | |
ERCC6L2 inherited bone marrow failure | ERCC6L2 | DNA repair | Bluteau et al., 2018 [141]; Baccelli et al., 2023 [142] Hakkarainen et al., 2023 [143]; | |
Genetic syndromes with predisposition to hematolymphoid cancer | Li–Fraumeni syndrome | TP53 | Loss of tumor suppressor function | Frebourg et al., 2020 [144]; de Andrade et al., 2021 [145]; Rocca et al., 2022 [146] |
Lynch syndrome | MLH1, MSH2, MSH6, PMS2, EPCAM | DNA repair | Sandner et al., 2019 [147] | |
Constitutional mismatch repair deficiency (CMMRD) | MLH1, MSH2, MSH6, PMS2, EPCAM | DNA repair | Aronson et al., 2022 [148]; Gallon et al., 2024 [149] | |
Bloom syndrome | BLM | DNA damage response and repair | Taylor et al., 2019 [127]; Langer et al., 2023 [150] | |
Werner syndrome | WRN | DNA damage response and repair | Oshima et al., 2017 [151]; Lauper et al., 2013 [152] | |
Ataxia telangiectasia | ATM | DNA damage response and repair | Taylor et al., 2019 [127]; Petley et al., 2022 [153]; Guijarro et al., 2023 [154]; Riboldi et al., 2024 [155]; Elitzur et al., 2024 [156] | |
Nijmegen breakage syndrome | NBN | DNA damage response and repair | Taylor et al., 2019 [127] | |
DNA ligase 4 deficiency (LIG-4 symdrome) | LIG4 | DNA damage response and repair | Altmann and Gennery, 2016 [157]; Schober et al., 2019 [158] | |
RASopathies | NFI, CBL, PTPN11, KRAS, NRAS, and other | RAS mitogen-activated protein kinase pathway | Riller and Rieux-Laucat, 2021 [159]; Wintering et al., 2021 [160]; Hecht et al., 2022 [161] | |
Familial Acute Myeloid Leukemia (AML) and Myelodysplastic Neoplasm (MDN) 2 | Familial AML with germline mutated CEBPA | CEBPA | Transcription factor | Pabst et al., 2001 [162]; Tawana et al., 2015 [163]; Tarlock et al., 2021 [164]; Pan et al., 2024 [165] |
Familial platelet disoder with propensity to myeloid malignancies | RUNX1 | Transcription factor | Brown et al., 2020 [166]; Homan et al., 2021 [167]; Pecci and Balduini, 2021 [168]; Homan et al., 2023 [169] | |
ANKRD26-related inherited thromboicytopenia | ANKRD26 | Thrombopoietin-dependent signaling | Bluteau et al., 2014 [170]; Pecci and Balduini, 2021 [168]; Homan et al., 2023 [169] | |
ETV6-related thrombocytopenia | ETV6 | Transcription factor | Melazzini et al., 2016 [171]; Pecci and Balduini, 2021 [168]; Homan et al., 2023 [169] | |
AML or MDN with germline DDX41 mutations | DDX41 | RNA splicing, transcription elongation, and DNA replication | Shinriki et al., 2022 [172]; Makishima et al., 2023 [173]; Huo et al., 2023 [174]; Cheloor-Kovilakam et al., 2023 [175]; Winstone et al., 2024 [176] | |
Pediatric MDN or AML with de novo germline or inherited GATA2 mutations | GATA2 | Transcription factor | Vincent et al., 2012 [177]; Wlodarski et al., 2016 [178]; Homan et al., 2021 [179]; Santiago et al., 2023 [180] | |
Pediatric MDN or AML with de novo germline or inherited SAMD9 or SAMD9L mutations | SAMD9; SAMD9L | Bluteau et al., 2018 [141]; Sahoo et al., 2021 [181]; Narumi 2022 [182] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kansal, R. The CRISPR-Cas System and Clinical Applications of CRISPR-Based Gene Editing in Hematology with a Focus on Inherited Germline Predisposition to Hematologic Malignancies. Genes 2024, 15, 863. https://doi.org/10.3390/genes15070863
Kansal R. The CRISPR-Cas System and Clinical Applications of CRISPR-Based Gene Editing in Hematology with a Focus on Inherited Germline Predisposition to Hematologic Malignancies. Genes. 2024; 15(7):863. https://doi.org/10.3390/genes15070863
Chicago/Turabian StyleKansal, Rina. 2024. "The CRISPR-Cas System and Clinical Applications of CRISPR-Based Gene Editing in Hematology with a Focus on Inherited Germline Predisposition to Hematologic Malignancies" Genes 15, no. 7: 863. https://doi.org/10.3390/genes15070863
APA StyleKansal, R. (2024). The CRISPR-Cas System and Clinical Applications of CRISPR-Based Gene Editing in Hematology with a Focus on Inherited Germline Predisposition to Hematologic Malignancies. Genes, 15(7), 863. https://doi.org/10.3390/genes15070863