Selected Monogenic Genetic Diseases in Holstein Cattle—A Review
Abstract
:1. Introduction
2. DUMPS/HHD
3. BLAD/HHB
4. Haplotypes with Homozygous Deficiency in Holstein
4.1. HH1
4.2. HH3
4.3. HH4
4.4. HH5
4.5. HH6
4.6. HH7
5. CDH
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mohd Nor, N.; Steeneveld, W.; Mourits, M.C.; Hogeveen, H. Estimating the costs of rearing young dairy cattle in the Netherlands using a simulation model that accounts for uncertainty related to diseases. Prev. Vet. Med. 2012, 106, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.L.; Drabik, M.R.; Dombrowski, D.B.; Clark, J.H. Consequences of UMP synthase deficiency in cattle. Proc. Natl. Acad. Sci. USA 1983, 80, 321–323. [Google Scholar] [CrossRef] [PubMed]
- Shuster, D.E.; Bosworth, B.T.; Kehrli, M.E. Sequence of the Bovine CD18-Encoding cDNA—Comparison with the Human and Murine Glycoproteins. Gene 1992, 114, 267–271. [Google Scholar] [CrossRef]
- VanRaden, P.M.; O’Connell, J.R.; Wiggans, G.R.; Weigel, K.A. Genomic evaluations with many more genotypes. Genet. Sel. Evol. 2011, 43, 10. [Google Scholar] [CrossRef]
- Fritz, S.; Capitan, A.; Djari, A.; Rodriguez, S.C.; Barbat, A.; Baur, A.; Grohs, C.; Weiss, B.; Boussaha, M.; Esquerré, D.; et al. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2. PLoS ONE 2013, 8, e65550. [Google Scholar] [CrossRef] [PubMed]
- Cooper, T.A.; Wiggans, G.R.; VanRaden, P.M.; Hutchison, J.L.; Cole, J.B.; Null, D.J. Genomic evaluation of Ayrshire dairy cattle and new haplotypes affecting fertility and stillbirth in Holstein, Brown Swiss and Ayrshire breeds. In Proceedings of the ADSASAS Joint Annual Meeting, Indianapolis, IN, USA, 8–12 July 2013. [Google Scholar]
- Kipp, S.; Segelke, D.; Schierenbeck, S.; Reinhardt, F.; Reents, R.; Wurmser, C.; Pausch, H.; Fries, R.; Thaller, G.; Tetens, J.; et al. A new Holstein haplotype affecting calf survival. Interbull Bull. 2015, 49, 49–53. [Google Scholar]
- Fritz, S.; Hoze, C.; Rebours, E.; Barbat, A.; Bizard, M.; Chamberlain, A.; Escouflaire, C.; Vander, J.C.; Boussaha, M.; Grohs, C.; et al. An initiator codon mutation in SDE2 causes recessive embryonic lethality in Holstein cattle. J. Dairy Sci. 2018, 101, 6220–6231. [Google Scholar] [CrossRef] [PubMed]
- Hozé, C.; Escouflaire, C.; Mesbah-Uddin, M.; Barbat, A.; Boussaha, M.; Deloche, M.C.; Boichard, D.; Fritz, S.; Capitan, A. Short communication: A splice site mutation in CENPU is associated with recessive embryonic lethality in Holstein cattle. J. Dairy Sci. 2020, 103, 607–612. [Google Scholar] [CrossRef]
- Barański, W.; Nowicki, A.; Zduńczyk, S. Effect of an integrated veterinary herd health program on fertility performance and incidence of reproductive disorders in five dairy herds. Pol. J. Vet. Sci. 2021, 24, 433–437. [Google Scholar] [CrossRef]
- Kiser, J.N.; Clancey, E.; Moraes, J.G.; Dalton, J.; Burns, G.W.; Spencer, T.E.; Neibergs, H.L. Identification of loci associated with conception rate in primiparous Holstein cows. BMC Genom. 2019, 20, 840. [Google Scholar] [CrossRef]
- Ghanem, M.E.; Nakao, T.; Nishibori, M. Deficiency of uridine monophosphate synthase (DUMPS) and X-chromosome deletion in fetal mummification in cattle. Anim. Reprod. Sci. 2006, 91, 45–54. [Google Scholar] [CrossRef]
- Kamiński, S.; Grzybowski, G.; Prusak, B.; Rusc, A. No incidence of DUMPS carriers in Polish dairy cattle. J. Appl. Genet. 2005, 46, 395–397. [Google Scholar] [PubMed]
- Schwenger, B.; Schober, S.; Simon, D. DUMPS Cattle Carry a Point Mutation in the Uridine Monophosphate Synthase Gene. Genomics 1993, 16, 241–244. [Google Scholar] [CrossRef]
- Meydan, H.; Yildiz, M.A.; Agerholm, J.S. Screening for bovine leukocyte adhesion deficiency, deficiency of uridine monophosphate synthase, complex vertebral malformation, bovine citrullinaemia, and factor XI deficiency in Holstein cows reared in Turkey. Acta Vet. Scand. 2010, 52, 56. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, G.; Nejati-Javaremi, A.; Olek, K. Genotyping BLAD, DUMPS and κ-CSN loci in Holstein young bulls of the national animal breeding center of Iran. Pak. J. Biol. Sci. 2006, 9, 1389–1392. [Google Scholar] [CrossRef]
- Debnath, A.; Kumar, A.; Maan, S.; Kumar, V.; Joshi, V.G.; Trilok, N.; Sangwan, M.L. Molecular screening of crossbred cow bulls for important genetic disorders. Haryana Vet. 2016, 55, 93–96. [Google Scholar]
- Koshchaev, A.G.; Shchukina, V.; Garkovenko, A.V.; Ilnitskaya, E.V.; Radchenko, V.V.; Bakharev, A.A.; Khrabrova, L.A. Allelic variation of marker genes of hereditary diseases and economically important traits in dairy breeding cattle population. J. Pharm. Sci. Res. 2018, 10, 1566–1572. [Google Scholar]
- Korkmaz Agaoglu, O.; Agaoglu, A.R.; Saatci, M. Estimating allele frequencies of some hereditary diseases in Holstein cattle reared in Burdur Province, Turkey. Turk. J. Vet. Anim. Sci. 2015, 39, 338–342. [Google Scholar]
- Li, J.; Wang, H.; Zhang, Y.; Hou, M.; Zhong, J.; Zhang, Y. Identification of BLAD and citrullinemia carriers in Chinese Holstein cattle. Anim. Sci. Pap. Rep. 2011, 29, 37–42. [Google Scholar]
- Hacihasanoglu, C.; Yardibi, H. Detection of allele and genotype frequencies of bovine leukocyte adhesion deficiency, factor XI deficiency and complex vertebral malformation disease genes in Holstein cattle. Ank. Üniv. Vet. Fak. Derg 2019, 66, 311–315. [Google Scholar] [CrossRef]
- Riojas-Valdes, V.M.; Carballo-Garcia, B.; Rodriguez-Tovar, L.E.; Garza-Zermeno, M.V.; Ramirez-Romero, R.; Zarate-Ramos, J.; Avalos-Ramirez, R.; Davalos-Aranda, G. Absence of bovine leukocyte adhesion deficiency (BLAD) in Holstein cattle from Mexico. J. Anim. Vet. Adv. 2009, 8, 1870–1872. [Google Scholar]
- Virgen-Méndez, A.; Ayala-Valdovinos, M.A.; Galindo-García, J.; Sánchez-Chiprés, D.R.; Lemus-Flores, C.; Duifhuis-Rivera, T. Carrier frequency of autosomal recessive disorders (BC, BLAD, FXID and CVM) in Holstein cows in Jalisco, Mexico. Pesq. Vet. Bras. 2019, 39, 481–484. [Google Scholar] [CrossRef]
- Citek, J.; Rehout, V.; Hajkova, J.; Pavkova, J. Monitoring of the genetic health of cattle in the Czech Republic. Vet. Med. Czech 2006, 51, 333–339. [Google Scholar] [CrossRef]
- Ignetious, S.; Joshi, S.; Aich, R.; Macwan, S. Genetic studies on bovine leukocyte adhesion deficiency in Holstein Friesian crossbred cattle. J. Entomol. Zool. Stud. 2020, 8, 1656–1659. [Google Scholar]
- Cole, J.B.; VanRaden, P.M.; Null, D.J.; Hutchison, J.L.; Cooper, T.A.; Hubbard, S.M. Haplotype tests for recessive disorders that affect fertility and other traits. In USDA Animal Improvement Program Research Report Genomics; USDA: Beltsville, MD, USA, 2015; pp. 9–13. [Google Scholar]
- New: Holstein Haplotypes. Available online: https://www.intermizoo.com/news/new-holstein-haplotypes (accessed on 15 June 2024).
- Ghanem, M.E.; Nishibori, M.; Isobe, N.; Hisaeda, K. Detection of APAF1 mutation in Holstein cows and mummified fetuses in Japanese dairy herds. Reprod. Dom. Anim. 2018, 53, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Briano-Rodriguez, C.; Romero, A.; Llambí, S.; Sica, A.B.; Rodrigue, M.T.F.; Giannitti, F.; Caffarena, R.D.; Schild, C.O.; Casaux, M.L.; Quintela, F.D. Lethal and semi-lethal mutations in Holstein calves in Uruguay. Ciência Rural 2021, 51, e20200734. [Google Scholar] [CrossRef]
- Albertino, L.G.; Albuquerque, A.L.H.; Ferreira, J.F.; Oliveira, J.P.M.; Borges, A.S.; Patelli, T.H.C.; Oliveira-Filho, J.P. Allele Frequency of APAF1 Mutation in Holstein Cattle in Brazil. Front. Vet. Sci. 2022, 9, 822224. [Google Scholar] [CrossRef]
- Khan, M.Y.A.; Omar, A.I.; He, Y.; Chen, S.; Zhang, S.; Xiao, W.; Zhang, Y. Prevalence of nine genetic defects in Chinese Holstein cattle. Vet. Med. Sci. 2021, 7, 1728–1735. [Google Scholar] [CrossRef] [PubMed]
- Schütz, E.; Wehrhahn, C.; Wanjek, M.; Bortfeld, R.; Wemheuer, W.E.; Beck, J.; Brenig, B. The Holstein Friesian Lethal Haplotype 5 (HH5) Results from a Complete Deletion of TFB1M and Cholesterol Deficiency (CDH) from an ERV-(LTR) Insertion into the Coding Region of APOB. PLoS ONE 2016, 11, e0154602. [Google Scholar] [CrossRef]
- Ussenbekov, Y.; Bagdat, A.; Bimenova, Z.; Orynkhanov, K.; Sobiech, P.; Samardžija, M.; Dobos, A. Identification of monomorphic and polymorphic genes associated with recessive fertility defects in Holstein cows reared in Kazakhstan. Vet. Arh. 2022, 92, 27–35. [Google Scholar] [CrossRef]
- Segelke, D.; Täubert, H.; Reinhardt, F.; Thaller, G. Considering genetic characteristics in German Holstein breeding programs. J. Dairy Sci. 2016, 99, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.B.; Null, D.J.; VanRaden, P.M. Phenotypic and genetic effects of recessive haplotypes on yield, longevity, and fertility. J. Dairy Sci. 2016, 99, 7274–7288. [Google Scholar] [CrossRef] [PubMed]
- Kovalyuk, N.V.; Satsuk, V.F.; Machulskaya, E.V.; Shakhnazarova, Y. New haplotype of Holstein cattle fertility. Dairy Beef Cattle Breed. 2020, 4, 8–9. [Google Scholar]
- Wang, M.; Do, D.N.; Peignier, C.; Dudemaine, P.L.; Schenkel, F.S.; Miglior, F.; Ibeagha-Awemu, E.M. Cholesterol deficiency haplotype frequency and its impact on milk production and milk cholesterol content in Canadian Holstein cows. Canadian J. Anim. Sci. 2020, 100, 786–791. [Google Scholar] [CrossRef]
- Osten-Sacken, A. Defekty genetyczne u bydła [Genetic disorders in cattle]. Prz. Hod. 2004, 5, 9–12. (In Polish) [Google Scholar]
- Nagahata, H. Bovine leukocyte adhesion deficiency (BLAD): A review. J. Vet. Med. Sci. 2004, 66, 1475–1482. [Google Scholar] [CrossRef]
- Daetwyler, H.D.; Capitan, A.; Pausch, H.; Stothard, P.; Van Binsbergen, R.; Brøndum, R.F.; Liao, X.; Djari, A.; Rodriguez, S.C.; Grohs, C.; et al. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 2014, 46, 858–865. [Google Scholar] [CrossRef]
- Sahana, G.; Nielsen, U.S.; Aamand, G.P.; Lund, M.S.; Guldbrandtsen, B. Novel harmful recessive haplotypes identified for fertility traits in Nordic Holstein cattle. PLoS ONE 2013, 8, e82909. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.A.; Sonstegard, T.S.; VanRaden, P.M.; Null, D.J.; Van Tassel, C.P.; Larkin, D.M.; Lewin, H.A. Identification of a nonsense mutation in APAF1 that is likely casual for a decrease in reproductive efficiency in Holstein dairy cattle. J. Dairy Sci. 2016, 99, 6693–6701. [Google Scholar] [CrossRef]
- Romanenkova, O.S.; Volkova, V.V.; Kostyunina, O.V.; Gladyr, E.A.; Naryshkina, E.N.; Sermyagin, A.A.; Zinovieva, N.A. The distribution for LoF mutations in the FANCI, APAF1, SMC2, GART, and APOB genes of the Russian Holstein cattle population. J. Anim. Sci. 2017, 95, 83. [Google Scholar] [CrossRef]
- Hayes, B.; Daetwyler, H.D.; Fries, R.; Guldbrandtsen, B.; Lund, M.S.; Boichard, D.; Chamberlain, A. The 1000 bull genomes project-Toward genomic selection from whole genome sequence data in dairy and beef cattle. In Proceedings of the International Plant & Animal Genome XXI, San Diego, CA, USA, 10–15 January 2013. [Google Scholar]
- Häfliger, I.M.; Spengeler, M.; Seefried, F.R.; Drögemüller, C. Four novel candidate causal variants for deficient homozygous haplotypes in Holstein cattle. Sci. Rep. 2022, 12, 5435. [Google Scholar] [CrossRef] [PubMed]
- Kamiński, S. Missense mutation in SDE2 gene–new lethal defect transmitted into Polish Holstein-Friesian cattle. Pol. J. Vet. Sci. 2019, 22, 627–630. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.J.; Schwinn, A.C.; Schmitz-Hsu, F.; Menzi, F.; Drögemüller, C.; Albrecht, C.; Bruckmaier, R.M. Rapid Communication: Cholesterol deficiency-associated APOB mutation impacts lipid metabolism in Holstein calves and breeding bulls. J. Anim. Sci. 2016, 94, 1761–1766. [Google Scholar] [CrossRef] [PubMed]
- Mock, T.; Mehinagic, K.; Menzi, F.; Studer, E.; Oevermann, A.; Stoffel, M.H.; Drögemüller, C.; Meylan, M.; Regenscheit, N. Clinicopathological Phenotype of Autosomal Recessive Cholesterol Deficiency in Holstein Cattle. J. Vet. Intern. Med. 2016, 30, 1369–1375. [Google Scholar] [CrossRef]
- Kipp, S.; Segelke, D.; Schierenbeck, S.; Reinhardt, F.; Reents, R.; Wurmser, C.; Pausch, H.; Fries, R.; Thaller, G.; Tetens, J.; et al. Identification of a haplotype associated with cholesterol deficiency and increased juvenile mortality in Holstein cattle. J. Dairy Sci. 2016, 99, 8915–8931. [Google Scholar] [CrossRef]
- Charlier, C. The role of mobile genetic elements in the bovine genome. In Proceedings of the Plant & Animal Genome XXIV Conference, San Diego, CA, USA, 9–13 January 2016. [Google Scholar]
- Gross, J.J.; Schwinn, A.C.; Schmitz-Hsu, F.; Barenco, A.; Neuenschwander, T.F.; Drögemüller, C.; Bruckmaier, R.M.; Schwinn, A.C.; Schmitz-Hsu, F.; Barenco, A.; et al. The APOB loss-of-function mutation of Holstein dairy cattle does not cause a deficiency of cholesterol but decreases the capacity for cholesterol transport in circulation. J. Dairy Sci. 2019, 102, 10564–10572. [Google Scholar] [CrossRef]
Haplotype Name | Name of Disorder | Gene | OMIA | Variant Description | ||
---|---|---|---|---|---|---|
Chr | Description | Coding DNA Change | ||||
DUMPS/HHD | Deficiency of uridine monophosphate synthase | UMPS | 000262-9913 | 1 | SNV (nonsense) | c.1213C > T |
BLAD/HHB | Bovine leukocyte adhesion deficiency | ITGB2 | 000595-9913 | 1 | SNV (missense) | c.383A > G |
HH1 | Holstein haplotype 1 | APAF1 | 000001-9913 | 5 | SNV (nonsense) | c.1702C > T |
HH3 | Holstein haplotype 3 | SMC2 | 001824-9913 | 8 | SNV (missense) | c.3404T > C |
HH4 | Holstein haplotype 4 | GART | 001826–9913 | 1 | SNV (missense) | c.869A > C |
HH5 | Holstein haplotype 5 | TFB1M | 001941-9913 | 9 | Gross deletion | 139 kb deletion |
HH6 | Holstein haplotype 6 | SDE2 | 002149-9913 | 16 | SNV (start-lost) | c.2T > C |
HH7 | Holstein haplotype 7 | CENPU | 001830-9913 | 27 | 5 bp deletion (splice site) | c.15123637_15123640delTTACT |
CDH | Holstein cholesterol deficiency | APOB | 001965-9913 | 11 | Large insertion (frameshift) | ERV insertion |
Defect | Carriers | Country | References |
---|---|---|---|
DUMPS | 0.0% | Poland, Iran, India, Russia, Turkey | [13,16,17,18,19] |
BLAD | 0.48% | China | [20] |
1.3%; 2.0% | Turkey | [19,21] | |
0.0% 4.0% | Mexico, Czech Republic, Russia, India India | [17,18,22,23,24] [25] | |
HH1 | 1.28% | USA | [26] |
3.42% | Italian | [27] | |
2.9% | Japan | [28] | |
4.44% 0.0% | Uruguay Brazil | [29] [30] | |
6.92% | China | [31] | |
HH3 | 2.64% | USA | [26] |
3.0% | France | [9] | |
5.1% | Germany | [32] | |
3.13% | Uruguay | [29] | |
3.0% | Kazakhstan | [33] | |
HH4 | 3.6% | France | [5] |
1.26% | Germany | [34] | |
0.37% | USA | [35] | |
HH5 | 4.30% | China | [31] |
5.5% | Germany | [32] | |
2.76% | USA | [35] | |
HH6 | 1.3% | France | [8] |
<1.0% | Russia | [36] | |
HH7 | 1.1% | France | [9] |
CDH | 8.7% | Germany | [32] |
14.6% | Canada | [37] | |
11.0% | Kazakhstan | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gozdek, M.; Mucha, S.; Prostek, A.; Sadkowski, T. Selected Monogenic Genetic Diseases in Holstein Cattle—A Review. Genes 2024, 15, 1052. https://doi.org/10.3390/genes15081052
Gozdek M, Mucha S, Prostek A, Sadkowski T. Selected Monogenic Genetic Diseases in Holstein Cattle—A Review. Genes. 2024; 15(8):1052. https://doi.org/10.3390/genes15081052
Chicago/Turabian StyleGozdek, Marta, Sebastian Mucha, Adam Prostek, and Tomasz Sadkowski. 2024. "Selected Monogenic Genetic Diseases in Holstein Cattle—A Review" Genes 15, no. 8: 1052. https://doi.org/10.3390/genes15081052
APA StyleGozdek, M., Mucha, S., Prostek, A., & Sadkowski, T. (2024). Selected Monogenic Genetic Diseases in Holstein Cattle—A Review. Genes, 15(8), 1052. https://doi.org/10.3390/genes15081052