Unravelling the Relationship Between Height, Lean Mass, Alzheimer’s Disease and Cognition Through Mendelian Randomization
Abstract
:1. Introduction
2. Methods
2.1. Genetic Associations with Lean Mass and Height
2.2. Genetic Associations with Alzheimer’s Disease and Cognitive Performance
2.3. Selection of Genetic Proxies for Height and Lean Mass
2.4. Mendelian Randomization Analysis
2.5. Software
3. Results
3.1. Univariable MR Estimates for Association of Height and Lean Mass with AD and Cognitive Performance
3.2. Estimating the Direct Effect of Lean Mass and Height on AD and Cognitive Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Livingston, G.; Huntley, J.; Liu, K.Y.; Costafreda, S.G.; Selbæk, G.; Alladi, S.; Ames, D.; Banerjee, S.; Burns, A.; Brayne, C.; et al. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024, 404, 572–628. [Google Scholar] [CrossRef] [PubMed]
- Amini, N.; Ibn Hach, M.; Lapauw, L.; Dupont, J.; Vercauteren, L.; Verschueren, S.; Tournoy, J.; Gielen, E. Meta-analysis on the interrelationship between sarcopenia and mild cognitive impairment, Alzheimer’s disease and other forms of dementia. J. Cachexia Sarcopenia Muscle 2024, 15, 1240–1253. [Google Scholar] [CrossRef] [PubMed]
- Daghlas, I.; Nassan, M.; Gill, D. Genetically proxied lean mass and risk of Alzheimer’s disease: Mendelian randomisation study. BMJ Med. 2023, 2, e000354. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.-F.; Liu, Y.-Z.; Yang, X.-L.; Zhang, H.; Feng, G.-J.; Wei, X.-T.; Zhang, L. The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study. Commun. Biol. 2020, 3, 608. [Google Scholar] [CrossRef]
- Hume, R. Prediction of lean body mass from height and weight. J. Clin. Pathol. 1966, 19, 389–391. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef]
- Wood, A.R.; Esko, T.; Yang, J.; Vedantam, S.; Pers, T.H.; Gustafsson, S.; Chu, A.Y.; Estrada, K.; Luan, J.; Kutalik, Z.; et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 2014, 46, 1173–1186. [Google Scholar] [CrossRef]
- Gilbody, J.; Borges, M.; Davey Smith, G.; Sanderson, E. Multivariable MR can mitigate bias in two-sample MR using covariable-adjusted summary associations. medRxiv 2022. [Google Scholar] [CrossRef]
- Jiang, L.; Zheng, Z.; Qi, T.; Kemper, K.E.; Wray, N.R.; Visscher, P.M.; Yang, J. A resource-efficient tool for mixed model association analysis of large-scale data. Nat. Genet. 2019, 51, 1749–1755. [Google Scholar] [CrossRef]
- Yengo, L.; Vedantam, S.; Marouli, E.; Sidorenko, J.; Bartell, E.; Sakaue, S.; Graff, M.; Eliasen, A.U.; Jiang, Y.; Raghavan, S.; et al. A saturated map of common genetic variants associated with human height. Nature 2022, 610, 704–712. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M.; et al. UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, s13742-015-0047-8. [Google Scholar] [CrossRef] [PubMed]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef] [PubMed]
- Savage, J.E.; Jansen, P.R.; Stringer, S.; Watanabe, K.; Bryois, J.; De Leeuw, C.A.; Nagel, M.; Awasthi, S.; Barr, P.B.; Coleman, J.R.I.; et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 2018, 50, 912–919. [Google Scholar] [CrossRef]
- Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife 2018, 7, e34408. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G. Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol. 2015, 181, 251–260. [Google Scholar] [CrossRef]
- Burgess, S.; Small, D.S.; Thompson, S.G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 2017, 26, 2333–2355. [Google Scholar] [CrossRef]
- Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ 2018, 362. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Bowden, J.; Smith, G.D.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Sanderson, E.; Spiller, W.; Bowden, J. Testing and correcting for weak and pleiotropic instruments in two-sample multivariable Mendelian randomization. Stat. Med. 2021, 40, 5434–5452. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Traylor, M.; Burgess, S.; Markus, H.S. Genetically-Predicted Adult Height and Alzheimer’s Disease. J. Alzheimer’s Dis. 2017, 60, 691–698. [Google Scholar] [CrossRef]
- von Hinke Kessler Scholder, S.; Davey Smith, G.; Lawlor, D.A.; Propper, C.; Windmeijer, F. Child height, health and human capital: Evidence using genetic markers. Eur. Econ. Rev. 2013, 57, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Russ, T.C.; Kivimäki, M.; Starr, J.M.; Stamatakis, E.; Batty, G.D. Height in relation to dementia death: Individual participant meta-analysis of 18 UK prospective cohort studies. Br. J. Psychiatry 2014, 205, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Taki, Y.; Hashizume, H.; Sassa, Y.; Takeuchi, H.; Asano, M.; Asano, K.; Kotozaki, Y.; Nouchi, R.; Wu, K.; Fukuda, H.; et al. Correlation among body height, intelligence, and brain gray matter volume in healthy children. Neuroimage 2012, 59, 1023–1027. [Google Scholar] [CrossRef]
- Tyrrell, J.; Jones, S.E.; Beaumont, R.; Astley, C.M.; Lovell, R.; Yaghootkar, H.; Tuke, M.; Ruth, K.S.; Freathy, R.M.; Hirschhorn, J.N.; et al. Height, body mass index, and socioeconomic status: Mendelian randomisation study in UK Biobank. BMJ 2016, 352. [Google Scholar] [CrossRef]
- Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, Z.; Zheng, Q.; Miao, J.; Dorn, S.; Mukherjee, S.; Fletcher, J.M.; Lu, Q. Pervasive biases in proxy genome-wide association studies based on parental history of Alzheimer’s disease. Nat. Genet. 2024, 56, 2696–2703. [Google Scholar] [CrossRef]
- Brumpton, B.; Sanderson, E.; Heilbron, K.; Hartwig, F.P.; Harrison, S.; Vie, G.Å.; Cho, Y.; Howe, L.D.; Hughes, A.; Boomsma, D.I.; et al. Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nat. Commun. 2020, 11, 3519. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Zhang, L.; Bodimeade, C.; Nassan, M.; Gill, D.; Cronjé, H.T.; Dib, M.-J.; Daghlas, I. Unravelling the Relationship Between Height, Lean Mass, Alzheimer’s Disease and Cognition Through Mendelian Randomization. Genes 2025, 16, 113. https://doi.org/10.3390/genes16020113
Huang J, Zhang L, Bodimeade C, Nassan M, Gill D, Cronjé HT, Dib M-J, Daghlas I. Unravelling the Relationship Between Height, Lean Mass, Alzheimer’s Disease and Cognition Through Mendelian Randomization. Genes. 2025; 16(2):113. https://doi.org/10.3390/genes16020113
Chicago/Turabian StyleHuang, Jingxian, Linxuan Zhang, Christopher Bodimeade, Malik Nassan, Dipender Gill, Héléne T. Cronjé, Marie-Joe Dib, and Iyas Daghlas. 2025. "Unravelling the Relationship Between Height, Lean Mass, Alzheimer’s Disease and Cognition Through Mendelian Randomization" Genes 16, no. 2: 113. https://doi.org/10.3390/genes16020113
APA StyleHuang, J., Zhang, L., Bodimeade, C., Nassan, M., Gill, D., Cronjé, H. T., Dib, M.-J., & Daghlas, I. (2025). Unravelling the Relationship Between Height, Lean Mass, Alzheimer’s Disease and Cognition Through Mendelian Randomization. Genes, 16(2), 113. https://doi.org/10.3390/genes16020113