Comparative Study of Statistical Approaches and SNP Panels to Infer Distant Relationships in Forensic Genetics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genetic Marker Panels
2.2. Reference Data
2.3. Simulation Procedure
2.4. Inferring Relationships
2.4.1. Likelihood Ratio
2.4.2. Maximum Likelihood Estimate
2.4.3. Methods of Moment Estimators
2.4.4. Segments
2.4.5. Windowed Kinship
2.5. Exploring Impact of Errors
2.6. Classification of Relationships
3. Results
3.1. True IBD Sharing
3.2. Classifications
3.3. Impact of Errors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FIGG | Forensic Investigative Genetic Genealogy |
NFE | Non-Finnish Europeans |
SNP | Single Nucleotide Polymorphism |
DTC | Direct-to-Consumer |
LD | Linkage Disequilibrium |
References
- Gjertson, D.W.; Brenner, C.H.; Baur, M.P.; Carracedo, A.; Guidet, F.; Luque, J.A.; Lessig, R.; Mayr, W.R.; Pascali, V.L.; Prinz, M.; et al. ISFG: Recommendations on biostatistics in paternity testing. Forensic Sci. Int. Genet. 2007, 1, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Kling, D.; Phillips, C.; Kennett, D.; Tillmar, A. Investigative genetic genealogy: Current methods, knowledge and practice. Forensic Sci. Int. Genet. 2021, 52, 102474. [Google Scholar] [CrossRef]
- Dimitromanolakis, A.; Paterson, A.D.; Sun, L. Fast and accurate shared segment detection and relatedness estimation in un-phased genetic data via TRUFFLE. Am. J. Hum. Genet. 2019, 105, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Browning, B.L.; Browning, S.R. A fast, powerful method for detecting identity by descent. Am. J. Hum. Genet. 2011, 88, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Larkin, L. What Are the Odds? Available online: https://dnapainter.com/tools/probability (accessed on 16 December 2024).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manichaikul, A.; Mychaleckyj, J.C.; Rich, S.S.; Daly, K.; Sale, M.; Chen, W.M. Robust relationship inference in genome-wide association studies. Bioinformatics 2010, 26, 2867–2873. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amorim, A.; Pereira, L. Pros and cons in the use of SNPs in forensic kinship investigation: A comparative analysis with STRs. Forensic Sci. Int. 2005, 150, 17–21. [Google Scholar] [CrossRef]
- Phillips, C. A genomic audit of newly-adopted autosomal STRs for forensic identification. Forensic Sci. Int. Genet. 2017, 29, 193–204. [Google Scholar] [CrossRef]
- Tillmar, A.; Sturk-Andreaggi, K.; Daniels-Higginbotham, J.; Thomas, J.T.; Marshall, C. The FORCE Panel: An all-in-one SNP marker set for confirming investigative genetic genealogy leads and for general forensic applications. Genes 2021, 12, 1968. [Google Scholar] [CrossRef]
- Antunes, J.; Walichiewicz, P.; Forouzmand, E.; Barta, R.; Didier, M.; Han, Y.; Perez, J.C.; Snedecor, J.; Zlatkov, C.; Padmabandu, G. Developmental Validation of the ForenSeq® Kintelligence Kit, MiSeq Fgx® Sequencing System and ForenSeq Universal Analysis Software. Forensic Sci. Int. Genet. 2024, 71, 103055. [Google Scholar] [CrossRef]
- Gorden, E.M.; Greytak, E.M.; Sturk-Andreaggi, K.; Cady, J.; McMahon, T.P.; Armentrout, S.; Marshall, C. Extended kinship analysis of historical remains using SNP capture. Forensic Sci. Int. Genet. 2022, 57, 102636. [Google Scholar] [CrossRef] [PubMed]
- Kling, D.; Tillmar, A. Forensic genealogy—A comparison of methods to infer distant relationships based on dense SNP data. Forensic Sci. Int. Genet. 2019, 42, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Russell, D.A.; Gorden, E.M.; Peck, M.A.; Neal, C.M.; Heaton, M.C.; Bouchet, J.L.; Koeppel, A.F.; Ciuzio, E.; Turner, S.D.; Reedy, C.R. Developmental validation of the Illumina Infinium assay using the global screening array on the iScan system for use in forensic laboratories. Forensic Genom. 2023, 3, 15–24. [Google Scholar] [CrossRef]
- Jäger, A.C.; Alvarez, M.L.; Davis, C.P.; Guzmán, E.; Han, Y.; Way, L.; Walichiewicz, P.; Silva, D.; Pham, N.; Caves, G. Developmental validation of the MiSeq FGx forensic genomics system for targeted next generation sequencing in forensic DNA casework and database laboratories. Forensic Sci. Int. Genet. 2017, 28, 52–70. [Google Scholar] [CrossRef]
- Kling, D. On the use of dense sets of SNP markers and their potential in relationship inference. Forensic Sci. Int. Genet. 2019, 39, 19–31. [Google Scholar] [CrossRef]
- Matise, T.C.; Chen, F.; Chen, W.; Francisco, M.; Hansen, M.; He, C.; Hyland, F.C.; Kennedy, G.C.; Kong, X.; Murray, S.S. A second-generation combined linkage–physical map of the human genome. Genome Res. 2007, 17, 1783–1786. [Google Scholar] [CrossRef]
- Sudmant, P.H.; Rausch, T.; Gardner, E.J.; Handsaker, R.E.; Abyzov, A.; Huddleston, J.; Zhang, Y.; Ye, K.; Jun, G.; Fritz, M.H.-Y. An integrated map of structural variation in 2,504 human genomes. Nature 2015, 526, 75–81. [Google Scholar] [CrossRef]
- Caballero, M.; Seidman, D.N.; Qiao, Y.; Sannerud, J.; Dyer, T.D.; Lehman, D.M.; Curran, J.E.; Duggirala, R.; Blangero, J.; Carmi, S. Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives. PLoS Genet. 2019, 15, e1007979. [Google Scholar] [CrossRef]
- Campbell, C.L.; Furlotte, N.A.; Eriksson, N.; Hinds, D.; Auton, A. Escape from crossover interference increases with maternal age. Nat. Commun. 2015, 6, 6260. [Google Scholar] [CrossRef]
- Bhérer, C.; Campbell, C.L.; Auton, A. Refined genetic maps reveal sexual dimorphism in human meiotic recombination at multiple scales. Nat. Commun. 2017, 8, 14994. [Google Scholar] [CrossRef]
- Abecasis, G.R.; Cherny, S.S.; Cookson, W.O.; Cardon, L.R. Merlin--rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 2002, 30, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Korneliussen, T.S.; Moltke, I. NgsRelate: A software tool for estimating pairwise relatedness from next-generation sequencing data. Bioinformatics 2015, 31, 4009–4011. [Google Scholar] [CrossRef] [PubMed]
- Snedecor, J.; Fennell, T.; Stadick, S.; Homer, N.; Antunes, J.; Stephens, K.; Holt, C. Fast and accurate kinship estimation using sparse SNPs in relatively large database searches. Forensic Sci. Int. Genet. 2022, 61, 102769. [Google Scholar] [CrossRef] [PubMed]
- Lander, E.S.; Green, P. Construction of multilocus genetic linkage maps in humans. Proc. Natl. Acad Sci. USA 1987, 84, 2363–2367. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mostad, P.; Tillmar, A.; Kling, D. Improved computations for relationship inference using low-coverage sequencing data. BMC Bioinform. 2023, 24, 90. [Google Scholar] [CrossRef]
- Browning, B.L.; Browning, S.R. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 2013, 194, 459–471. [Google Scholar] [CrossRef]
- Browning, S.R.; Browning, B.L. Identity by descent between distant relatives: Detection and applications. Annu. Rev. Genet. 2012, 46, 617–633. [Google Scholar] [CrossRef]
- Ball, C.A.; Barber, M.J.; Byrnes, J.; Carbonetto, P.; Chahine, K.G.; Curtis, R.E.; Granka, J.M.; Han, E.; Hong, E.L.; Kermany, A.R. Ancestry DNA Matching White Paper. 2020. Available online: https://www.ancestrycdn.com/support/us/2020/08/matchingwhitepaper.pdf (accessed on 16 December 2024).
- Mo, S.-K.; Fan, Q.-W.; Ma, X.-Y.; Zhang, Y.-W.; Jiao, M.-W.; Wang, L.; Yan, J.-W. Enhancing testing efficacy of high-density SNP microarrays to distinguish pedigrees belonging to the same kinship class. Forensic Sci. Int. Genet. 2025, 74, 103162. [Google Scholar] [CrossRef]
- Turner, S.D.; Nagraj, V.; Scholz, M.; Jessa, S.; Acevedo, C.; Ge, J.; Woerner, A.E.; Budowle, B. Evaluating the impact of dropout and genotyping error on SNP-based kinship analysis with forensic samples. Front. Genet. 2022, 13, 882268. [Google Scholar] [CrossRef]
- Woerner, A.E.; Novroski, N.M.; Mandape, S.; King, J.L.; Crysup, B.; Coble, M.D. Identifying distant relatives using benchtop-scale sequencing. Forensic Sci. Int. Genet. 2024, 69, 103005. [Google Scholar] [CrossRef]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef]
Signature | FORCE | Kintelligence | 25 K | 95 K | GSA | Total 3 | |
---|---|---|---|---|---|---|---|
Raw #markers 1 | 150 | 5422 | 10,230 | 24,999 | 94,723 | 654,027 | 664,327 |
Filtered #markers 2 | 92 | 4073 | 9618 | 17,231 | 53,593 | 142,350 | 202,470 |
Reference | Jäger et al. [15] | Tillmar et al. [10] | Antunes et al. [11] | Gorden et al. [12] | Gorden et al. [12] | Russell et al. [14] | |
Application | Kinship | Kinship | Kinship/Genealogy | Kinship | Kinship | Medical/Genealogy |
LR | ngsRelate (ML) | Methods of Moment | Segment | Windowed Kinship | |
---|---|---|---|---|---|
Genetic linkage | Yes | No | NN | NN | NN |
Linkage disequilibrium | No/Yes | No | NN/No | NN | NN |
Hypothesis | Yes | No | No | No | No |
Allele frequencies | Yes | Yes | No | No | No/Yes |
Lowest marker number 1 | 1000 | 1000 | 10,000 | 4000 | 4000 |
Application | General relationship inference | Finding most likely Jacquard coefficients | Screening studies | Genetic genealogy | Genetic genealogy |
Reference | Abecasis et al. [22] | Korneliussen et al. [23] | Manichaikul et al. [7] | Browning et al. [4] | Snedecor et al. [24]. |
LR | ngsRelate (ML) | Methods of Moment | Segment | Windowed kinship |
Hom->Het | Hom->Hom | Hom->Het |
---|---|---|
0.02 | 0 | 0 |
0.005 | 0 | 0 |
0 | 0 | 0.005 |
0 | 0 | 0.02 |
0 | 0.001 | 0 |
0 | 0.01 | 0 |
Relationship Class | Degree | IBD (κ0, κ1, κ2) | Shared Segment 1 | MoM 2 |
---|---|---|---|---|
Full siblings (S1) | 1st | 0.25, 0.5, 0.25 | 2460 cM | 0.25 |
First cousins (S2) | 3rd | 0.75, 0.25, 0 | 818 cM | 0.063 |
Second cousins (S3) | 5th | 0.9375, 0.0625, 0 | 298 cM | 0.016 |
Third cousins (S4) | 7th | 0.97, 0.0312, 0 | 49 cM | 0.004 |
Unrelated (Un) | >7th | 1, 0, 0 | 10 cM 3 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tillmar, A.; Kling, D. Comparative Study of Statistical Approaches and SNP Panels to Infer Distant Relationships in Forensic Genetics. Genes 2025, 16, 114. https://doi.org/10.3390/genes16020114
Tillmar A, Kling D. Comparative Study of Statistical Approaches and SNP Panels to Infer Distant Relationships in Forensic Genetics. Genes. 2025; 16(2):114. https://doi.org/10.3390/genes16020114
Chicago/Turabian StyleTillmar, Andreas, and Daniel Kling. 2025. "Comparative Study of Statistical Approaches and SNP Panels to Infer Distant Relationships in Forensic Genetics" Genes 16, no. 2: 114. https://doi.org/10.3390/genes16020114
APA StyleTillmar, A., & Kling, D. (2025). Comparative Study of Statistical Approaches and SNP Panels to Infer Distant Relationships in Forensic Genetics. Genes, 16(2), 114. https://doi.org/10.3390/genes16020114