Genome-Wide Association Studies for Lactation Performance in Buffaloes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Phenotypes and Animal Resources
2.3. Sample Collection and Sequencing
2.4. Alignments and Variant Identification
2.5. Variation Filtering
2.6. Principal Component Analysis
2.7. Population Structure Analysis
2.8. Genome-Wide Association Mapping
2.9. Pathway Enrichment and Protein–Protein Interaction
2.10. Statistical Analysis
3. Results
3.1. Phenotypic Value Statistics of the Traits
3.2. Population Structure
3.3. Results of the Genome-Wide Associations
3.4. Kyoto Encyclopedia of Genes and Genomes Pathway Analysis of Candidate Genes
3.5. Significant Association of Milk Protein Content with SNP Validation
4. Discussion
4.1. Population Stratification
4.2. Genome-Wide Association Analysis of Milk Production-Related Traits
4.3. The Mechanism of SNP Mutation and the Milk Production Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.X.; Sun, H.; Shaukat, A.; Deng, T.X.; Abdel-Shafy, H.; Che, Z.X.; Zhou, Y.; Hu, C.M.; Li, H.Z.; Wu, Q.P.; et al. Novel Insight into the Role of ACSL1 Gene in Milk Production Traits in Buffalo. Front. Genet. 2022, 13, 896910. [Google Scholar] [CrossRef]
- Barłowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional Value and Technological Suitability of Milk from Various Animal Species Used for Dairy Production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Pisanu, S.; Cacciotto, C.; Pagnozzi, D.; Puggioni, G.M.G.; Uzzau, S.; Ciaramella, P.; Guccione, J.; Penati, M.; Pollera, C.; Moroni, P.; et al. Proteomic changes in the milk of water buffaloes (water buffalo) with subclinical mastitis due to intramammary infection by Staphylococcus aureus and by non-aureus staphylococci. Sci. Rep. 2019, 9, 15850. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Liang, A.; Liang, S.; Ma, X.; Lu, X.; Duan, A.; Pang, C.; Hua, G.; Liu, S.; Campanile, G. Integrative Analysis of Transcriptome and GWAS Data to Identify the Hub Genes Associated with Milk Yield Trait in Buffalo. Front. Genet. 2019, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Srirattana, K.; Hufana-Duran, D.; Atabay, E.P.; Duran, P.G.; Atabay, E.C.; Lu, K.; Liang, Y.; Chaikhun-Marcou, T.; Theerakittayakorn, K.; Parnpai, R. Current status of assisted reproductive technologies in buffaloes. Anim. Sci. J. 2022, 93, e13767. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, Z.; Li, X.; Zhang, Z.; Liu, X.; Yang, P.; Chen, N.; Xia, X.; Lyu, S.; Shi, Q.; et al. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genom. 2022, 23, 460. [Google Scholar] [CrossRef] [PubMed]
- Bush, W.S.; Moore, J.H. Chapter 11: Genome-wide association studies. PLoS Comput. Biol. 2012, 8, e1002822. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Reddy, U.K.; Natarajan, P.; Abburi, V.L.; Bajwa, A.A.; Imran, M.; Zahoor, M.Y.; Abdullah, M.; Bukhari, A.M.; Iqbal, S.; et al. Population demographic history and population structure for Pakistani Nili-Ravi breeding bulls based on SNP genotyping to identify genomic regions associated with male effects for milk yield and body weight. PLoS ONE 2020, 15, e0242500. [Google Scholar] [CrossRef] [PubMed]
- Ye, T.; Shaukat, A.; Yang, L.; Chen, C.; Zhou, Y.; Yang, L. Evolutionary and Association Analysis of Buffalo FABP Family Genes Reveal Their Potential Role in Milk Performance. Genes 2022, 13, 600. [Google Scholar] [CrossRef] [PubMed]
- Pham, M.; Tu, Y.; Lv, X. Accelerating BWA-MEM Read Mapping on GPUs. In Proceedings of the ICS’23: Proceedings of the 37th International Conference on Supercomputing, Orlando, FL, USA, 21–23 June 2023; Volume 2023, pp. 155–166. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Bathke, J.; Lühken, G. OVarFlow: A resource optimized GATK 4 based Open source Variant calling workFlow. BMC Bioinform. 2021, 22, 402. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 2011, 88, 76–82. [Google Scholar] [CrossRef]
- Francis, R.M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 2017, 17, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Spencer, D.; Yue, Y.R.; Bolin, D.; Ryan, S.; Mejia, A.F. Spatial Bayesian GLM on the cortical surface produces reliable task activations in individuals and groups. Neuroimage 2022, 249, 118908. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.-H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI database of genetic variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Rosenfeld, R.; Simon, I.; Nau, G.J.; Bar-Joseph, Z. A probabilistic generative model for GO enrichment analysis. Nucleic Acids Res. 2008, 36, e109. [Google Scholar] [CrossRef]
- Haldar, T.; Ghosh, S. Effect of Population Stratification on False Positive Rates of Population-Based Association Analyses of Quantitative Traits. Ann. Hum. Genet. 2012, 76, 237–245. [Google Scholar] [CrossRef]
- Persyn, E.; Redon, R.; Bellanger, L.; Dina, C. The impact of a fine-scale population stratification on rare variant association test results. PLoS ONE 2018, 13, e0207677. [Google Scholar] [CrossRef]
- Elhaik, E. Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Sci. Rep. 2022, 12, 14683. [Google Scholar] [CrossRef]
- Nazar, M.; Lu, X.; Abdalla, I.M.; Ullah, N.; Fan, Y.; Chen, Z.; Arbab, A.A.I.; Mao, Y.; Yang, Z. Genome-Wide Association Study Candidate Genes on Mammary System-Related Teat-Shape Conformation Traits in Chinese Holstein Cattle. Genes 2021, 12, 2020. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.M.; Tingzhu, Y.; Pasandideh, M.; Liang, A.; Hua, G.; Farmanullah; Schreurs, N.M.; Raza, S.H.A.; Salzano, A.; Campanile, G.; et al. Genetic Association of PPARGC1A Gene Single Nucleotide Polymorphism with Milk Production Traits in Italian Mediterranean Buffalo. BioMed Res. Int. 2021, 2021, 3653157. [Google Scholar] [CrossRef] [PubMed]
- Venturini, G.C.; Cardoso, D.F.; Baldi, F.; Freitas, A.C.; Aspilcueta-Borquis, R.R.; Santos, D.J.; Camargo, G.M.; Stafuzza, N.B.; Albuquerque, L.G.; Tonhati, H. Association between single-nucleotide polymorphisms and milk production traits in buffalo. Genet. Mol. Res. 2014, 13, 10256–10268. [Google Scholar] [CrossRef]
- Nishio, S.; Kakizawa, T.; Chatelain, G.; Triqueneaux, G.; Brunet, F.; Rambaud, J.; Lamonerie, T.; Laudet, V. OTX5 regulates pineal expression of the zebrafish REV-ERB alpha through a new DNA binding site. Mol. Endocrinol. 2008, 22, 23–32. [Google Scholar] [CrossRef]
- Mo, S.; Zhang, L.; Dai, W.; Han, L.; Wang, R.; Xiang, W.; Wang, Z.; Li, Q.; Yu, J.; Yuan, J.; et al. Antisense lncRNA LDLRAD4-AS1 promotes metastasis by decreasing the expression of LDLRAD4 and predicts a poor prognosis in colorectal cancer. Cell Death Dis. 2020, 11, 155. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.; Smolders, S.; Van den Haute, C.; Heeman, B.; van Veen, S.; Crosiers, D.; Beletchi, I.; Verstraeten, A.; Gossye, H.; Gelders, G.; et al. Mutated ATP10B increases Parkinson′s disease risk by compromising lysosomal glucosylceramide export. Acta Neuropathol. 2020, 139, 1001–1024. [Google Scholar] [CrossRef]
- Cheepala, S.B.; Pitre, A.; Fukuda, Y.; Takenaka, K.; Zhang, Y.; Wang, Y.; Frase, S.; Pestina, T.; Gartner, T.K.; Jackson, C.; et al. The ABCC4 membrane transporter modulates platelet aggregation. Blood 2015, 126, 2307–2319. [Google Scholar] [CrossRef]
- Delosiere, M.; Pires, J.; Bernard, L.; Cassar-Malek, I.; Bonnet, M. Milk proteome from in silico data aggregation allows the identification of putative biomarkers of negative energy balance in dairy cows. Sci. Rep. 2019, 9, 9718. [Google Scholar] [CrossRef]
- Nguyen, T.; Shively, J.E. Induction of Lumen Formation in a Three-dimensional Model of Mammary Morphogenesis by Transcriptional Regulator ID4. J. Biol. Chem. 2016, 291, 16766–16776. [Google Scholar] [CrossRef]
- Behtaji, S.; Ghafouri-Fard, S.; Sayad, A.; Sattari, A.; Rederstorff, M.; Taheri, M. Identification of oxytocin-related lncRNAs and assessment of their expression in breast cancer. Sci. Rep. 2021, 11, 6471. [Google Scholar] [CrossRef]
- Kęsek-Woźniak, M.M.; Wojtas, E.; Zielak-Steciwko, A.E. Impact of SNPs in ACACA, SCD1, and DGAT1 genes on fatty acid profile in bovine milk with regard to lactation phases. Animals 2020, 10, 997. [Google Scholar] [CrossRef] [PubMed]
- Karlengen, I.J.; Harstad, O.M.; Taugbøl, O.; Berget, I.; Aastveit, A.H.; Våge, D.I. The effect of excess cobalt on milk fatty acid profiles and transcriptional regulation of SCD, FASN, DGAT1 and DGAT2 in the mammary gland of lactating dairy cows. J. Anim. Physiol. Anim. Nutr. 2012, 96, 1065–1073. [Google Scholar] [CrossRef]
- Bovenhuis, H.; Visker, M.H.P.W.; Van Valenberg, H.J.F.; Buitenhuis, A.J.; Van Arendonk, J.A.M. Effects of the DGAT1 polymorphism on test-day milk production traits throughout lactation. J. Dairy Sci. 2015, 98, 6572–6582. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.; Begolli, R.; Giakountis, A. Non-Coding Variants in Cancer: Mechanistic Insights and Clinical Potential for Personalized Medicine. Non-Coding RNA 2021, 7, 47. [Google Scholar] [CrossRef]
- Hynes, A.C.; Sreenan, J.M.; Kane, M.T. The phosphatidylinositol signalling system in elongating bovine blastocysts; formation of phosphoinositides, inositol phosphates and stimulation by growth factors. Reprod. Fertil. Dev. 2002, 14, 515–523. [Google Scholar] [CrossRef]
Traits | Mean | SD | Min | Max |
---|---|---|---|---|
MY | 2321.3 | 861.8 | 480.8 | 5185.3 |
PM | 11.4 | 4.8 | 2.7 | 24.4 |
PY | 80.8 | 41.2 | 4.0 | 275.8 |
FY | 116.1 | 57.9 | 5.0 | 363.3 |
PP | 4.8 | 0.4 | 4.4 | 5.8 |
FP | 5.2 | 0.8 | 3.7 | 8.9 |
Traits | SNP | Chr | Pos | p | R2 | Candidate Genes |
---|---|---|---|---|---|---|
MY | 1 | NC_037552.1 | 110795896 | 4.3 × 10−7 | 0.39 | CNTNAP2 |
PY | 2 | NC_037545.1 | 45287655 | 4.01 × 10−7 | 0.36 | -- |
PY | 3 | NC_037545.1 | 45287667 | 4.01 × 10−7 | 0.36 | -- |
PY | 4 | NC_037545.1 | 45287677 | 4.01 × 10−7 | 0.36 | -- |
PY | 5 | NC_037545.1 | 45287689 | 4.01 × 10−7 | 0.36 | -- |
PY | 6 | NC_037545.1 | 155842848 | 6.41 × 10−7 | 0.43 | KCNAB1 |
PY | 7 | NC_037546.1 | 174939089 | 1.82 × 10−7 | 0.37 | TINAGL1; AZIN2 |
PY | 8 | NC_037547.1 | 10261615 | 8.43 × 10−8 | 0.35 | RBFOX3 |
PY | 9 | NC_037548.1 | 58828968 | 3.56 × 10−7 | 0.33 | NEDD1 |
PY | 10 | NC_037548.1 | 97643871 | 9.64 × 10−8 | 0.369 | EEA1; PLEKHG7 |
PY | 11 | NC_037549.1 | 52254091 | 4.08 × 10−7 | 0.31 | LEFTY2; PYCR2; - |
PY | 12 | NC_037549.1 | 122104312 | 8.972 × 10−8 | 0.41 | DOC2G; NUDT8; TBX10; ALDH3B1; UNC93B1; ALDH3B1; NDUFS8; TCIRG1 |
PY | 13 | NC_037550.1 | 7990287 | 2.51 × 10−7 | 0.34 | CFAP126; SDHC |
PY | 14 | NC_037550.1 | 109178670 | 1.5 × 10−9 | 0.48 | MAP7D1; TRAPPC3; COL8A; ADPRHL2; TEKT2 |
PY | 15 | NC_037551.1 | 62424439 | 7.20 × 10−11 | 0.54 | -- |
PY | 16 | NC_037551.1 | 87385802 | 1.7 × 10−9 | 0.43 | CAMK2D |
PY | 17 | NC_037552.1 | 119759448 | 4.64 × 10−7 | 0.30 | USP17L13 |
PY | 18 | NC_037556.1 | 9792358 | 3.18 × 10−7 | 0.36 | -- |
PY | 19 | NC_037557.1 | 18868198 | 1.71 × 10−7 | 0.34 | ABCC4 |
PY | 20 | NC_037557.1 | 18868200 | 1.72 × 10−7 | 0.34 | ABCC4 |
PY | 21 | NC_037557.1 | 18868226 | 1.71 × 10−7 | 0.34 | ABCC4 |
PY | 22 | NC_037557.1 | 18868442 | 2.02 × 10−7 | 0.34 | ABCC4 |
PY | 23 | NC_037557.1 | 18868443 | 2.02 × 10−7 | 0.34 | ABCC4 |
PY | 24 | NC_037557.1 | 18868449 | 2.02 × 10−7 | 0.34 | ABCC4 |
PY | 25 | NC_037557.1 | 18868500 | 1.71 × 10−7 | 0.34 | ABCC4 |
PY | 26 | NC_037557.1 | 18868507 | 1.71 × 10−7 | 0.34 | ABCC4 |
PY | 27 | NC_037557.1 | 18868523 | 1.71 × 10−7 | 0.34 | ABCC4 |
PY | 28 | NC_037560.1 | 28753781 | 9.90 × 10−8 | 0.40 | GUCY2D; LRRC32 |
PY | 29 | NC_037560.1 | 35600620 | 3.36 × 10−8 | 0.40 | OR52Z1; OR51V1; OR51V1; OR52A5; OR52K1; OR52K1 |
PY | 30 | NC_037560.1 | 60745000 | 4.5 × 10−10 | 0.44 | TMPRSS5 |
PY | 31 | NC_037560.1 | 74611905 | 1.48 × 10−8 | 0.38 | CNTN5 |
PY | 32 | NC_037562.1 | 12469915 | 1.04 × 10−8 | 0.43 | -- |
PY | 33 | NC_037564.1 | 56654985 | 8.12 × 10−8 | 0.39 | -- |
PY | 34 | NC_037564.1 | 56655021 | 8.12 × 10−8 | 0.39 | -- |
PY | 35 | NC_037565.1 | 13765148 | 1.19 × 10−7 | 0.37 | CTNNB1 |
PY | 36 | NC_037566.1 | 61557795 | 1.04 × 10−7 | 0.37 | KCNG2; PQLC1; TXNL4A; YVCT |
PY | 37 | NC_037567.1 | 17641416 | 1.31 × 10−8 | 0.39 | TLL2; TM9SF3 |
PY | 38 | NC_037567.1 | 17641470 | 1.91 × 10−8 | 0.39 | TLL2; TM9SF3 |
PY | 39 | NC_037567.1 | 17641671 | 1.31 × 10−8 | 0.39 | TLL2; TM9SF3 |
PY | 40 | NC_037567.1 | 44281645 | 8.32 × 10−8 | 0.34 | -- |
FY | 41 | NC_037550.1 | 109178670 | 8.94 × 10−8 | 0.37 | MAP7D1; TRAPPC3; COL8A; ADPRHL2; TEKT2 |
FY | 42 | NC_037551.1 | 62424439 | 1.7 × 10−8 | 0.42 | -- |
FY | 43 | NC_037557.1 | 18651732 | 2.48 × 10−7 | 0.32 | ABCC4 |
FY | 44 | NC_037560.1 | 60745000 | 4.44 × 10−7 | 0.32 | TMPRSS5 |
FY | 45 | NC_037560.1 | 74050792 | 3.67 × 10−7 | 0.36 | -- |
PP | 46 | NC_037556.1 | 50669172 | 3.34 × 10−8 | 0.43 | -- |
FP | 47 | NC_037545.1 | 35877328 | 4.11 × 10−7 | 0.30 | -- |
FP | 48 | NC_037546.1 | 6705158 | 3.44 × 10−7 | 0.27 | -- |
FP | 49 | NC_037548.1 | 4405934 | 6.25 × 10−8 | 0.33 | FAM118A; UPK3A; KIAA0930 |
FP | 50 | NC_037552.1 | 24460 | 6.65 × 10−8 | 0.29 | -- |
FP | 51 | NC_037552.1 | 112491377 | 3.27 × 10−8 | 0.32 | ZNF777; ZNF746 |
FP | 52 | NC_037552.1 | 113607118 | 2.36 × 10−8 | 0.33 | ABCB8; ASIC3 |
FP | 53 | NC_037555.1 | 29774524 | 2.45 × 10−7 | 0.28 | PRKCH |
FP | 54 | NC_037559.1 | 81684074 | 5.71 × 10−8 | 0.32 | DGAT1; HSF1 |
FP | 55 | NC_037564.1 | 36725181 | 9.35 × 10−8 | 0.31 | LINGO1 |
FP | 56 | NC_037569.1 | 5832499 | 2.09 × 10−8 | 0.35 | KAL1 |
Candidate Genes | SNP (Chr:Pos) | Milk Protein Yield | ||
---|---|---|---|---|
Homozygous Mutation | Heterozygous Mutation | Reference Genotype | ||
ABCC4 | NC_037557.1:18868198 | A/A | G/A | G/G |
73.46 ± 29.68C | 103.97 ± 47.99B | 144.57 ± 65.04A | ||
LEFTY2 | NC_037549.1:52254091 | A/A | G/A | G/G |
73.87 ± 31.82B | 97.07 ± 19.41B | 151.03 ± 74.08A | ||
DGAT1 | NC_037559.1:81684074 | T/T | C/T | C/C |
67.01 ± 38.53B | 90.62 ± 45.36B | 125.61 ± 71.25A | ||
CAMK2D | NC_037551.1:87385802 | C/C | C/T | T/T |
62.03 ± 48.35C | 95.85 ± 58.65B | 133.24 ± 79.52A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Li, H.; Yang, C.; Zheng, H.; Duan, A.; Huang, L.; Feng, C.; Yang, X.; Shang, J. Genome-Wide Association Studies for Lactation Performance in Buffaloes. Genes 2025, 16, 163. https://doi.org/10.3390/genes16020163
Li W, Li H, Yang C, Zheng H, Duan A, Huang L, Feng C, Yang X, Shang J. Genome-Wide Association Studies for Lactation Performance in Buffaloes. Genes. 2025; 16(2):163. https://doi.org/10.3390/genes16020163
Chicago/Turabian StyleLi, Wangchang, Henggang Li, Chunyan Yang, Haiying Zheng, Anqin Duan, Liqing Huang, Chao Feng, Xiaogan Yang, and Jianghua Shang. 2025. "Genome-Wide Association Studies for Lactation Performance in Buffaloes" Genes 16, no. 2: 163. https://doi.org/10.3390/genes16020163
APA StyleLi, W., Li, H., Yang, C., Zheng, H., Duan, A., Huang, L., Feng, C., Yang, X., & Shang, J. (2025). Genome-Wide Association Studies for Lactation Performance in Buffaloes. Genes, 16(2), 163. https://doi.org/10.3390/genes16020163