Characterization and Expression Analysis of the bHLH Gene Family During Developmental Stages and Under Various Abiotic Stresses in Sanghuangporus baumii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Identification of bHLH Genes in the S. baumii Genome
2.3. Characterization of the Structure and Motif of bHLHs
2.4. Phylogenetic Analysis and Classification of bHLH Gene Family
2.5. Homology Modeling of 3D SbbHLH Protein Structures
2.6. Cis-Element Analyses in Promoter Regions of SbbHLH
2.7. Protein–Protein Interaction Network Prediction
2.8. Total RNA Extraction, cDNA Reverse Transcription, and qRT-PCR Analysis
2.9. Cloning of the SbbHLH3 Gene
2.10. Plasmid Construction and Overexpression Analysis of SbbHLH3 in Yeast
3. Results
3.1. Identification and Classification of bHLH Genes in S. baumii
3.2. Gene Structure and Conserved Motif Analysis of SbbHLH
3.3. Multiple Sequence Alignment, Phylogenetic Analysis, and Classification of SbbHLH Genes
3.4. Evolutionary Analysis of bHLH in S. baumii and Several Different Macrofungus Species
3.5. Cis-Regulatory Element Analysis of SbbHLH Gene Promoters
3.6. Analysis of the 3D Structure of SbbHLH Proteins
3.7. In Silico Protein–Protein Interaction of SbbHLH Proteins
3.8. Expression of SbbHLH Genes at Different Developmental Stages
3.9. Expression Patterns of SbbHLH Genes in Response to Different Stress Treatments
3.10. Overexpression of SbbHLH3 Enhances Yeast Tolerance to Abiotic Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, L.; Sun, T.T.; Li, D.L.; Tan, Y.; Zhang, G.Q.; Wang, F.; Zhang, J. De novo transcriptome analysis of Inonotus baumii by RNA-seq. J. Biosci. Bioeng. 2016, 121, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, Z.; Wang, X.; Liu, R.; Zou, L. Mushrooms Do Produce Flavonoids: Metabolite Profiling and Transcriptome Analysis of Flavonoid Synthesis in the Medicinal Mushroom Sanghuangporus baumii. J. Fungi 2022, 8, 582. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.H.; Zhang, P.P.; Cui, J.; Ni, X.Z.; Song, K.; Shi, D.F. Extraction Optimization, Structure Analysis and Antioxidant Activity of Polysaccharide from Sanghuangporus Baumii. Curr. Anal. Chem. 2024, 20, 264–274. [Google Scholar] [CrossRef]
- Chien, L.H.; Deng, J.S.; Jiang, W.P.; Chen, C.C.; Chou, Y.N.; Lin, J.G.; Huang, G.J. Study on the potential of Sanghuangporus sanghuang and its components as COVID-19 spike protein receptor binding domain inhibitors. Biomed. Pharmacother. 2022, 153, 113434. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.M.; Zeng, P.; Li, X.T.; Shi, L.G. Antitumor and immunomodulation activities of polysaccharide from Phellinus Baumii. Int. J. Biol. Macromol. 2016, 91, 1199–1205. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ma, J.X.; Zhou, M.; Si, J.; Cui, B.K. Current advances and potential trends of the polysaccharides derived from medicinal mushrooms sanghuang. Front. Microbiol. 2022, 13, 965934. [Google Scholar] [CrossRef]
- Liu, Z.; Tong, X.; Liu, R.; Zou, L. Metabolome and Transcriptome Profiling Reveal That Four Terpenoid Hormones Dominate the Growth and Development of Sanghuangporus baumii. J. Fungi 2022, 8, 648. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.Q.; Feng, K.; Xu, Z.S.; Duan, A.Q.; Liu, J.X.; Xiong, A.S. Genome-wide identification of bZIP transcription factors and their responses to abiotic stress in celery. Biotechnol. Biotechnol. Equip. 2019, 33, 707–718. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Sui, N. Transcriptional regulation of bHLH during plant response to stress. Biochem. Biophys. Res. Commun. 2018, 503, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Shu, X.; Ning, C.; Li, Y.; Wang, Z.; Wang, T.; Zhuang, W. Functions and Regulatory Mechanisms of bHLH Transcription Factors during the Responses to Biotic and Abiotic Stresses in Woody Plants. Plants 2024, 13, 2315. [Google Scholar] [CrossRef]
- Schwechheimer, C.; Zourelidou, M.; Bevan, M.W. Plant transcription factor studies. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 127–150. [Google Scholar] [CrossRef]
- Ledent, V.; Vervoort, M. The basic helix-loop-helix protein family: Comparative genomics and phylogenetic analysis. Genome Res. 2001, 11, 754–770. [Google Scholar] [CrossRef]
- Ma, P.C.; Rould, M.A.; Weintraub, H.; Pabo, C.O. Crystal structure of MyoD bHLH domain-DNA complex: Perspectives on DNA recognition and implications for transcriptional activation. Cell 1994, 77, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Toumoto, A.; Ihara, K.; Shimizu, M.; Kyogoku, Y.; Ogawa, N.; Oshima, Y.; Hakoshima, T. Crystal structure of PHO4 bHLH domain-DNA complex: Flanking base recognition. EMBO J. 1997, 16, 4689–4697. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, S.R.; Habera, L.F.; Dellaporta, S.L.; Wessler, S.R. Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl. Acad. Sci. USA 1989, 86, 7092–7096. [Google Scholar] [CrossRef]
- Carretero-Paulet, L.; Galstyan, A.; Roig-Villanova, I.; Martínez-García, J.F.; Bilbao-Castro, J.R.; Robertson, D.L. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiol. 2010, 153, 1398–1412. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Yang, H.; Lai, D.L.; He, A.L.; Xue, G.X.; Feng, L.; Chen, L.; Cheng, X.B.; Ruan, J.J.; Yan, J.; et al. Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]. BMC Genom. 2021, 22, 415. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wu, Y.W.; Dong, Y.; Pu, R.; Li, X.J.; Lyu, Y.M.; Bai, T.; Zhang, J.L. Genome-Wide Identification of the bHLH Gene Family in Rhododendron delavayi and Its Expression Analysis in Different Floral Tissues. Genes 2024, 15, 1256. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, C.; Yang, H.; Kuang, R.; Huang, B.; Wei, Y. Genome-wide analysis of basic helix-loop-helix transcription factors in papaya (Carica papaya L.). PeerJ 2020, 8, e9319. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Li, M.; Li, L.; Yin, H.; Wu, J.Y.; Zhang, S.L. Genome-wide identification and comparative analysis of the heat shock transcription factor family in Chinese white pear (Pyrus bretschneideri) and five other Rosaceae species. BMC Plant Biol. 2015, 15, 12. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Li, M.Y.; Wu, X.J.; Huang, Y.; Ma, J.; Xiong, A.S. Genome-wide analysis of basic helix-loop-helix family transcription factors and their role in responses to abiotic stress in carrot. Mol. Breed. 2015, 35, 125. [Google Scholar] [CrossRef]
- Zhou, X.; Liao, Y.; Kim, S.U.; Chen, Z.; Nie, G.; Cheng, S. Genomewide identification and characterization of bHLH family genes from Ginkgo biloba. Sci. Rep. 2020, 10, 13723. [Google Scholar] [CrossRef]
- Wang, L.N.; Gao, W.; Wu, X.L.; Zhao, M.R.; Qu, J.B.; Huang, C.Y.; Zhang, J.X. Genome-Wide Characterization and Expression Analyses of Pleurotus ostreatus MYB Transcription Factors during Developmental Stages and under Heat Stress Based on de novo Sequenced Genome. Int. J. Mol. Sci. 2018, 19, 2052. [Google Scholar] [CrossRef] [PubMed]
- Ohm, R.A.; de Jong, J.F.; de Bekker, C.; Wösten, H.A.; Lugones, L.G. Transcription factor genes of Schizophyllum commune involved in regulation of mushroom formation. Mol. Microbiol. 2011, 81, 1433–1445. [Google Scholar] [CrossRef] [PubMed]
- Potter, S.C.; Luciani, A.; Eddy, S.R.; Park, Y.; Lopez, R.; Finn, R.D. HMMER web server: 2018 update. Nucleic Acids Res. 2018, 46, 200–204. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, 493–496. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.P.; Guo, A.Y.; Zhang, H.; Luo, J.C.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2014, 31, 1296–1297. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, 607–613. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, R.; Tong, X.; Zou, L. New Insights into Methyl Jasmonate Regulation of Triterpenoid Biosynthesis in Medicinal Fungal Species Sanghuangporus baumii (Pilát) L.W. Zhou & Y.C. Dai. J. Fungi 2022, 8, 889. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.L.; Yang, F.; Zhou, X.M.; Jia, W.Q.; Zhu, X.P.; Mu, J.Y.; Wang, Y.L.; Zhang, Y.; Mi, Z.R.; Zhang, S.L.; et al. Genome-wide identification of the bHLH gene family and the mechanism regulation of anthocyanin biosynthesis by ChEGL1 in Cerasus humilis. Int. J. Biol. Macromol. 2025, 288, 138783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; Lv, W.; Zhang, H.S.; Ma, L.; Li, P.H.; Ge, L.; Li, G. Genome-wide analysis of the basic HelixLoop-Helix (bHLH) transcription factor family in maize. BMC Plant Biol. 2018, 18, 235. [Google Scholar] [CrossRef]
- Li, Y.Y.; Sui, X.Y.; Yang, J.S.; Xiang, X.H.; Li, Z.Q.; Wang, Y.Y. A novel bHLH transcription factor, NtbHLH1, modulates iron homeostasis in tobacco (Nicotiana tabacum L.). Biochem. Biophys. Res. Commun. 2020, 522, 233–239. [Google Scholar] [CrossRef]
- Lu, X.W.; Zhang, H.; Hu, J.L.; Nie, G.; Khan, I.; Feng, G.Y.; Zhang, X.Q.; Wang, X.S.; Huang, L.K. Genome-wide identification and characterization of bHLH family genes from orchardgrass and the functional characterization of DgbHLH46 and DgbHLH128 in drought and salt tolerance. Funct. Integr. Genom. 2022, 22, 1331–1344. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Zhang, T.; Yu, Y.; Gou, L.; Yang, J.; Xu, J.; Pi, E. Regulatory Mechanisms of bHLH Transcription Factors in Plant Adaptive Responses to Various Abiotic Stresses. Front. Plant Sci. 2021, 12, 677611. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Shi, Y.; Zhu, B.; Zhang, T.; Feng, Z.; Wang, X.; Li, X.; You, C. Genome-Wide Identification of Apple Atypical bHLH Subfamily PRE Members and Functional Characterization of MdPRE4.3 in Response to Abiotic Stress. Front. Genet. 2022, 13, 846559. [Google Scholar] [CrossRef]
No. | Gene | Gene ID | CDS Length (bp) | Protein Size (aa) | Molecular Weight (kDa) | pI | Predicted Localization |
---|---|---|---|---|---|---|---|
1 | SbbHLH1 | A7U60_g1820 | 912 | 303 | 32.59 | 6.48 | nuclear |
2 | SbbHLH2 | A7U60_g1898 | 1881 | 626 | 67.93 | 9.55 | nuclear |
3 | SbbHLH3 | A7U60_g2241 | 2589 | 862 | 89.35 | 6.38 | nuclear |
4 | SbbHLH4 | A7U60_g2862 | 1140 | 379 | 41.10 | 5.97 | nuclear |
5 | SbbHLH5 | A7U60_g3672 | 1716 | 571 | 61.27 | 8.03 | extracellular |
6 | SbbHLH6 | A7U60_g4654 | 735 | 244 | 26.26 | 6.44 | nuclear |
7 | SbbHLH7 | A7U60_g6711 | 1374 | 457 | 48.07 | 6.08 | nuclear |
8 | SbbHLH8 | A7U60_g7205 | 3765 | 1254 | 137.86 | 6.39 | mitochondrial |
9 | SbbHLH9 | A7U60_g7247 | 915 | 304 | 33.74 | 7.91 | nuclear |
10 | SbbHLH10 | A7U60_g7248 | 1050 | 349 | 38.75 | 6.23 | nuclear |
11 | SbbHLH11 | A7U60_g8019 | 3498 | 1165 | 125.74 | 5.50 | nuclear |
12 | SbbHLH12 | A7U60_g8101 | 2796 | 931 | 96.97 | 6.17 | nuclear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Sun, T.; Du, P.; Liu, Z.; Li, Y.; Tong, X.; Zou, L. Characterization and Expression Analysis of the bHLH Gene Family During Developmental Stages and Under Various Abiotic Stresses in Sanghuangporus baumii. Genes 2025, 16, 184. https://doi.org/10.3390/genes16020184
Liu R, Sun T, Du P, Liu Z, Li Y, Tong X, Zou L. Characterization and Expression Analysis of the bHLH Gene Family During Developmental Stages and Under Various Abiotic Stresses in Sanghuangporus baumii. Genes. 2025; 16(2):184. https://doi.org/10.3390/genes16020184
Chicago/Turabian StyleLiu, Ruipeng, Tingting Sun, Pengyu Du, Zengcai Liu, Yawei Li, Xinyu Tong, and Li Zou. 2025. "Characterization and Expression Analysis of the bHLH Gene Family During Developmental Stages and Under Various Abiotic Stresses in Sanghuangporus baumii" Genes 16, no. 2: 184. https://doi.org/10.3390/genes16020184
APA StyleLiu, R., Sun, T., Du, P., Liu, Z., Li, Y., Tong, X., & Zou, L. (2025). Characterization and Expression Analysis of the bHLH Gene Family During Developmental Stages and Under Various Abiotic Stresses in Sanghuangporus baumii. Genes, 16(2), 184. https://doi.org/10.3390/genes16020184