Discovery in Genetic Skin Disease: The Impact of High Throughput Genetic Technologies
Abstract
:1. Introduction
2. Harlequin Ichthyosis
3. Exfoliative Ichthyosis
4. Olmsted Syndrome
Gene | Disease | Mode of Inheritance | Reference |
---|---|---|---|
AAGAB | Punctate palmoplantar keratoderma Type I | AD | [51,52] |
ADAM10 | Reticulate acropigmentation of Kitamura | AD | [53] |
AQP5 | Nonepidermolytic palmoplantar keratoderma | AD | [54] |
ENPP1 | Cole disease | AD | [55] |
EXPH5 | Inherited skin fragility | AR | [56] |
HOXC13 | Pure hair and nail ectodermal dysplasia | AR | [57] |
KANK2 | Palmoplantar keratoderma and woolly hair | AR | [58] |
MBTPS2 | Olmsted syndrome | XLR | [48] |
POFUT1 | Dowling-Degos disease | AD | [59] |
POGLUT1 | Dowling-Degos disease | AD | [60] |
SERPINB7 | Nagashima-type palmoplantar keratosis | AR | [61] |
TRPV3 | Olmsted syndrome | AD/AR | [47]/[62] |
5. Complex Traits of the Skin
6. Psoriasis
7. Atopic Dermatitis (Eczema)
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sudbrak, R.; Brown, J.; Dobson-Stone, C.; Carter, S.; Ramser, J.; White, J.; Healy, E.; Dissanayake, M.; Larregue, M.; Perrussel, M.; et al. Hailey-hailey disease is caused by mutations in ATP2C1 encoding a novel Ca2+ pump. Hum. Mol. Genet. 2000, 9, 1131–1140. [Google Scholar]
- Chavanas, S.; Bodemer, C.; Rochat, A.; Hamel-Teillac, D.; Ali, M.; Irvine, A.D.; Bonafe, J.L.; Wilkinson, J.; Taieb, A.; Barrandon, Y.; et al. Mutations in spink5, encoding a serine protease inhibitor, cause netherton syndrome. Nat. Genet. 2000, 25, 141–142. [Google Scholar] [CrossRef]
- Sakuntabhai, A.; Ruiz-Perez, V.; Carter, S.; Jacobsen, N.; Burge, S.; Monk, S.; Smith, M.; Munro, C.S.; O’Donovan, M.; Craddock, N.; et al. Mutations in ATP2A2, encoding a Ca2+ pump, cause darier disease. Nat. Genet. 1999, 21, 271–277. [Google Scholar] [CrossRef]
- Miyamura, Y.; Suzuki, T.; Kono, M.; Inagaki, K.; Ito, S.; Suzuki, N.; Tomita, Y. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am. J. Hum. Genet. 2003, 73, 693–699. [Google Scholar] [CrossRef]
- Irvine, A.D.; McLean, W.H. The molecular genetics of the genodermatoses: Progress to date and future directions. Br. J. Dermatol. 2003, 148, 1–13. [Google Scholar] [CrossRef]
- Mardis, E.R. Next-generation DNA sequencing methods. Ann. Rev. Genomics Hum. Genet. 2008, 9, 387–402. [Google Scholar] [CrossRef]
- Ainsworth, C. Immunology: A many layered thing. Nature 2012, 492, S52–S54. [Google Scholar] [CrossRef]
- Choate, K.A.; Lu, Y.; Zhou, J.; Choi, M.; Elias, P.M.; Farhi, A.; Nelson-Williams, C.; Crumrine, D.; Williams, M.L.; Nopper, A.J.; et al. Mitotic recombination in patients with ichthyosis causes reversion of dominant mutations in KRT10. Science 2010, 330, 94–97. [Google Scholar] [CrossRef]
- Kelsell, D.P.; Norgett, E.E.; Unsworth, H.; Teh, M.T.; Cullup, T.; Mein, C.A.; Dopping-Hepenstal, P.J.; Dale, B.A.; Tadini, G.; Fleckman, P.; et al. Mutations in ABCA12 underlie the severe congenital skin disease harlequin ichthyosis. Am. J. Hum. Genet. 2005, 76, 794–803. [Google Scholar] [CrossRef]
- Oji, V.; Tadini, G.; Akiyama, M.; Blanchet Bardon, C.; Bodemer, C.; Bourrat, E.; Coudiere, P.; DiGiovanna, J.J.; Elias, P.; Fischer, J.; et al. Revised nomenclature and classification of inherited ichthyoses: Results of the first ichthyosis consensus conference in soreze 2009. J. Am. Acad. Dermatol. 2010, 63, 607–641. [Google Scholar] [CrossRef]
- Rajpopat, S.; Moss, C.; Mellerio, J.; Vahlquist, A.; Ganemo, A.; Hellstrom-Pigg, M.; Ilchyshyn, A.; Burrows, N.; Lestringant, G.; Taylor, A.; et al. Harlequin ichthyosis: A review of clinical and molecular findings in 45 cases. Arch. Dermatol. 2011, 147, 681–686. [Google Scholar] [CrossRef]
- Dean, M.; Rzhetsky, A.; Allikmets, R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001, 11, 1156–1166. [Google Scholar] [CrossRef]
- Lefevre, C.; Audebert, S.; Jobard, F.; Bouadjar, B.; Lakhdar, H.; Boughdene-Stambouli, O.; Blanchet-Bardon, C.; Heilig, R.; Foglio, M.; Weissenbach, J.; et al. Mutations in the transporter ABCA12 are associated with lamellar ichthyosis type 2. Hum. Mol. Genet. 2003, 12, 2369–2378. [Google Scholar] [CrossRef]
- Akiyama, M.; Sugiyama-Nakagiri, Y.; Sakai, K.; McMillan, J.R.; Goto, M.; Arita, K.; Tsuji-Abe, Y.; Tabata, N.; Matsuoka, K.; Sasaki, R.; et al. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J. Clin. Investig. 2005, 115, 1777–1784. [Google Scholar] [CrossRef]
- Natsuga, K.; Akiyama, M.; Kato, N.; Sakai, K.; Sugiyama-Nakagiri, Y.; Nishimura, M.; Hata, H.; Abe, M.; Arita, K.; Tsuji-Abe, Y.; et al. Novel ABCA12 mutations identified in two cases of non-bullous congenital ichthyosiform erythroderma associated with multiple skin malignant neoplasia. J. Investig. Dermatol. 2007, 127, 2669–2673. [Google Scholar] [CrossRef]
- Sakai, K.; Akiyama, M.; Yanagi, T.; McMillan, J.R.; Suzuki, T.; Tsukamoto, K.; Sugiyama, H.; Hatano, Y.; Hayashitani, M.; Takamori, K.; et al. ABCA12 is a major causative gene for non-bullouscongenital ichthyosiform erythroderma. J. Investig. Dermatol. 2009, 129, 2306–2309. [Google Scholar] [CrossRef]
- Akiyama, M. ABCA12 mutations and autosomal recessive congenital ichthyosis: A review of genotype/phenotype correlations and of pathogenetic concepts. Hum. Mutat. 2010, 31, 1090–1096. [Google Scholar] [CrossRef]
- Thomas, A.C.; Cullup, T.; Norgett, E.E.; Hill, T.; Barton, S.; Dale, B.A.; Sprecher, E.; Sheridan, E.; Taylor, A.E.; Wilroy, R.S.; et al. ABCA12 is the major harlequin ichthyosis gene. J. Investig. Dermatol. 2006, 126, 2408–2413. [Google Scholar] [CrossRef]
- Thomas, A.C.; Sinclair, C.; Mahmud, N.; Cullup, T.; Mellerio, J.E.; Harper, J.; Dale, B.A.; Turc-Carel, C.; Hohl, D.; McGrath, J.A.; et al. Novel and recurring ABCA12 mutations associatedwith harlequin ichthyosis: Implications for prenatal diagnosis. Br. J. Dermatol. 2008, 158, 611–613. [Google Scholar]
- Akiyama, M.; Sakai, K.; Sugiyama-Nakagiri, Y.; Yamanaka, Y.; McMillan, J.R.; Sawamura, D.; Niizeki, H.; Miyagawa, S.; Shimizu, H. Compound heterozygous mutations including a de novo missense mutation in ABCA12 led to a case of harlequin ichthyosis with moderate clinical severity. J. Investig. Dermatol. 2006, 126, 1518–1523. [Google Scholar] [CrossRef]
- Umemoto, H.; Akiyama, M.; Yanagi, T.; Sakai, K.; Aoyama, Y.; Oizumi, A.; Suga, Y.; Kitagawa, Y.; Shimizu, H. New insight into genotype/phenotype correlations in ABCA12 mutations in harlequin ichthyosis. J. Dermatol. Sci. 2011, 61, 136–139. [Google Scholar] [CrossRef]
- Scott, C.A.; Plagnol, V.; Nitoiu, D.; Bland, P.J.; Blaydon, D.C.; Chronnell, C.M.; Poon, D.S.; Bourn, D.; Gardos, L.; Csaszar, A.; et al. Targeted sequence capture and high-throughput sequencing in the molecular diagnosis of ichthyosis and other skin diseases. J. Investig. Dermatol. 2013, 133, 573–576. [Google Scholar] [CrossRef]
- Sakai, K.; Akiyama, M.; Sugiyama-Nakagiri, Y.; McMillan, J.R.; Sawamura, D.; Shimizu, H. Localization of ABCA12 from Golgi apparatus to lamellar granules in human upper epidermal keratinocytes. Exp. Dermatol. 2007, 16, 920–926. [Google Scholar] [CrossRef]
- Dale, B.A.; Holbrook, K.A.; Fleckman, P.; Kimball, J.R.; Brumbaugh, S.; Sybert, V.P. Heterogeneity in harlequin ichthyosis, an inborn error of epidermal keratinization: Variable morphology and structural protein expression and a defect in lamellar granules. J. Investig. Dermatol. 1990, 94, 6–18. [Google Scholar]
- Milner, M.E.; O’Guin, W.M.; Holbrook, K.A.; Dale, B.A. Abnormal lamellar granules in harlequin ichthyosis. J. Investig. Dermatol. 1992, 99, 824–829. [Google Scholar]
- Thomas, A.C.; Tattersall, D.; Norgett, E.E.; O’Toole, E.A.; Kelsell, D.P. Premature terminal differentiation and a reduction in specific proteases associated with loss of ABCA12 in harlequin ichthyosis. Am. J. Pathol. 2009, 174, 970–978. [Google Scholar] [CrossRef]
- Mitsutake, S.; Suzuki, C.; Akiyama, M.; Tsuji, K.; Yanagi, T.; Shimizu, H.; Igarashi, Y. ABCA12 dysfunction causes a disorder in glucosylceramide accumulation during keratinocyte differentiation. J. Dermatol. Sci. 2010, 60, 128–129. [Google Scholar]
- Yanagi, T.; Akiyama, M.; Nishihara, H.; Ishikawa, J.; Sakai, K.; Miyamura, Y.; Naoe, A.; Kitahara, T.; Tanaka, S.; Shimizu, H. Self-improvement of keratinocyte differentiation defects during skin maturation in ABCA12-deficient harlequin ichthyosis model mice. Am. J. Pathol. 2010, 177, 106–118. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhuang, D.Z.; Han, R.; Isaac, G.; Tobin, J.J.; McKee, M.; Welti, R.; Brissette, J.L.; Fitzgerald, M.L.; Freeman, M.W. ABCA12 maintains the epidermal lipid permeability barrier by facilitating formation of ceramide linoleic esters. J. Biol. Chem. 2008, 283, 36624–36635. [Google Scholar] [CrossRef]
- Smyth, I.; Hacking, D.F.; Hilton, A.A.; Mukhamedova, N.; Meikle, P.J.; Ellis, S.; Satterley, K.; Collinge, J.E.; de Graaf, C.A.; Bahlo, M.; et al. A mouse model of harlequin ichthyosis delineates a key role for ABCA12 in lipid homeostasis. PLoS Genet. 2008, 4, e1000192. [Google Scholar] [CrossRef]
- Li, Q.; Frank, M.; Akiyama, M.; Shimizu, H.; Ho, S.Y.; Thisse, C.; Thisse, B.; Sprecher, E.; Uitto, J. Abca12-mediated lipid transport and Snap29-dependent trafficking of lamellar granules are crucial for epidermal morphogenesis in a zebrafish model of ichthyosis. Dis. Model. Mech. 2011, 4, 777–785. [Google Scholar] [CrossRef]
- Scott, C.A.; Rajpopat, S.; Di, W.L. Harlequin ichthyosis: ABCA12 mutations underlie defective lipid transport, reduced protease regulation and skin-barrier dysfunction. Cell Tissue Res. 2013, 351, 281–288. [Google Scholar] [CrossRef]
- Akiyama, M.; Suzumori, K.; Shimizu, H. Prenatal diagnosis of harlequin ichthyosis by the examination of keratinized hair canals and amniotic fluid cells at 19 weeks’ estimated gestational age. Prenat. Diagn. 1999, 19, 167–171. [Google Scholar] [CrossRef]
- Vohra, N.; Rochelson, B.; Smith-Levitin, M. Three-dimensional sonographic findings in congenital (harlequin) ichthyosis. J. Ultrasound Med. 2003, 22, 737–739. [Google Scholar]
- Akiyama, M. Harlequin ichthyosis and other autosomal recessive congenital ichthyoses: The underlying genetic defects and pathomechanisms. J. Dermatol. Sci. 2006, 42, 83–89. [Google Scholar] [CrossRef]
- Blaydon, D.C.; Nitoiu, D.; Eckl, K.M.; Cabral, R.M.; Bland, P.; Hausser, I.; van Heel, D.A.; Rajpopat, S.; Fischer, J.; Oji, V.; et al. Mutations in CSTA, encoding cystatin a, underlie exfoliative ichthyosis and reveal a role for this protease inhibitor in cell-cell adhesion. Am. J. Hum. Genet. 2011, 89, 564–571. [Google Scholar] [CrossRef]
- Hatsell, S.J.; Stevens, H.; Jackson, A.P.; Kelsell, D.P.; Zvulunov, A. An autosomal recessive exfoliative ichthyosis with linkage to chromosome 12q13. Br. J. Dermatol. 2003, 149, 174–180. [Google Scholar] [CrossRef]
- Krunic, A.L.; Stone, K.L.; Simpson, M.A.; McGrath, J.A. Acral peeling skin syndrome resulting from a homozygous nonsense mutation in the CSTA gene encoding cystatin A. Pediatr. Dermatol. 2013, 30, e87–e88. [Google Scholar] [CrossRef]
- Turk, V.; Bode, W. The cystatins: Protein inhibitors of cysteine proteinases. FEBS Lett. 1991, 285, 213–219. [Google Scholar] [CrossRef]
- Steven, A.C.; Steinert, P.M. Protein composition of cornified cell envelopes of epidermal keratinocytes. J. Cell Sci. 1994, 107, 693–700. [Google Scholar]
- Palungwachira, P.; Kakuta, M.; Yamazaki, M.; Yaguchi, H.; Tsuboi, R.; Takamori, K.; Ogawa, H. Immunohistochemical localization of cathepsin l and cystatin A in normal skin and skin tumors. J. Dermatol. 2002, 29, 573–579. [Google Scholar] [CrossRef]
- Kato, T.; Takai, T.; Mitsuishi, K.; Okumura, K.; Ogawa, H. Cystatin a inhibits IL-8 production by keratinocytes stimulated with Der p 1 and Der f 1: Biochemical skin barrier against mite cysteine proteases. J. Allergy Clin. Immunol. 2005, 116, 169–176. [Google Scholar] [CrossRef]
- Li, C.; Chen, L.; Wang, J.; Zhang, L.; Tang, P.; Zhai, S.; Guo, W.; Yu, N.; Zhao, L.; Liu, M.; et al. Expression and clinical significance of cathepsin B and stefin a in laryngeal cancer. Oncol. Rep. 2011, 26, 869–875. [Google Scholar]
- Strojan, P.; Budihna, M.; Smid, L.; Svetic, B.; Vrhovec, I.; Skrk, J. Cathepsin B and L and stefin A and B levels as serum tumor markers in squamous cell carcinoma of the head and neck. Neoplasma 2001, 48, 66–71. [Google Scholar]
- Parker, B.S.; Ciocca, D.R.; Bidwell, B.N.; Gago, F.E.; Fanelli, M.A.; George, J.; Slavin, J.L.; Moller, A.; Steel, R.; Pouliot, N.; et al. Primary tumour expression of the cysteine cathepsin inhibitor stefin A inhibits distant metastasis in breast cancer. J. Pathol. 2008, 214, 337–346. [Google Scholar] [CrossRef]
- Bilodeau, M.; MacRae, T.; Gaboury, L.; Laverdure, J.P.; Hardy, M.P.; Mayotte, N.; Paradis, V.; Harton, S.; Perreault, C.; Sauvageau, G. Analysis of blood stem cell activity and cystatin gene expression in a mouse model presenting a chromosomal deletion encompassing Csta and Stfa2l1. PLoS One 2009, 4, e7500. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, Q.; Lee, M.; Cao, X.; Zhang, J.; Ma, D.; Chen, L.; Hu, X.; Wang, H.; Wang, X.; et al. Exome sequencing reveals mutations in TRPV3 as a cause of olmsted syndrome. Am. J. Hum. Genet. 2012, 90, 558–564. [Google Scholar] [CrossRef]
- Haghighi, A.; Scott, C.A.; Poon, D.S.; Yaghoobi, R.; Saleh-Gohari, N.; Plagnol, V.; Kelsell, D.P. A missense mutation in the MBTPS2 gene underlies the X-linked form of olmsted syndrome. J. Investig. Dermatol. 2013, 133, 571–573. [Google Scholar] [CrossRef]
- Cambiaghi, S.; Tadini, G.; Barbareschi, M.; Caputo, R. Olmsted syndrome in twins. Arch. Dermatol. 1995, 131, 738–739. [Google Scholar] [CrossRef]
- Larregue, M.; Callot, V.; Kanitakis, J.; Suau, A.M.; Foret, M. Olmsted syndrome: Report of two new cases and literature review. J. Dermatol. 2000, 27, 557–568. [Google Scholar]
- Giehl, K.A.; Eckstein, G.N.; Pasternack, S.M.; Praetzel-Wunder, S.; Ruzicka, T.; Lichtner, P.; Seidl, K.; Rogers, M.; Graf, E.; Langbein, L.; et al. Nonsense mutations in AAGAB cause punctate palmoplantar keratoderma type buschke-fischer-brauer. Am. J. Hum. Genet. 2012, 91, 754–759. [Google Scholar] [CrossRef]
- Pohler, E.; Mamai, O.; Hirst, J.; Zamiri, M.; Horn, H.; Nomura, T.; Irvine, A.D.; Moran, B.; Wilson, N.J.; Smith, F.J.; et al. Haploinsufficiency for AAGAB causes clinically heterogeneous forms of punctate palmoplantar keratoderma. Nat. Genet. 2012, 44, 1272–1276. [Google Scholar] [CrossRef]
- Kono, M.; Sugiura, K.; Suganuma, M.; Hayashi, M.; Takama, H.; Suzuki, T.; Matsunaga, K.; Tomita, Y.; Akiyama, M. Whole-exome sequencing identifies ADAM10 mutations as a cause of reticulate acropigmentation of kitamura, a clinical entity distinct from dowling-degos disease. Hum. Mol. Genet. 2013, 22, 3524–3533. [Google Scholar] [CrossRef]
- Blaydon, D.C.; Lind, L.K.; Plagnol, V.; Linton, K.J.; Smith, F.J.; Wilson, N.J.; McLean, W.H.; Munro, C.S.; South, A.P.; Leigh, I.M.; et al. Mutations in AQP5, encoding a water-channel protein, cause autosomal-dominant diffuse nonepidermolytic palmoplantar keratoderma. Am. J. Hum. Genet. 2013, 93, 330–335. [Google Scholar] [CrossRef]
- Eytan, O.; Morice-Picard, F.; Sarig, O.; Ezzedine, K.; Isakov, O.; Li, Q.; Ishida-Yamamoto, A.; Shomron, N.; Goldsmith, T.; Fuchs-Telem, D.; et al. Cole disease results from mutations in ENPP1. Am. J. Hum. Genet. 2013, 93, 752–757. [Google Scholar] [CrossRef]
- McGrath, J.A.; Stone, K.L.; Begum, R.; Simpson, M.A.; Dopping-Hepenstal, P.J.; Liu, L.; McMillan, J.R.; South, A.P.; Pourreyron, C.; McLean, W.H.; et al. Germline mutation in EXPH5 implicates the Rab27B effector protein Slac2-b in inherited skin fragility. Am. J. Hum. Genet. 2012, 91, 1115–1121. [Google Scholar]
- Lin, Z.; Chen, Q.; Shi, L.; Lee, M.; Giehl, K.A.; Tang, Z.; Wang, H.; Zhang, J.; Yin, J.; Wu, L.; et al. Loss-of-function mutations in HOXC13 cause pure hair and nail ectodermal dysplasia. Am. J. Hum. Genet. 2012, 91, 906–911. [Google Scholar] [CrossRef]
- Ramot, Y.; Molho-Pessach, V.; Meir, T.; Alper-Pinus, R.; Siam, I.; Tams, S.; Babay, S.; Zlotogorski, A. Mutation in KANK2, encoding a sequestering protein for steroid receptor coactivators, causes keratoderma and woolly hair. J. Med. Genet. 2014, 51, 388–394. [Google Scholar] [CrossRef]
- Li, M.; Cheng, R.; Liang, J.; Yan, H.; Zhang, H.; Yang, L.; Li, C.; Jiao, Q.; Lu, Z.; He, J.; et al. Mutations in POFUT1, encoding protein O-fucosyltransferase 1, cause generalized dowling-degos disease. Am. J. Hum. Genet. 2013, 92, 895–903. [Google Scholar] [CrossRef]
- Basmanav, F.B.; Oprisoreanu, A.M.; Pasternack, S.M.; Thiele, H.; Fritz, G.; Wenzel, J.; Grosser, L.; Wehner, M.; Wolf, S.; Fagerberg, C.; et al. Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant dowling-degos disease. Am. J. Hum. Genet. 2014, 94, 135–143. [Google Scholar] [CrossRef]
- Kubo, A.; Shiohama, A.; Sasaki, T.; Nakabayashi, K.; Kawasaki, H.; Atsugi, T.; Sato, S.; Shimizu, A.; Mikami, S.; Tanizaki, H.; et al. Mutations in SERPINB7, encoding a member of the serine protease inhibitor superfamily, cause nagashima-type palmoplantar keratosis. Am. J. Hum. Genet. 2013, 93, 945–956. [Google Scholar] [CrossRef]
- Eytan, O.; Fuchs-Telem, D.; Mevorach, B.; Indelman, M.; Bergman, R.; Sarig, O.; Goldberg, I.; Adir, N.; Sprecher, E. Olmsted syndrome caused by a homozygous recessive mutation in TRPV3. J. Investig. Dermatol. 2014, 134, 1752–1754. [Google Scholar] [CrossRef]
- Smith, G.D.; Gunthorpe, M.J.; Kelsell, R.E.; Hayes, P.D.; Reilly, P.; Facer, P.; Wright, J.E.; Jerman, J.C.; Walhin, J.P.; Ooi, L.; et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 2002, 418, 186–190. [Google Scholar] [CrossRef]
- Peier, A.M.; Reeve, A.J.; Andersson, D.A.; Moqrich, A.; Earley, T.J.; Hergarden, A.C.; Story, G.M.; Colley, S.; Hogenesch, J.B.; McIntyre, P.; et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 2002, 296, 2046–2049. [Google Scholar] [CrossRef]
- Xu, H.; Ramsey, I.S.; Kotecha, S.A.; Moran, M.M.; Chong, J.A.; Lawson, D.; Ge, P.; Lilly, J.; Silos-Santiago, I.; Xie, Y.; et al. TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 2002, 418, 181–186. [Google Scholar] [CrossRef]
- Asakawa, M.; Yoshioka, T.; Matsutani, T.; Hikita, I.; Suzuki, M.; Oshima, I.; Tsukahara, K.; Arimura, A.; Horikawa, T.; Hirasawa, T.; et al. Association of a mutation in TRPV3 with defective hair growth in rodents. J. Investig. Dermatol. 2006, 126, 2664–2672. [Google Scholar]
- Cheng, X.; Jin, J.; Hu, L.; Shen, D.; Dong, X.P.; Samie, M.A.; Knoff, J.; Eisinger, B.; Liu, M.L.; Huang, S.M.; et al. Trp channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 2010, 141, 331–343. [Google Scholar] [CrossRef]
- Xiao, R.; Tian, J.; Tang, J.; Zhu, M.X. The TRPV3 mutation associated with the hairless phenotype in rodents is constitutively active. Cell Calcium 2008, 43, 334–343. [Google Scholar] [CrossRef]
- Lai-Cheong, J.E.; Sethuraman, G.; Ramam, M.; Stone, K.; Simpson, M.A.; McGrath, J.A. Recurrent heterozygous missense mutation, p.Gly573ser, in the TRPV3 gene in an Indian boy with sporadic olmsted syndrome. Br. J. Dermatol. 2012, 167, 440–442. [Google Scholar] [CrossRef]
- Duchatelet, S.; Guibbal, L.; de Veer, S.; Fraitag, S.; Nitschke, P.; Zarhrate, M.; Bodemer, C.; Hovnanian, A. Olmsted syndrome with erythromelalgia caused by recessive TRPV3 mutations. Br. J. Dermatol. 2014. [Google Scholar] [CrossRef]
- Duchatelet, S.; Pruvost, S.; de Veer, S.; Fraitag, S.; Nitschke, P.; Bole-Feysot, C.; Bodemer, C.; Hovnanian, A. A new TRPV3 missense mutation in a patient with olmsted syndrome and erythromelalgia. JAMA Dermatol. 2014, 150, 303–306. [Google Scholar] [CrossRef]
- Yaghoobi, R.; Omidian, M.; Sina, N.; Abtahian, S.A.; Panahi-Bazaz, M.R. Olmsted syndrome in an Iranian family: Report of two new cases. Arch. Iran. Med. 2007, 10, 246–249. [Google Scholar]
- Oeffner, F.; Fischer, G.; Happle, R.; Konig, A.; Betz, R.C.; Bornholdt, D.; Neidel, U.; Boente Mdel, C.; Redler, S.; Romero-Gomez, J.; et al. IFAP syndrome is caused by deficiency in MBTPS2, an intramembrane zinc metalloprotease essential for cholesterol homeostasis and ER stress response. Am. J. Hum. Genet. 2009, 84, 459–467. [Google Scholar] [CrossRef]
- Ding, Y.G.; Wang, J.Y.; Qiao, J.J.; Mao, X.H.; Cai, S.Q. A novel mutation in MBTPS2 causes ichthyosis follicularis, alopecia and photophobia (IFAP) syndrome in a chinese family. Br. J. Dermatol. 2010, 163, 886–889. [Google Scholar] [CrossRef]
- Tang, L.; Liang, J.; Wang, W.; Yu, L.; Yao, Z. A novel mutation in MBTPS2 causes a broad phenotypic spectrum of ichthyosis follicularis, atrichia, and photophobia syndrome in a large chinese family. J. Am. Acad. Dermatol. 2011, 64, 716–722. [Google Scholar] [CrossRef]
- Naiki, M.; Mizuno, S.; Yamada, K.; Yamada, Y.; Kimura, R.; Oshiro, M.; Okamoto, N.; Makita, Y.; Seishima, M.; Wakamatsu, N. MBTPS2 mutation causes bresek/bresheck syndrome. Am. J. Med. Genet. Part A 2012, 158A, 97–102. [Google Scholar] [CrossRef]
- Aten, E.; Brasz, L.C.; Bornholdt, D.; Hooijkaas, I.B.; Porteous, M.E.; Sybert, V.P.; Vermeer, M.H.; Vossen, R.H.; van der Wielen, M.J.; Bakker, E.; et al. Keratosis follicularis spinulosa decalvans is caused by mutations in MBTPS2. Hum. Mutat. 2010, 31, 1125–1133. [Google Scholar] [CrossRef]
- Sakai, J.; Nohturfft, A.; Goldstein, J.L.; Brown, M.S. Cleavage of sterol regulatory element-binding proteins (srebps) at site-1 requires interaction with SREBP cleavage-activating protein. Evidence from in vivo competition studies. J. Biol. Chem. 1998, 273, 5785–5793. [Google Scholar]
- Rawson, R.B.; Zelenski, N.G.; Nijhawan, D.; Ye, J.; Sakai, J.; Hasan, M.T.; Chang, T.Y.; Brown, M.S.; Goldstein, J.L. Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1997, 1, 47–57. [Google Scholar] [CrossRef]
- Ye, J.; Rawson, R.B.; Komuro, R.; Chen, X.; Dave, U.P.; Prywes, R.; Brown, M.S.; Goldstein, J.L. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 2000, 6, 1355–1364. [Google Scholar] [CrossRef]
- Bisgaard, H.; Simpson, A.; Palmer, C.N.; Bonnelykke, K.; McLean, I.; Mukhopadhyay, S.; Pipper, C.B.; Halkjaer, L.B.; Lipworth, B.; Hankinson, J.; et al. Gene-environment interaction in the onset of eczema in infancy: Filaggrin loss-of-function mutations enhanced by neonatal cat exposure. PLoS Med. 2008, 5, e131. [Google Scholar] [CrossRef]
- Enamandram, M.; Kimball, A.B. Psoriasis epidemiology: The interplay of genes and the environment. J. Investig. Dermatol. 2013, 133, 287–289. [Google Scholar] [CrossRef]
- Carroll, C.L.; Balkrishnan, R.; Feldman, S.R.; Fleischer, A.B., Jr.; Manuel, J.C. The burden of atopic dermatitis: Impact on the patient, family, and society. Pediatr. Dermatol. 2005, 22, 192–199. [Google Scholar] [CrossRef]
- Baker, C.S.; Foley, P.A.; Braue, A. Psoriasis uncovered—Measuring burden of disease impact in a survey of australians with psoriasis. Australas. J. Dermatol. 2013, 54, 1–6. [Google Scholar] [CrossRef]
- Stranger, B.E.; Stahl, E.A.; Raj, T. Progress and promise of genome-wide association studies for human complex trait genetics. Genetics 2011, 187, 367–383. [Google Scholar] [CrossRef]
- Weinstein, G.D.; Frost, P. Abnormal cell proliferation in psoriasis. J. Investig. Dermatol. 1968, 50, 254–259. [Google Scholar]
- Wuepper, K.D.; Coulter, S.N.; Haberman, A. Psoriasis vulgaris: A genetic approach. J. Investig. Dermatol. 1990, 95, 2S–4S. [Google Scholar]
- Capon, F.; Barker, J.N. The quest for psoriasis susceptibility genes in the postgenome-wide association studies era: Charting the road ahead. Br. J. Dermatol. 2012, 166, 1173–1175. [Google Scholar] [CrossRef]
- Capon, F.; Burden, A.D.; Trembath, R.C.; Barker, J.N. Psoriasis and other complex trait dermatoses: From loci to functional pathways. J. Investig. Dermatol. 2012, 132, 915–922. [Google Scholar] [CrossRef]
- Nair, R.P.; Stuart, P.; Henseler, T.; Jenisch, S.; Chia, N.V.; Westphal, E.; Schork, N.J.; Kim, J.; Lim, H.W.; Christophers, E.; et al. Localization of psoriasis-susceptibility locus PSORS1 to a 60-kb interval telomeric to HLA-C. Am. J. Hum. Genet. 2000, 66, 1833–1844. [Google Scholar] [CrossRef]
- Capon, F.; Munro, M.; Barker, J.; Trembath, R. Searching for the major histocompatibility complex psoriasis susceptibility gene. J. Investig. Dermatol. 2002, 118, 745–751. [Google Scholar] [CrossRef]
- Nair, R.P.; Stuart, P.E.; Nistor, I.; Hiremagalore, R.; Chia, N.V.; Jenisch, S.; Weichenthal, M.; Abecasis, G.R.; Lim, H.W.; Christophers, E.; et al. Sequence and haplotype analysis supports HLA-C as the psoriasis susceptibility 1 gene. Am. J. Hum. Genet. 2006, 78, 827–851. [Google Scholar] [CrossRef]
- Nair, M.; Teng, A.; Bilanchone, V.; Agrawal, A.; Li, B.; Dai, X. Ovol1 regulates the growth arrest of embryonic epidermal progenitor cells and represses c-myc transcription. J. Cell Biol. 2006, 173, 253–264. [Google Scholar] [CrossRef]
- Nair, R.P.; Duffin, K.C.; Helms, C.; Ding, J.; Stuart, P.E.; Goldgar, D.; Gudjonsson, J.E.; Li, Y.; Tejasvi, T.; Feng, B.J.; et al. Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappab pathways. Nat. Genet. 2009, 41, 199–204. [Google Scholar] [CrossRef]
- Jordan, C.T.; Cao, L.; Roberson, E.D.; Duan, S.; Helms, C.A.; Nair, R.P.; Duffin, K.C.; Stuart, P.E.; Goldgar, D.; Hayashi, G.; et al. Rare and common variants in CARD14, encoding an epidermal regulator of NF-kappab, in psoriasis. Am. J. Hum. Genet. 2012, 90, 796–808. [Google Scholar] [CrossRef]
- Jordan, C.T.; Cao, L.; Roberson, E.D.; Pierson, K.C.; Yang, C.F.; Joyce, C.E.; Ryan, C.; Duan, S.; Helms, C.A.; Liu, Y.; et al. PSORS2 is due to mutations in CARD14. Am. J. Hum. Genet. 2012, 90, 784–795. [Google Scholar] [CrossRef]
- Di Cesare, A.; di Meglio, P.; Nestle, F.O. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J. Investig. Dermatol. 2009, 129, 1339–1350. [Google Scholar] [CrossRef]
- Weaver, C.T.; Hatton, R.D.; Mangan, P.R.; Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Ann. Rev. Immunol. 2007, 25, 821–852. [Google Scholar] [CrossRef]
- Zheng, Y.; Danilenko, D.M.; Valdez, P.; Kasman, I.; Eastham-Anderson, J.; Wu, J.; Ouyang, W. Interleukin-22, a T(h)17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 2007, 445, 648–651. [Google Scholar] [CrossRef]
- Krueger, G.G.; Langley, R.G.; Leonardi, C.; Yeilding, N.; Guzzo, C.; Wang, Y.; Dooley, L.T.; Lebwohl, M.; Group, C.P.S. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N. Engl. J. Med. 2007, 356, 580–592. [Google Scholar] [CrossRef]
- Suarez-Farinas, M.; Shah, K.R.; Haider, A.S.; Krueger, J.G.; Lowes, M.A. Personalized medicine in psoriasis: Developing a genomic classifier to predict histological response to alefacept. BMC Dermatol. 2010, 10. [Google Scholar] [CrossRef]
- Tomfohrde, J.; Silverman, A.; Barnes, R.; Fernandez-Vina, M.A.; Young, M.; Lory, D.; Morris, L.; Wuepper, K.D.; Stastny, P.; Menter, A.; et al. Gene for familial psoriasis susceptibility mapped to the distal end of human chromosome 17q. Science 1994, 264, 1141–1145. [Google Scholar]
- Marrakchi, S.; Guigue, P.; Renshaw, B.R.; Puel, A.; Pei, X.Y.; Fraitag, S.; Zribi, J.; Bal, E.; Cluzeau, C.; Chrabieh, M.; et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 2011, 365, 620–628. [Google Scholar]
- Berki, D.M.; Mahil, S.K.; Burden, A.D.; Trembath, R.C.; Smith, C.H.; Capon, F.; Barker, J.N. Loss of IL36RN function does not confer susceptibility to psoriasis vulgaris. J. Investig. Dermatol. 2014, 134, 271–273. [Google Scholar] [CrossRef]
- Capon, F. IL36RN mutations in generalized pustular psoriasis: Just the tip of the iceberg? J. Investig. Dermatol. 2013, 133, 2503–2504. [Google Scholar] [CrossRef]
- Flohr, C.; Mann, J. New insights into the epidemiology of childhood atopic dermatitis. Allergy 2014, 69, 3–16. [Google Scholar] [CrossRef]
- Larsen, F.S.; Holm, N.V.; Henningsen, K. Atopic dermatitis: A genetic-epidemiologic study in a population-based twin sample. J. Am. Acad. Dermatol. 1986, 15, 487–494. [Google Scholar] [CrossRef]
- Smith, F.J.; Irvine, A.D.; Terron-Kwiatkowski, A.; Sandilands, A.; Campbell, L.E.; Zhao, Y.; Liao, H.; Evans, A.T.; Goudie, D.R.; Lewis-Jones, S.; et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat. Genet. 2006, 38, 337–342. [Google Scholar] [CrossRef]
- Sybert, V.P.; Dale, B.A.; Holbrook, K.A. Ichthyosis vulgaris: Identification of a defect in synthesis of filaggrin correlated with an absence of keratohyaline granules. J. Investig. Dermatol. 1985, 84, 191–194. [Google Scholar] [CrossRef]
- Brown, S.J.; Asai, Y.; Cordell, H.J.; Campbell, L.E.; Zhao, Y.; Liao, H.; Northstone, K.; Henderson, J.; Alizadehfar, R.; Ben-Shoshan, M.; et al. Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J. Allergy Clin. Immunol. 2011, 127, 661–667. [Google Scholar] [CrossRef]
- Brown, S.J.; Relton, C.L.; Liao, H.; Zhao, Y.; Sandilands, A.; McLean, W.H.; Cordell, H.J.; Reynolds, N.J. Filaggrin haploinsufficiency is highly penetrant and is associated with increased severity of eczema: Further delineation of the skin phenotype in a prospective epidemiological study of 792 school children. Br. J. Dermatol. 2009, 161, 884–889. [Google Scholar] [CrossRef]
- Hirota, T.; Takahashi, A.; Kubo, M.; Tsunoda, T.; Tomita, K.; Sakashita, M.; Yamada, T.; Fujieda, S.; Tanaka, S.; Doi, S.; et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat. Genet. 2012, 44, 1222–1226. [Google Scholar] [CrossRef]
- Sun, L.D.; Xiao, F.L.; Li, Y.; Zhou, W.M.; Tang, H.Y.; Tang, X.F.; Zhang, H.; Schaarschmidt, H.; Zuo, X.B.; Foelster-Holst, R.; et al. Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese han population. Nat. Genet. 2011, 43, 690–694. [Google Scholar] [CrossRef]
- Paternoster, L.; Standl, M.; Chen, C.M.; Ramasamy, A.; Bonnelykke, K.; Duijts, L.; Ferreira, M.A.; Alves, A.C.; Thyssen, J.P.; Albrecht, E.; et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat. Genet. 2012, 44, 187–192. [Google Scholar]
- Palmer, C.N.; Irvine, A.D.; Terron-Kwiatkowski, A.; Zhao, Y.; Liao, H.; Lee, S.P.; Goudie, D.R.; Sandilands, A.; Campbell, L.E.; Smith, F.J.; et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 2006, 38, 441–446. [Google Scholar] [CrossRef]
- Sandilands, A.; Sutherland, C.; Irvine, A.D.; McLean, W.H. Filaggrin in the frontline: Role in skin barrier function and disease. J. Cell Sci. 2009, 122, 1285–1294. [Google Scholar] [CrossRef]
- Fallon, P.G.; Sasaki, T.; Sandilands, A.; Campbell, L.E.; Saunders, S.P.; Mangan, N.E.; Callanan, J.J.; Kawasaki, H.; Shiohama, A.; Kubo, A.; et al. A homozygous frameshift mutation in the mouse flg gene facilitates enhanced percutaneous allergen priming. Nat. Genet. 2009, 41, 602–608. [Google Scholar] [CrossRef]
- Oyoshi, M.K.; Murphy, G.F.; Geha, R.S. Filaggrin-deficient mice exhibit Th17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. J. Allergy Clin. Immunol. 2009, 124, 485–493. [Google Scholar] [CrossRef]
- Otsuka, A.; Doi, H.; Egawa, G.; Maekawa, A.; Fujita, T.; Nakamizo, S.; Nakashima, C.; Nakajima, S.; Watanabe, T.; Miyachi, Y.; et al. Possible new therapeutic strategy to regulate atopic dermatitis through upregulating filaggrin expression. J. Allergy Clin. Immunol. 2014, 133, 139–146. [Google Scholar] [CrossRef]
- Tamari, M.; Hirota, T. Genome-wide association studies of atopic dermatitis. J. Dermatol. 2014, 41, 213–220. [Google Scholar] [CrossRef]
- Esparza-Gordillo, J.; Weidinger, S.; Folster-Holst, R.; Bauerfeind, A.; Ruschendorf, F.; Patone, G.; Rohde, K.; Marenholz, I.; Schulz, F.; Kerscher, T.; et al. A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat. Genet. 2009, 41, 596–601. [Google Scholar] [CrossRef]
- Wang, R.; Wan, Q.; Kozhaya, L.; Fujii, H.; Unutmaz, D. Identification of a regulatory T cell specific cell surface molecule that mediates suppressive signals and induces Foxp3 expression. PLoS One 2008, 3, e2705. [Google Scholar] [CrossRef]
- Buschke, S.; Stark, H.J.; Cerezo, A.; Pratzel-Wunder, S.; Boehnke, K.; Kollar, J.; Langbein, L.; Heldin, C.H.; Boukamp, P. A decisive function of transforming growth factor-beta/smad signaling in tissue morphogenesis and differentiation of human HaCat keratinocytes. Mol. Biol. Cell 2011, 22, 782–794. [Google Scholar] [CrossRef]
- Chang, M.; Li, Y.; Yan, C.; Callis-Duffin, K.P.; Matsunami, N.; Garcia, V.E.; Cargill, M.; Civello, D.; Bui, N.; Catanese, J.J.; et al. Variants in the 5q31 cytokine gene cluster are associated with psoriasis. Genes Immun. 2008, 9, 176–181. [Google Scholar]
- Li, Y.; Chang, M.; Schrodi, S.J.; Callis-Duffin, K.P.; Matsunami, N.; Civello, D.; Bui, N.; Catanese, J.J.; Leppert, M.F.; Krueger, G.G.; et al. The 5q31 variants associated with psoriasis and crohn’s disease are distinct. Hum. Mol. Genet. 2008, 17, 2978–2985. [Google Scholar] [CrossRef]
- Leung, D.Y. New insights into atopic dermatitis: Role of skin barrier and immune dysregulation. Allergol. Int. 2013, 62, 151–161. [Google Scholar] [CrossRef]
- Hamid, Q.; Naseer, T.; Minshall, E.M.; Song, Y.L.; Boguniewicz, M.; Leung, D.Y. In vivo expression of IL-12 and IL-13 in atopic dermatitis. J. Allergy Clin. Immunol. 1996, 98, 225–231. [Google Scholar] [CrossRef]
- Hamid, Q.; Boguniewicz, M.; Leung, D.Y. Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J. Clin. Investig. 1994, 94, 870–876. [Google Scholar] [CrossRef]
- Maher, B. Personal genomes: The case of the missing heritability. Nature 2008, 456, 18–21. [Google Scholar] [CrossRef]
- Gudjonsson, J.E.; Krueger, G. A role for epigenetics in psoriasis: Methylated cytosine-guanine sites differentiate lesional from nonlesional skin and from normal skin. J. Investig. Dermatol. 2012, 132, 506–508. [Google Scholar] [CrossRef]
- Blaydon, D.C.; Biancheri, P.; Di, W.L.; Plagnol, V.; Cabral, R.M.; Brooke, M.A.; van Heel, D.A.; Ruschendorf, F.; Toynbee, M.; Walne, A.; et al. Inflammatory skin and bowel disease linked to ADAM17 deletion. N. Engl. J. Med. 2011, 365, 1502–1508. [Google Scholar]
- Blaydon, D.C.; Etheridge, S.L.; Risk, J.M.; Hennies, H.C.; Gay, L.J.; Carroll, R.; Plagnol, V.; McRonald, F.E.; Stevens, H.P.; Spurr, N.K.; et al. RHBDF2 mutations are associated with tylosis, a familial esophageal cancer syndrome. Am. J. Hum. Genet. 2012, 90, 340–346. [Google Scholar] [CrossRef]
- Brooke, M.A.; Etheridge, S.L.; Kaplan, N.; Simpson, C.; O’Toole, E.A.; Ishida-Yamamoto, A.; Marches, O.; Getsios, S.; Kelsell, D.P. iRHOM2-dependent regulation of ADAM17 in cutaneous disease and epidermal barrier function. Hum. Mol. Genet. 2014, 23, 4064–4076. [Google Scholar] [CrossRef]
- Brooke, M.A.; Nitoiu, D.; Kelsell, D.P. Cell-cell connectivity: Desmosomes and disease. J. Pathol. 2012, 226, 158–171. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Maruthappu, T.; Scott, C.A.; Kelsell, D.P. Discovery in Genetic Skin Disease: The Impact of High Throughput Genetic Technologies. Genes 2014, 5, 615-634. https://doi.org/10.3390/genes5030615
Maruthappu T, Scott CA, Kelsell DP. Discovery in Genetic Skin Disease: The Impact of High Throughput Genetic Technologies. Genes. 2014; 5(3):615-634. https://doi.org/10.3390/genes5030615
Chicago/Turabian StyleMaruthappu, Thiviyani, Claire A. Scott, and David P. Kelsell. 2014. "Discovery in Genetic Skin Disease: The Impact of High Throughput Genetic Technologies" Genes 5, no. 3: 615-634. https://doi.org/10.3390/genes5030615
APA StyleMaruthappu, T., Scott, C. A., & Kelsell, D. P. (2014). Discovery in Genetic Skin Disease: The Impact of High Throughput Genetic Technologies. Genes, 5(3), 615-634. https://doi.org/10.3390/genes5030615