Skill-Testing Chemical Transport Models across Contrasting Atmospheric Mixing States Using Radon-222
Abstract
:1. Introduction
2. Experiment and Methods
2.1. Site and Measurement Campaign
2.2. Radon-Based Stability Classification
2.3. Summary of Chemical Transport Models
3. Results and Discussion
3.1. Campaign Overview
3.2. Evaluating Simulated Air Temperature
3.3. Evaluating Simulated Relative Humidity
3.4. Wind Speed
3.5. Atmospheric Boundary Layer Depth
3.6. Gaseous and Particulate Atmospheric Constituents
3.6.1. Passive Atmospheric Tracer (Radon-222)
3.6.2. Locally-Sourced Primary Pollutants (NO, CO)
3.6.3. Local and Non-Local, Primary and Secondary Pollutants (NO2, PM10, SO2)
3.6.4. Local and Non-Local Secondary Pollutants (Photochemical Oxidants as O3)
3.6.5. Summary of Model Performance for Selected Air Pollutants
3.7. Source Distribution and Magnitude
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Albion Park Sth |
BA | Bankstown Airport |
BC | Badgerys Creek |
Ba | Bargo |
Bl | Bellambi |
Br | Bringelly |
CA | Camden Airport |
Ch | Chullora |
Ea | Earlwood |
KG | Kembla Grange |
Ln | Lindfield |
Lv | Liverpool |
Mc | Macarthur |
Ok | Oakdale |
Pr | Prospect |
RR | Richmond RAAF |
Ra | Randwick |
Rz | Rozelle |
SA | Sydney Airport |
SM | St Marys |
Vn | Vineyard |
WA | Wollongong Airport |
WR | Williamtown RAAF |
Wo | Wollongong |
References
- Ayers, G.P.; Bigg, E.K.; Turvey, D.E.; Manton, M.J. Urban Influence on Condensation Nuclei over a Continent. Atmos. Environ. 1982, 16, 951–954. [Google Scholar] [CrossRef]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Pope, C.A.; Ezzati, M.; Dockery, D.W. Fine-Particulate Air Pollution and Life Expectancy in the United States. New Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.-H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hu, B.; Liu, Y.; Xu, J.; Yang, G.; Xu, D.; Chen, C. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochem. Biophys. Acta 2016, 1860, 2844–2855. [Google Scholar] [CrossRef]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauser, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.H.; Hamburg, S.P. High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, C.; Zhou, G.; Sun, J.; Liu, N.; Hsu, P.-C.; Wang, H.; Qiu, Y.; Zhao, J.; Wu, T.; et al. Morphology and property investigation of primary particulate matter particles from different sources. Nano Res. 2018, 11, 3182–3192. [Google Scholar] [CrossRef]
- Keywood, M.D.; Galbally, I.; Crumeyrolle, S.; Miljevic, B.; Boast, K.; Chambers, S.D.; Cheng, M.; Dunne, E.; Fedele, R.; Gillett, R.; et al. Sydney Particle Study-Stage-I: Executive Summary; CSIRO: Melbourne, Australia, 2012; Available online: https://publications.csiro.au/rpr/pub?list=SEA&pid=csiro:EP19078&sb=RECENT&expert=false&n=1&rpp=25&page=2&tr=38&q=Keywood&dc4.publicationType=Report&dr=all (accessed on 11 January 2019).
- Cope, M.; Keywood, M.; Emmerson, K.; Galbally, I.; Boast, K.; Chambers, S.; Cheng, M.; Crumeyrolle, S.; Dunne, E.; Fedele, R.; et al. Sydney Particle Study—Stage-II; The Centre for Australian Weather and Climate Research: Melbourne, VIC, Australia, June 2014; ISBN 978-1-4863-0359-5. [Google Scholar]
- Gibson, M.D.; Kundu, S.; Satish, A. Dispersion model evaluation of PM2.5, NOx and SO2 from point and major line sources in Nova Scotia, Canada using AERMOD Gaussian plume air dispersion model. Atmos. Poll. Res. 2013, 4, 157–167. [Google Scholar] [CrossRef]
- Irwin, J.S. A suggested method for dispersion model evaluation. J. Air Waste Manag. Assoc. 2014, 64, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Herring, S.; Huq, P. A Review of Methodology for Evaluating the Performance of Atmospheric Transport and Dispersion Models and Suggested Protocol for Providing More Informative Results. Fluids 2018, 3, 20. [Google Scholar] [CrossRef]
- Williams, A.G.; Chambers, S.D.; Griffiths, A.D. Bulk mixing and decoupling of the nocturnal stable boundary layer characterized using a ubiquitous natural tracer. Bound.-Lay. Meteorol. 2013, 20, 381402. [Google Scholar] [CrossRef]
- Aust, N.; Watkiss, P.; Boulter, P.; Bawden, K. Methodology for Valuing the Health Impacts of Changes in Particle Emissions—Final Report; NSW Environment Protection Authority (EPA): Sydney, NSW, Australia, 2013. Available online: http://www.nepc.gov.au/system/files/pages/18ae5913-2e17-4746-a5d6-ffa972cf4fdb/files/methodology-valuing-health-impacts-changes-particle-emissions.pdf (accessed on 30 November 2018).
- Holtslag, A.A.M. Introduction to the third GEWEX atmospheric boundary layer study (GABLS3). Bound.-Lay. Meteorol. 2014, 152, 127132. [Google Scholar] [CrossRef]
- Koffi, E.N.; Bergamaschi, P.; Karstens, U.; Krol, M.; Segers, A.; Schmidt, M.; Levin, I.; Vermeulen, A.T.; Fisher, R.E.; Kazan, V.; et al. Evaluation of the boundary layer dynamics of the TM5 model over Europe. Geosci. Model Dev. 2016, 9, 3137–3160. [Google Scholar] [CrossRef]
- Chambers, S.D.; Williams, A.G.; Crawford, J.; Griffiths, A.D. On the use of radon for quantifying the effects of atmospheric stability on urban emissions. Atmos. Chem. Phys. 2015, 15, 1175–1190. [Google Scholar] [CrossRef] [Green Version]
- Chambers, S.D.; Galeriu, D.; Williams, A.G.; Melintescu, A.; Griffiths, A.D.; Crawford, J.; Dyer, L.; Duma, M.; Zorila, B. Atmospheric stability effects on potential radiological releases at a nuclear research facility in Romania: Characterising the atmospheric mixing state. J. Environ. Radioact. 2016, 154, 68–82. [Google Scholar] [CrossRef]
- Chambers, S.D.; Podstawczyńska, A.; Pawlak, W.; Fortuniak, K.; Williams, A.G.; Griffiths, A.D. Characterizing the state of the Urban Surface Layer using Radon-222. J. Geophys. Res. Atmos. 2018. submitted. [Google Scholar] [CrossRef]
- Williams, A.G.; Chambers, S.D.; Conen, F.; Reimann, S.; Hill, M.; Griffiths, A.D.; Crawford, J. Radon as a tracer of atmospheric influences on traffic-related air pollution in a small inland city. Tellus B 2016, 68. [Google Scholar] [CrossRef]
- Perrino, C.; Pietrodangelo, A.; Febo, A. An atmospheric stability index based on radon progeny measurements for the evaluation of primary urban pollution. Atmos. Environ. 2001, 35, 5235–5244. [Google Scholar] [CrossRef]
- Chambers, S.D.; Williams, A.G.; Zahorowski, W.; Griffiths, A.D.; Crawford, J. Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere. Tellus B 2011, 63, 843–859. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Chambers, S.D.; Zhang, Z.; Williams, A.G.; Deng, X.; Zhang, H.; Lonati, G.; Crawford, J.; Griffiths, A.D.; Ianniello, A.; et al. Quantifying stability influences on air pollution in Lanzhou, China, using a radon-based “stability monitor”: Seasonality and extreme events. Atmos. Environ. 2016, 145, 376–391. [Google Scholar] [CrossRef]
- Keywood, M.; Selleck, P.; Reisen, F.; Cohen, D.; Chambers, S.; Cheng, M.; Cope, M.; Crumeyrolle, S.; Dunne, E.; Emmerson, K.; et al. Comprehensive aerosol and gas data set from the Sydney Particle Study. Earth Syst. Sci. Data 2018. in prep. [Google Scholar]
- Monk, K.; Guérette, E.A.; Utembe, S.; Silver, J.D.; Emmerson, K.; Griffiths, A.; Duc, H.; Chang, L.T.C.; Trieu, T.; Jiang, N.; et al. Evaluation of regional air quality models over Sydney, Australia: Part 1 Meteorological model comparison. Atmosphere 2018. submitted. [Google Scholar]
- Guérette, E.-A.; Monk, K.; Emmerson, K.; Utembe, S.; Zhang, Y.; Silver, J.; Duc, H.N.; Chang, L.T.-C.; Trieu, T.; Griffiths, A.; et al. Evaluation of regional air quality models over Sydney, Australia: Part 2 Model performance for surface ozone and PM2.5. Atmosphere 2018. submitted. [Google Scholar]
- Paton-Walsh, C.; Guerette, E.; Kubistin, D.; Humphries, R.; Wilson, S.R.; Dominick, D.; Galbally, I.; Buchholz, R.; Bhujel, M.; Chambers, S.; et al. The MUMBA campaign: Measurements of urban, marine and biogenic air. Earth Syst. Sci. Data 2017, 9, 349–362. [Google Scholar] [CrossRef]
- BoM. Meteorological Observations and Reports: Instrument Siting Requirements; Version 1.0.; Bureau of Meteorology: Melbourne, Australia, 2014. [Google Scholar]
- Utembe, S.; Rayner, P.; Silver, J.; Guerette, E.-A.; Fisher, J.A.; Emmerson, K.; Cope, M.; Paton-Walsh, C.; Griffiths, A.D.; Duc, H.; et al. Hot summers: Effect of extreme temperatures on ozone in Sydney, Australia. Atmosphere 2018. submitted. [Google Scholar] [CrossRef]
- Chang, L.T.-C.; Duc, H.N.; Scorgie, Y.; Trieu, T.; Monk, K.; Jiang, N. Performance evaluation of CCAM-CTM regional airshed modelling for the New South Wales Greater Metropolitan Region. Atmosphere 2018. submitted. [Google Scholar] [CrossRef]
- Duc, H.N.; Chang, L.T.-C.; Trieu, T.; Salter, D.; Scorgie, Y. Source Contributions to Ozone Formation in the New South Wales Greater Metropolitan Region, Australia. Atmosphere 2018, 9, 443. [Google Scholar] [CrossRef]
- King, E.; Paget, M. Land Cover Type—MODIS, LPDAAC MCD12Q1 mosaic, Australia Coverage, [online]. Available online: http://portal.tern.org.au/land-cover-type-australia-coverage (accessed on 20 October 2018).
- Geoscience Australia: GEODATA 9 Second DEM and D8: Digital Elevation Model Version 3 and Flow Direction Grid 2008, [online]. Available online: https://data.gov.au/dataset/0fc3357c-5852-4e6b-992c-c78bd10e9234 (accessed on 26 October 2018).
- Griffiths, A.D.; Parkes, S.D.; Chambers, S.D.; McCabe, M.F.; Williams, A.G. Improved mixing height monitoring through a combination of lidar and radon measurements. Atmos. Meas. Tech. 2013, 6, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, A.D.; Zahorowski, W.; Element, A.; Werczynski, S. A map of radon flux at the Australian land surface. Atmos. Chem. Phys. 2010, 10, 8969–8982. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Lopez, M.; Schmidt, M.; Ramonet, M.; Gibert, F.; Xueref-Remy, I.; Ciais, P. Investigation of the atmospheric boundary layer depth variability and its impact on the 222Rn concentration at a rural site in France. J. Geophys. Res. Atmos. 2015, 120, 623–643. [Google Scholar] [CrossRef]
- Podstawczyńska, A. Differences of near-ground atmospheric Rn-222 concentration between urban and rural area with reference to microclimate diversity. Atmos. Environ. 2016, 126, 225–234. [Google Scholar] [CrossRef]
- NSW-EPA 2008 Calendar Year Air Emissions Inventory for the Greater Metropolitan Region in NSW; Environment Protection Authority: Sydney, Australia, 2012.
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2 (No. NCAR/TN-468+ STR); National Center for Atmospheric Research: Boulder, CO, USA, 2005. [Google Scholar]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- US EPA Office of Research and Development. CMAQv5.0.2 (Version 5.0.2). Zenodo. 30 May 2014. Available online: https://zenodo.org/record/1079898#.XDLv9s0RV7M (accessed on 7 January 2019). [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, D.P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Thiébaux, J.; Rogers, E.; Wang, W.; Katz, B. A new high-resolution blended real-time global sea surface temperature analysis. Bull. Am. Meteorol. Soc. 2003, 84, 645–656. [Google Scholar] [CrossRef]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified NOAH land surface model in the WRF model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, Washington, USA, 12–15 January 2004; pp. 11–15. [Google Scholar]
- Janjic, Z.I. The Step—Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Grell, G.A. Prognostic Evaluation of Assumptions Used by Cumulus Parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Devenyi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 1693. [Google Scholar] [CrossRef]
- Emmons, L.K.; Walters, S.; Hess, P.G.; Lamarque, J.-F.; Pfister, G.G.; Fillmore, D.; Granier, C.; Guenther, A.; Kinnison, D.; Laepple, T.; et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 2010, 3, 43–67. [Google Scholar] [CrossRef] [Green Version]
- Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Dentener, F.; van Aardenne, J.A.; Monni, S.; Doering, U.; Olivier, J.G.J.; Pagliari, V.; et al. Gridded Emissions of Air Pollutants for the period 1970–2012 within EDGAR v4.3.2. Earth Syst. Sci. Data Discuss. 2018. [Google Scholar] [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.T.; Bhave, P.V.; Nolte, C.G.; Shankar, U.; Foley, K.M. Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model. Geosci. Model Dev. 2010, 3, 257–273. [Google Scholar] [CrossRef]
- Appel, K.W.; Pouliot, G.A.; Simon, H.; Sarwar, G.; Pye, H.O.T.; Napelenok, S.L.; Akhtar, F.; Roselle, S.J. Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0. Geosci. Model Dev. 2013, 6, 883–899. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, G.; Luecken, D.; Yarwood, G.; Whitten, G.; Carter, B. Impact of an updated Carbon Bond mechanism on air quality using the Community Multiscale Air Quality modeling system: Preliminary assessment. J. Appl. Meteorol. 2008, 1151, 3–14. [Google Scholar] [CrossRef]
- Whitten, G.Z.; Heo, G.; Kimura, Y.; McDonald-Buller, E.; Allen, D.T.; Carter, W.P.L.; Yarwood, G. A new condensed toluene mechanism for Carbon Bond: CB05-TU. Atmos. Environ. 2010, 44, 5346–5355. [Google Scholar] [CrossRef]
- Roselle, S.J.; Schere, K.L.; Pleim, J.E.; Hanna, A.F. Photolysis rates for CMAQ. Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, EPA/600/R-99/030. March 1999. [Google Scholar]
- Stockwell, W.R.; Kirchner, F.; Kuhn, M.; Seefeld, S. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. Atmos. 1997, 102, 25847–25879. [Google Scholar] [CrossRef] [Green Version]
- Janssens-Maenhout, G.; Dentener, F.; van Aardenne, J.; Monni, S.; Pagliari, V.; Orlandini, L.; Klimont, Z.; Kurokawa, J.; Akimoto, H.; O’Hara, T.; et al. EDGAR-HTAP: A harmonized gridded air pollution emission dataset based on national inventories. In JRC Scientific and Technical Reports, EUR 25229 EN—2012; European Union: Luxembourg, 2012. [Google Scholar]
- Cope, M.E.; Hess, G.D.; Lee, S.; Tory, K.; Azzi, M.; Carras, J.; Lilley, W.; Manins, P.C.; Nelson, P.; Ng, L.; et al. The Australian Air Quality Forecasting System. Part I: Project description and early outcomes. J. Appl. Meteorol. 2004, 43, 649–662. [Google Scholar] [CrossRef]
- Emmerson, K.M.; Galbally, I.E.; Guenther, A.B.; Paton-Walsh, C.; Guerette, E.A.; Cope, M.E.; Keywood, M.D.; Lawson, S.J.; Molloy, S.B.; Dunne, E.; et al. Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia. Atmos. Chem. Phys. 2016, 16, 6997–7011. [Google Scholar] [CrossRef] [Green Version]
- McGregor, J.L.; Dix, M.R. An updated description of the Conformal-Cubic atmospheric model. In High Resolution Numerical Modelling of the Atmosphere and Ocean; Ohfuchi, K.H.a.W., Ed.; Springer: New York, NY, USA, 2008; pp. 51–75. [Google Scholar]
- Kowalczyk, E.A.; Stevens, L.; Law, R.M.; Dix, M.; Wang, Y.P.; Harman, I.N.; Haynes, K.; Srbinovsky, J.; Pak, B.; Ziehn, T. The land surface model component of ACCESS: Description and impact on the simulated surface climatology. Aust. Meteorol. Ocean 2013, 63, 65–82. [Google Scholar] [CrossRef]
- Emmerson, K.M.; Cope, M.E.; Galbally, I.E.; Lee, S.; Nelson, P.F. Isoprene and monoterpene emissions in south-east Australia: Comparison of a multi-layer canopy model with MEGAN and with atmospheric observations. Atmos. Chem. Phys. 2018, 18, 7539–7556. [Google Scholar] [CrossRef]
- McGregor, J.L. C-CAM Geometric Aspects and Dynamical Formulation; CSIRO: Aspendale, Australia, 2005; p. 43. [Google Scholar]
- Wang, K.; Zhang, Y.; Yahya, K.; Wu, S.-Y.; Grell, G. Implementation and initial application of new chemistry-aerosol options in WRF/Chem for simulating secondary organic aerosols and aerosol indirect effects for regional air quality. Atmos. Environ. 2015. [Google Scholar] [CrossRef]
- He, J.; He, R.; Zhang, Y. Impacts of Air-Sea Interactions on Regional Air Quality Predictions Using a Coupled Atmosphere-Ocean Model in Southeastern U.S. Aerosol. Air Qual. Res. 2018, 18, 1044–1067. [Google Scholar] [CrossRef]
- Zhang, Y.; Jena, C.; Wang, K.; Paton-Walsh, C.; Guerette, E.-A.; Utembe, S.; Silver, J.D.; Keywood, M. Multiscale Applications of Two Online-Coupled Meteorology-Chemistry Models during Recent Field Campaigns in Australia: Evaluation, Intercomparison, and Sensitivity Simulations. Atmosphere 2018. submitted. [Google Scholar]
- Dameris, M.; Jöckel, P. Numerical Modeling of Climate-Chemistry Connections: Recent Developments and Future Challenges. Atmosphere 2013, 4, 132–156. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Bocquet, M.; Mallet, V.; Seigneur, C.; Baklanov, A. Real-time air quality forecasting, part I: History, techniques, and current status. Atmos. Environ. 2012, 60, 632–655. [Google Scholar] [CrossRef]
- Mahrt, L. Stratified atmospheric boundary layers and breakdown of models. Theoret. Comput. Fluid Dyn. 1998, 11, 263–279. [Google Scholar] [CrossRef]
- Cuxart, J.; Holtslag, A.A.M.; Beare, R.J.; Bazile, E.; Beljaars, A.; Cheng, A.; Conangla, L.; Ek, M.; Freedman, F.; Hamdi, R.; et al. Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Lay. Meteorol. 2006, 118, 273–303. [Google Scholar] [CrossRef]
- Price, J.D.; Vosper, S.; Brown, A.; Ross, A.; Clark, P.; Davies, F.; Horlacher, V.; Claxton, B.; McGregor, J.R.; Hoare, J.S.; et al. COLPEX—Field and numerical studies over a region of small hills. Bull. Am. Meteorol. Soc. 2011, 92, 1636–1650. [Google Scholar] [CrossRef]
- Seidel, D.J.; Zhang, Y.; Beljaars, A.; Golaz, J.-C.; Jacobson, A.R.; Medeiros, B. Climatology of the planetary boundary layer over the continental United States and Europe. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, A.D.; Chambers, S.D.; Williams, A.G.; Werczynski, S. Increasing the accuracy and temporal resolution of two-filter radon–222 measurements by correcting for the instrument response. Atmos. Meas. Tech. 2016, 9, 2689–2707. [Google Scholar] [CrossRef]
- Schell, B.; Ackermann, I.J.; Hass, H.; Binkowski, F.S.; Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. G. R. Atmos. 2001, 106, 28275–28293. [Google Scholar] [CrossRef] [Green Version]
Quartile | Mixing Category | Assigned Nocturnal Mixing State | Inferred Daytime Mixing State | Expected Meteorological Conditions |
---|---|---|---|---|
Q1 | #1 | Most well-mixed (near neutral) | Near neutral | Windiest nights, includes periods of severe synoptic non-stationarity. Frequent periods of extensive low cloud cover, rainfall common. |
Q2 | #2 | Weakly stable | Weakly unstable | Moderate winds at night, periods of low clouds and occasional rainfall |
Q3 | #3 | Moderately stable | Moderately unstable | Light winds at night, little-to-no low cloud, usually no rainfall. |
Q4 | #4 | Most stable | Most unstable | Typically anticyclonic conditions. Calm-to-light nocturnal winds, very little low cloud at night (though fog possible). No rain at night, possible daytime convective showers. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chambers, S.D.; Guérette, E.-A.; Monk, K.; Griffiths, A.D.; Zhang, Y.; Duc, H.; Cope, M.; Emmerson, K.M.; Chang, L.T.; Silver, J.D.; et al. Skill-Testing Chemical Transport Models across Contrasting Atmospheric Mixing States Using Radon-222. Atmosphere 2019, 10, 25. https://doi.org/10.3390/atmos10010025
Chambers SD, Guérette E-A, Monk K, Griffiths AD, Zhang Y, Duc H, Cope M, Emmerson KM, Chang LT, Silver JD, et al. Skill-Testing Chemical Transport Models across Contrasting Atmospheric Mixing States Using Radon-222. Atmosphere. 2019; 10(1):25. https://doi.org/10.3390/atmos10010025
Chicago/Turabian StyleChambers, Scott D., Elise-Andree Guérette, Khalia Monk, Alan D. Griffiths, Yang Zhang, Hiep Duc, Martin Cope, Kathryn M. Emmerson, Lisa T. Chang, Jeremy D. Silver, and et al. 2019. "Skill-Testing Chemical Transport Models across Contrasting Atmospheric Mixing States Using Radon-222" Atmosphere 10, no. 1: 25. https://doi.org/10.3390/atmos10010025
APA StyleChambers, S. D., Guérette, E. -A., Monk, K., Griffiths, A. D., Zhang, Y., Duc, H., Cope, M., Emmerson, K. M., Chang, L. T., Silver, J. D., Utembe, S., Crawford, J., Williams, A. G., & Keywood, M. (2019). Skill-Testing Chemical Transport Models across Contrasting Atmospheric Mixing States Using Radon-222. Atmosphere, 10(1), 25. https://doi.org/10.3390/atmos10010025