Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign
Abstract
:1. Introduction
- low background concentrations and boundary condition problems,
- influences from sea-breezes and local topology (that need to be correctly modelled);
- the interaction of marine aerosols with urban primary and secondary pollutants; and
- the interaction of biogenic volatile organics with urban pollutants.
2. Materials and Methods
2.1. The MUMBA Campaign
- ocean to the east:
- forest to the west (including a steep escarpment and forested region beyond);
- industrial complex to the south (at Port Kembla).
2.2. Emissions
2.3. Regional Air Quality Modelling Using C-CTM
3. Results
3.1. Criteria Pollutants during the MUMBA Campaign
3.2. Traffic and Other Urban Influences
4. Discussion
4.1. Comparison of C-CTM Modelled Air Quality Indicators with Measurements
4.2. Insights from Observations Made at Nearby Sites and Using Multiple Pollutants
- High CO at the University of Wollongong and low CO at the main MUMBA site with wind directions around 150°;
- High CO at the main MUMBA site and low CO at the University of Wollongong with wind directions around 200°;
- Strongly correlated CO data at both sites with all other wind directions.
- The plume from Port Kembla with high CO, some NOx and low toluene;
- High toluene events with medium range enhancements in CO and NOx;
- Events when CO, NOx and toluene are all high.
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
Appendix A
References
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Monks, P.S.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.L.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric composition change—Global and regional air quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef]
- Shah, A.S.V.; Langrish, J.P.; Nair, H.; McAllister, D.A.; Hunter, A.L.; Donaldson, K.; Newby, D.E.; Mills, N.L. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 2013, 382, 1039–1048. [Google Scholar] [CrossRef]
- Monks, P.S.; Carpenter, L.J.; Penkett, S.A.; Ayers, G.P.; Gillett, R.W.; Galbally, I.E.; Meyer, C.P. Fundamental ozone photochemistry in the remote marine boundary layer: The SOAPEX experiment, measurement and theory. Atmos. Environ. 1998, 32, 3647–3664. [Google Scholar] [CrossRef]
- Galbally, I.E.; Bentley, S.T.; Meyer, C.P. Mid-latitude marine boundary-layer ozone destruction at visible sunrise observed at Cape Grim, Tasmania, 41 degrees 5. Geophys. Res. Lett. 2000, 27, 3841–3844. [Google Scholar] [CrossRef]
- Cope, M.E.; Hess, G.D.; Lee, S.; Tory, K.; Azzi, M.; Carras, J.; Lilley, W.; Manins, P.C.; Nelson, P.; Ng, L.; et al. The Australian Air Quality Forecasting System. Part I: Project description and early outcomes. J. Appl. Meteorol. 2004, 43, 649–662. [Google Scholar] [CrossRef]
- Hess, G.D.; Tory, K.J.; Cope, M.E.; Lee, S.; Puri, K.; Manins, P.C.; Young, M. The Australian Air Quality Forecasting System. Part II: Case study of a Sydney 7-day photochemical smog event. J. Appl. Meteorol. 2004, 43, 663–679. [Google Scholar] [CrossRef]
- Tory, K.J.; Cope, M.E.; Hess, G.D.; Lee, S.; Puri, K.; Manins, P.C.; Wong, N. The Australian Air Quality Forecasting System. Part III: Case study of a Melbourne 4-day photochemical smog eventt. J. Appl. Meteorol. 2004, 43, 680–695. [Google Scholar] [CrossRef]
- Cope, M.E.; Hess, G.D.; Lee, S.; Tory, K.J.; Burgers, M.; Dewundege, P.; Johnson, M. The Australian Air Quality Forecasting System: Exploring first steps towards determining the limits of predictability for short-term ozone forecasting. Bound.-Layer Meteorol. 2005, 116, 363–384. [Google Scholar] [CrossRef]
- Keywood, M.; Guyes, H.; Selleck, P.; Gillett, R. Quantification of secondary organic aerosol in an Australian urban location. Environ. Chem. 2011, 8, 115–126. [Google Scholar] [CrossRef]
- Cheung, H.C.; Morawska, L.; Ristovski, Z.D.; Wainwright, D. Influence of medium range transport of particles from nucleation burst on particle number concentration within the urban airshed. Atmos. Chem. Phys. 2012, 12, 4951–4962. [Google Scholar] [CrossRef]
- Cheung, H.C.; Morawska, L.; Ristovski, Z.D. Observation of new particle formation in subtropical urban environment. Atmos. Chem. Phys. 2011, 11, 3823–3833. [Google Scholar] [CrossRef] [Green Version]
- Cainey, J.M.; Keywood, M.; Grose, M.R.; Krummel, P.; Galbally, I.E.; Johnston, P.; Gillett, R.W.; Meyer, M.; Fraser, P.; Steele, P.; et al. Precursors to Particles (P2P) at Cape Grim 2006: Campaign overview. Environ. Chem. 2007, 4, 143–150. [Google Scholar] [CrossRef]
- Rea, G.; Paton-Walsh, C.; Turquety, S.; Cope, M.; Griffith, D. Impact of the New South Wales fires during October 2013 on regional air quality in eastern Australia. Atmos. Environ. 2016, 131, 150–163. [Google Scholar] [CrossRef] [Green Version]
- Keywood, M.; Cope, M.; Meyer, C.P.M.; Iinuma, Y.; Emmerson, K. When smoke comes to town: The impact of biomass burning smoke on air quality. Atmos. Environ. 2015, 121, 13–21. [Google Scholar] [CrossRef]
- Hinwood, A.L.; Rodriguez, C.; Runnion, T.; Farrar, D.; Murray, F.; Horton, A.; Glass, D.; Sheppeard, V.; Edwards, J.W.; Denison, L.; et al. Risk factors for increased BTEX exposure in four Australian cities. Chemosphere 2007, 66, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Ristovski, Z.D.; Suni, T.; Kulmala, M.; Boy, M.; Meyer, N.K.; Duplissy, J.; Turnipseed, A.; Morawska, L.; Baltensperger, U. The role of sulphates and organic vapours in growth of newly formed particles in a eucalypt forest. Atmos. Chem. Phys. 2010, 10, 2919–2926. [Google Scholar] [CrossRef] [Green Version]
- Suni, T.; Kulmala, M.; Hirsikko, A.; Beran, T.; Laakso, L.; Aalto, P.P.; Leuning, R.; Cleugh, H.; Zegelin, S.; Hughes, D.; et al. Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest. Atmos. Chem. Phys. 2008, 8, 129–139. [Google Scholar] [CrossRef] [Green Version]
- Modini, R.L.; Ristovski, Z.D.; Johnson, G.R.; He, C.; Surawski, N.; Morawska, L.; Suni, T.; Kulmala, M. New particle formation and growth at a remote, sub-tropical coastal location. Atmos. Chem. Phys. 2009, 9, 7607–7621. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, C.A.; Johnson, G.R.; Ristovski, Z.D.; Harvey, M. Hygroscopic and volatile properties of marine aerosol observed at Cape Grim during the P2P campaign. Environ. Chem. 2007, 4, 162–171. [Google Scholar] [CrossRef]
- Keywood, M.; Emmerson, K.M.; Hibberd, M.F. Atmosphere; Australia State of the Environment: Canberra, Australia, 2016.
- Cannistraro, G.; Cannistraro, M.; Cannistraro, A.; Galvagno, A. Analysis of air pollution in the urban center of four cities sicilian. Int. J. Heat Technol. 2016, 34, S219–S225. [Google Scholar] [CrossRef]
- Cannistraro, M.; Ponterio, L.; Cao, J. Experimental study of air pollution in the urban centre of the city of Messina. Model. Meas. Control C 2018, 79, 133–139. [Google Scholar] [CrossRef]
- Cereceda-Balic, F.; Palomo-Marín, M.R.; Bernalte, E.; Vidal, V.; Christie, J.; Fadic, X.; Guevara, J.L.; Miro, C.; Pinilla Gil, E. Impact of Santiago de Chile urban atmospheric pollution on anthropogenic trace elements enrichment in snow precipitation at Cerro Colorado, Central Andes. Atmos. Environ. 2012, 47, 51–57. [Google Scholar] [CrossRef]
- Gallardo, L.; Olivares, G.; Langner, J.; Aarhus, B. Coastal lows and sulfur air pollution in Central Chile. Atmos. Environ. 2002, 36, 3829–3841. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Guérette, É.A.; Kubistin, D.; Humphries, R.; Wilson, S.; Dominick, D.; Galbally, I.; Buchholz, R.; Bhujel, M.; Chambers, S.; et al. The MUMBA campaign: Measurements of urban, marine and biogenic air. Earth Syst. Sci. Data 2017, 9, 349–362. [Google Scholar] [CrossRef]
- Guérette, E.-A.; Paton-Walsh, C.; Kubistin, D.; Humphries, R.; Bhujel, M.; Buchholz, R.R.; Chambers, S.; Cheng, M.; Davy, P.; Dominick, D.; et al. Measurements of Urban, Marine and Biogenic Air (MUMBA): Characterisation of trace gases and aerosol at the urban, marine and biogenic interface in summer in Wollongong, Australia. PANGAEA 2017. [Google Scholar] [CrossRef]
- OEH. Air Pollution Sampling Techniques. Available online: https://www.environment.nsw.gov.au/topics/air/air-pollution/sampling-air-pollution (accessed on 1 September 2018).
- Buchholz, R.R.; Paton-Walsh, C.; Griffith, D.W.T.; Kubistin, D.; Caldow, C.; Fisher, J.A.; Deutscher, N.M.; Kettlewell, G.; Riggenbach, M.; Macatangay, R.; et al. Source and meteorological influences on air quality (CO, CH4 & CO2) at a Southern Hemisphere urban site. Atmos. Environ. 2016, 126, 274–289. [Google Scholar] [CrossRef]
- Bryant, E.A. Local Climate Processes in the Illawarra; Wollongong Studies in Geography; University of Wollongong: Wollongong, Australia, 1982; pp. 1–4. [Google Scholar]
- EPA. 2008 Calendar Year Air Emissions Inventory for the Greater Metropolitan Region in NSW. Available online: https://www.epa.nsw.gov.au/your-environment/air/air-emissions-inventory/air-emissions-inventory-2008 (accessed on 1 March 2018).
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Lawson, S.J.; Cope, M.; Lee, S.; Galbally, I.E.; Ristovski, Z.; Keywood, M.D. Biomass burning at Cape Grim: Exploring photochemistry using multi-scale modelling. Atmos. Chem. Phys. 2017, 17, 11707–11726. [Google Scholar] [CrossRef]
- Broome, R.A.; Cope, M.E.; Goldsworthy, B.; Goldsworthy, L.; Emmerson, K.; Jegasothy, E.; Morgan, G.G. The mortality effect of ship-related fine particulate matter in the Sydney greater metropolitan region of NSW, Australia. Environ. Int. 2016, 87, 85–93. [Google Scholar] [CrossRef]
- Emmerson, K.M.; Cope, M.E.; Galbally, I.E.; Lee, S.; Nelson, P.F. Isoprene and monoterpene emissions in south-east Australia: Comparison of a multi-layer canopy model with MEGAN and with atmospheric observations. Atmos. Chem. Phys. 2018, 18, 7539–7556. [Google Scholar] [CrossRef]
- Emmerson, K.M.; Galbally, I.E.; Guenther, A.B.; Paton-Walsh, C.; Guerette, E.A.; Cope, M.E.; Keywood, M.D.; Lawson, S.J.; Molloy, S.B.; Dunne, E.; et al. Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia. Atmos. Chem. Phys. 2016, 16, 6997–7011. [Google Scholar] [CrossRef]
- McGregor, J.L.; Dix, M.R. An Updated Description of the Conformal-Cubic Atmospheric Model. In High Resolution Numerical Modelling of the Atmosphere and Ocean; Hamilton, K., Ohfuchi, W., Eds.; Springer: New York, NY, USA, 2008; pp. 51–75. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Galbally, I.E.; Meyer, C.P.; Ye, Y.; Bentley, S.T.; Carpenter, L.J.; Monks, P.S. Ozone, Nitrogen Oxides (NOx) and Volatile Organic Compounds in Near Surface Air at Cape Grim; Bureau of Meteorology and CSIRO Division of Atmospheric Research: Melbourne, Australia, 1996; pp. 81–88.
- Woodhouse, M.T.; Luhar, A.K.; Stevens, L.; Galbally, I.; Thathcher, M.; Uhe, P.; Wolff, H.; Noonan, J.; Molloy, S. Australian reactive gas emissions in a global chemistry-climate model and initial results. Air Qual. Clim. Chang. 2015, 49, 31–38. [Google Scholar]
- Clarke, A.; Kapustin, V.; Howell, S.; Moore, K.; Lienert, B.; Masonis, S.; Anderson, T.; Covert, D. Sea-salt size distribution from breaking waves: Implications for marine aerosol production and optical extinction measurements during SEAS. J. Atmos. Ocean. Technol. 2003, 20, 1362–1374. [Google Scholar] [CrossRef]
- Gong, S.L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Shao, Y. A new model for dust emission by saltation bombardment. J. Geophys. Res. Atmos. 1999, 104, 16827–16842. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, G.; Appel, K.W.; Carlton, A.G.; Mathur, R.; Schere, K.; Zhang, R.; Majeed, M.A. Impact of a new condensed toluene mechanism on air quality model predictions in the US. Geosci. Model Dev. 2011, 4, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Sarwar, G.; Luecken, D.; Yarwood, G.; Whitten, G.Z.; Carter, W.P.L. Impact of an updated carbon bond mechanism on predictions from the CMAQ modeling system: Preliminary assessment. J. Appl. Meteorol. Climatol. 2008, 47, 3–14. [Google Scholar] [CrossRef]
- Shrivastava, M.K.; Lane, T.E.; Donahue, N.M.; Pandis, S.N.; Robinson, A.L. Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Fountoukis, C.; Nenes, A. ISORROPIAII: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42−-NO3−-Cl−-H2O aerosols. Atmos. Chem. Phys. 2007, 7, 4639–4659. [Google Scholar] [CrossRef]
- Australian Government, Department of the Environment and Energy. National Environment Protection (Ambient Air Quality) Measure, F2016C00215; Australian Government, Department of the Environment and Energy, Ed.; Federal Register of Legislation: Canberra, ACT, Australia, 2016.
- Carslaw, D.C.; Beevers, S.D.; Ropkins, K.; Bell, M.C. Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmos. Environ. 2006, 40, 5424–5434. [Google Scholar] [CrossRef]
- Carslaw, D.C.; Ropkins, K. Openair—An R package for air quality data analysis. Environ. Model. Softw. 2012, 27–28, 52–61. [Google Scholar] [CrossRef]
- Guérette, É.-A. Measurements of VOC Sources and Ambient Concentrations in Australia. Ph.D. Thesis, School of Chemistry, University of Wollongong, Wollongong, Australia, 2016. [Google Scholar]
- Rasmussen, R.A.; Khalil, M.A.K. Atmospheric benzene and toluene. Geophys. Res. Lett. 1983, 10, 1096–1099. [Google Scholar] [CrossRef]
- Utembe, S.; Rayner, P.; Silver, J.; Guérette, E.-A.; Fisher, J.A.; Emmerson, K.; Cope, M.; Paton-Walsh, C.; Griffiths, A.; Duc, H.; et al. Hot summers: Effect of extreme temperatures on ozone in Sydney, Australia. Atmosphere 2018, 9, 466. [Google Scholar] [CrossRef]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Dominick, D.; Wilson, S.R.; Paton-Walsh, C.; Humphries, R.; Guérette, E.A.; Keywood, M.; Kubistin, D.; Marwick, B. Characteristics of airborne particle number size distributions in a coastal-urban environment. Atmos. Environ. 2018, 186, 256–265. [Google Scholar] [CrossRef]
- Bari, A.; Ferraro, V.; Wilson, L.R.; Luttinger, D.; Husain, L. Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmos. Environ. 2003, 37, 2825–2835. [Google Scholar] [CrossRef]
- Finlayson-Pitts, B.J.; Pitts, J.N. CHAPTER 6—Rates and Mechanisms of Gas-Phase Reactions in Irradiated Organic—NOx—Air Mixtures. In Chemistry of the Upper and Lower Atmosphere; Finlayson-Pitts, B.J., Pitts, J.N., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 179–263. [Google Scholar]
- Emmerson, K.M.; Cope, M.E.; Galbally, I.E.; Lee, S.; Nelson, P.F. Isoprene and monoterpene emissions in Australia: Comparison of a multi-layer canopy model with MEGAN and with atmospheric concentration observations. Atmos. Chem. Phys. Discuss. 2017, 2017. [Google Scholar] [CrossRef]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef]
- Pitman, A.J.; Perkins, S.E. Regional projections of future seasonal and annual changes in rainfall and temperature over Australia based on skill-selected AR4 models. Earth Interact. 2008, 12, 1–50. [Google Scholar] [CrossRef]
Pollutant | NSW EPA Emissions (Gg) | Wollongong NSW EPA Emissions in Gg and (as % of NSW) | NPI NSW Emissions (Gg) | Wollongong NPI Emissions in Gg and (as % of NSW) | Breakdown of Anthropogenic Emission Sources from Wollongong | |
---|---|---|---|---|---|---|
PM2.5 | 6.1 | 0.31 (5.0%) | 0.87 | 0.03 (3.6%) | Basic Ferrous Metal Manufacturing | 93.2% |
Coal Mining | 4.0% | |||||
Electricity Generation | 1.7% | |||||
Water Transport Support Services | 0.4% | |||||
Water Supply, Sewerage and Drainage | 0.2% | |||||
PM10 | 19 | 0.47 (2.4%) | 29 | 0.35 (1.2%) | Basic Ferrous Metal Manufacturing | 68.4% |
Solid fuel burning (domestic) | 11.3% | |||||
Coal Mining | 9.1% | |||||
Motor Vehicles | 6.0% | |||||
Water Transport Support Services | 1.9% | |||||
CO | 151 | 84 (56%) | 171 | 21 (12%) | Basic Ferrous Metal Manufacturing | 80.4% |
Motor Vehicles | 16.1% | |||||
Lawn Mowing | 1.3% | |||||
Solid fuel burning (domestic) | 1.2% | |||||
Lawn Mowing (public open spaces) | 0.3% | |||||
NOx | 50 | 1.8 (3.7%) | 50 | 1.7 (3.4%) | Basic Ferrous Metal Manufacturing | 56.4% |
Motor Vehicles | 34.2% | |||||
Electricity Generation | 3.1% | |||||
Railways | 2.0% | |||||
Commercial Shipping/Boating | 1.9% | |||||
SO2 | 45 | 1.4 (3.1%) | 35 | 0.79 (2.2%) | Basic Ferrous Metal Manufacturing | 94.8% |
Commercial Shipping/Boating | 1.5% | |||||
Motor Vehicles | 1.3% | |||||
Basic Chemical Manufacturing | 1.2% | |||||
Railways | 0.6% | |||||
Basic Ferrous Metal Manufacturing | 94.8% | |||||
VOCs | 48 | 1.4 (2.8%) | 31 | 0.95 (3.1%) | Motor Vehicles | 40.1% |
Domestic/Commercial solvents/aerosols | 16.2% | |||||
Architectural Surface Coatings | 10.7% | |||||
Solid fuel burning (domestic) | 8.6% | |||||
Service stations | 4.9% |
Pollutant | Australian Air Quality Standard NEPM | Maximum Hourly * (and Daily) Averages at Wollongong OEH Site during MUMBA | Mean Hourly Average at Wollongong OEH Site during MUMBA | Maximum Hourly Averages at Main MUMBA Site | Mean Hourly Averages at Main MUMBA Site |
---|---|---|---|---|---|
CO | 9000 ppb over 8 h | 1600 ppb | 180 ppb | 860 ppb | 110 ppb |
NO2 | 120 ppb over 1 h | 29 ppb | 5.7 ppb | 23 ppb | 5.2 ppb |
O3 | 100 ppb over 1 h | 66 ppb | 15 ppb | 54 ppb | 18 ppb |
SO2 | 200 ppb over 1 h | 18 ppb | 0.9 ppb | n/a | n/a |
PM10 * | 50 µg·m−3 over 1 day | 185 * (47) µg·m−3 | 23 µg·m−3 | n/a | n/a |
PM2.5 * | 25 µg·m−3 over 1 day | 48 * (16) µg·m−3 | 7.3 µg·m−3 | n/a | n/a |
Pollutant | Proportion of Data within a Factor of 2 of Observations | Normalised Mean Gross Error | Normalised Mean Bias | Correlation Coefficient (r) |
---|---|---|---|---|
PM2.5 | 0.62 | 0.61 | 0.12 | 0.25 |
PM2.5 daily | 0.96 | 0.34 | 0.10 | 0.54 |
PM10 | 0.58 | 0.50 | −0.43 | 0.37 |
CO | 0.64 | 2.0 | 1.52 | 0.27 |
NOx | 0.53 | 0.62 | −0.37 | 0.36 |
toluene | 0.34 | 0.73 | −0.69 | 0.35 |
ozone | 0.87 | 0.31 | 0.04 | 0.60 |
isoprene | 0.29 | 1.33 | 0.62 | 0.63 |
monoterpenes | 0.38 | 1.04 | 0.37 | 0.43 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paton-Walsh, C.; Guérette, É.-A.; Emmerson, K.; Cope, M.; Kubistin, D.; Humphries, R.; Wilson, S.; Buchholz, R.; Jones, N.B.; Griffith, D.W.T.; et al. Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign. Atmosphere 2018, 9, 500. https://doi.org/10.3390/atmos9120500
Paton-Walsh C, Guérette É-A, Emmerson K, Cope M, Kubistin D, Humphries R, Wilson S, Buchholz R, Jones NB, Griffith DWT, et al. Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign. Atmosphere. 2018; 9(12):500. https://doi.org/10.3390/atmos9120500
Chicago/Turabian StylePaton-Walsh, Clare, Élise-Andrée Guérette, Kathryn Emmerson, Martin Cope, Dagmar Kubistin, Ruhi Humphries, Stephen Wilson, Rebecca Buchholz, Nicholas B. Jones, David W. T. Griffith, and et al. 2018. "Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign" Atmosphere 9, no. 12: 500. https://doi.org/10.3390/atmos9120500
APA StylePaton-Walsh, C., Guérette, É. -A., Emmerson, K., Cope, M., Kubistin, D., Humphries, R., Wilson, S., Buchholz, R., Jones, N. B., Griffith, D. W. T., Dominick, D., Galbally, I., Keywood, M., Lawson, S., Harnwell, J., Ward, J., Griffiths, A., & Chambers, S. (2018). Urban Air Quality in a Coastal City: Wollongong during the MUMBA Campaign. Atmosphere, 9(12), 500. https://doi.org/10.3390/atmos9120500