Statistics of the Optical Turbulence from the Micrometeorological Measurements at the Baykal Astrophysical Observatory Site
Abstract
:1. Introduction
2. The Repeatability of the Optical Turbulence at the Baykal Astrophysical Observatory Site
3. The First Study of the Vertical Structure of the Surface Layer at the Baykal Astrophysical Observatory
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kovadlo, P.G.; Shikhovtsev, A.Y.; Lukin, V.P. Development of the Model of Turbulent Atmosphere at the Large Solar Vacuum Telescope Site as Applied to Image Adaptation. Atmos. Ocean. Opt. 2019, 32, 202–206. [Google Scholar] [CrossRef]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Lukin, V.P.; Kiselev, A.V. Dynamics of the refractive properties of the atmosphere at the Big solar vacuum telescope site: New calculating method. SPIE 2017, 10466, 104660T. [Google Scholar]
- Roddier, F. Atmospheric limitations to adaptive image compensation. ASP Conf. Ser. 2002, 266, 546–561. [Google Scholar]
- Nosov, V.; Lukin, V.; Nosov, E.; Torgaev, A.; Bogushevich, A. Measurement of atmospheric turbulence characteristics by the ultrasonic anemometers and the calibration processes. Atmosphere 2019, 10, 460. [Google Scholar] [CrossRef]
- Bogushevich, A.Y. Ultrasonic methods for estimation of atmospheric meteorological and turbulence parameters. Atmos. Ocean. Opt. 1999, 2, 164–169. [Google Scholar]
- Canut, G.; Couvreux, F.; Lothon, M.; Legain, D.; Piguet, B.; Lampert, A.; Maurel, W.; Moulin, E. Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon. Atmos. Meas. Tech. 2016, 9, 4375–4386. [Google Scholar] [CrossRef] [Green Version]
- Gladkikh, V.A.; Nevzorova, I.V.; Oditsov, S.L.; Fedorov, V.A. Structural functions of air temperature over inhomogeneous surface. Part II. Statistics of parameters of structural functions. Atmos. Ocean. Opt. 2013, 26, 955–963. [Google Scholar]
- Gladkikh, V.A.; Makienko, A.E. Digital ultrasonic weather station. Pribory 2009, 7, 21–25. [Google Scholar]
- Mauder, M.; Zeeman, M.J. Field intercomparision of prevailing sonic anemometers. Atmos. Meas. Tech. 2018, 11, 249–263. [Google Scholar] [CrossRef]
- Mauder, M.; Eggert, M.; Gutsmuths, C.; Oertal, S.; Wilhelm, P.; Voelksch, I.; Wanner, L.; Tambke, J.; Bogoev, I. Comparison of turbulence measurements by a CSAT3B sonic anemometer and high-resolution bistatic Doppler lidar. Atmos. Meas. Tech. 2019. in review. [Google Scholar] [CrossRef]
- Laso, A.; Manana, M.; Arroyo, A.; Gonzalez, A.; Lecuna, R. A comparision of mechanical and ultrasonic anemometers for ampacity thermal rating in overhead lines. Int. Conf. Renew. Energies Power Qual. 2016, 1, 770–773. [Google Scholar] [CrossRef]
- Wilson, R. SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor. Mon. Not. R. Astron. Soc. 2002, 337, 103–108. [Google Scholar] [CrossRef]
- Butterley, T.; Wilson, R.; Sarazin, M. Determination of the profile of atmospheric optical turbulence strength from SLODAR data. Mon. Not. R. Astron. Soc. 2006, 369, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhang, L.; Kong, L.; Bao, H.; Guo, Y.; Rao, X.; Zhong, L.; Zhu, L.; Rao, C. A modified S-DIMM+: Applying additional height grids for characterizing daytime seeing profiles. Mon. Not. R. Astron. Soc. 2018, 478, 1459–1467. [Google Scholar] [CrossRef]
- Lavrinov, V.V.; Lavrinova, L.N. Reconstruction of the wavefront distorted by atmospheric turbulence using a Shack–Hartmann sensor. Comput. Opt. 2019, 43, 586–595. [Google Scholar] [CrossRef]
- Banakh, V.A.; Smalikho, I.N. Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal. Atmos. Meas. Tech. 2016, 9, 5239–5248. [Google Scholar] [CrossRef] [Green Version]
- Shikhovtsev, A.Y.; Kovadlo, P.G. Estimation of mean energy characteristics of atmospheric turbulence at various heights from reanalysis data. IOP Conf. Ser. Earth Environ. Sci. 2018, 211, 012023. [Google Scholar] [CrossRef]
R | R | ||
---|---|---|---|
Summer | Spring | ||
0.03 | 0.06 | ||
– | 0.23 | – | 0.31 |
– | 0.42 | – | 0.39 |
– | 0.28 | – | 0.21 |
– | 0.04 | – | 0.03 |
– | 0 | – | 0 |
Autumn | Winter | ||
0.04 | 0.02 | ||
– | 0.17 | – | 0.1 |
– | 0.37 | – | 0.33 |
– | 0.36 | – | 0.4 |
– | 0.05 | – | 0.13 |
– | 0.01 | – | 0.02 |
Parameter | Value |
---|---|
Aperture diameter | 600 mm |
Focal length | 40 m |
Radiation wavelength | 0.535 m |
Camera resolution | 640 × 480 |
Pixel size | 7.4 m |
Number of subapertures | 8 × 8 |
Equivalent size of subaperture | 7.5 cm |
Angular pixel size | 0.83 |
Frame frequency | 70 Hz |
Exposure | 30 ms |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikhovtsev, A.; Kovadlo, P.; Lukin, V.; Nosov, V.; Kiselev, A.; Kolobov, D.; Kopylov, E.; Shikhovtsev, M.; Avdeev, F. Statistics of the Optical Turbulence from the Micrometeorological Measurements at the Baykal Astrophysical Observatory Site. Atmosphere 2019, 10, 661. https://doi.org/10.3390/atmos10110661
Shikhovtsev A, Kovadlo P, Lukin V, Nosov V, Kiselev A, Kolobov D, Kopylov E, Shikhovtsev M, Avdeev F. Statistics of the Optical Turbulence from the Micrometeorological Measurements at the Baykal Astrophysical Observatory Site. Atmosphere. 2019; 10(11):661. https://doi.org/10.3390/atmos10110661
Chicago/Turabian StyleShikhovtsev, Artem, Pavel Kovadlo, Vladimir Lukin, Victor Nosov, Alexander Kiselev, Dmitry Kolobov, Evgeny Kopylov, Maxim Shikhovtsev, and Fedor Avdeev. 2019. "Statistics of the Optical Turbulence from the Micrometeorological Measurements at the Baykal Astrophysical Observatory Site" Atmosphere 10, no. 11: 661. https://doi.org/10.3390/atmos10110661
APA StyleShikhovtsev, A., Kovadlo, P., Lukin, V., Nosov, V., Kiselev, A., Kolobov, D., Kopylov, E., Shikhovtsev, M., & Avdeev, F. (2019). Statistics of the Optical Turbulence from the Micrometeorological Measurements at the Baykal Astrophysical Observatory Site. Atmosphere, 10(11), 661. https://doi.org/10.3390/atmos10110661