Distribution of Air Temperature Multifractal Characteristics Over Greece
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Data
2.2. Methodology
- The multifractal characteristics of Tmean, Tmax and Tmin are studied for each station in terms of MF-DFA analysis.
- Assessment of the spatial distribution of the main multifractal spectrum characteristics is performed.
- Intercorrelations between multifractal spectrum parameters are examined.
- First, the time series has to be deseasonalized. It is obvious that daily temperature time series exhibit periodical trends, which are attributed to the annual seasonal cycle. In general, periodical trends have an influence in the nonlinear properties of the time series [38] and therefore the time series should be deseasonalized before applying the MF-DFA method. An efficient method to deseasonalize a time series is the Seasonal and Trend decomposition using Loess (STL) method, which was introduced by [43]. In the STL method, the time series is decomposed into seasonal, trend and remainder components. From the decomposed time series, seasonality is removed and MF-DFA analysis is performed on the deseasonalized time series. A successful utilization of the STL method is presented by [44] with the aim to study the streamflow in the Yellow River basin, using MF-DFA.
- Then, we find the ‘profile’ Y(i) of the deseasonalized time series xk of length N:
- Y(i) is then divided into Ns ≡ int(N/s) boxes of equal length s, where s is the ‘time scale’. It should be noted that N/s must be an integer, otherwise there will be a remaining number of profile points. However, very often N/s is not an integer and this problem is overcome by repeating the same procedure starting from the end. Thus, we get 2Ns boxes.
- In each box of length s, a least squares line is fitted to the data, which represents the trend in that box, i.e., the local trend. By subtracting the local trends, we detrend Y(i) and thus the variance F2(ν,s) of each segment (box) ν (ν = 1, …, 2Ns) is calculated.
- Taking the average over all segments, we find the qth order fluctuation function:
- This quantity is calculated repeatedly for all time scales to determine the relationship between Fq(s) and s. Typically Fq(s) is an increasing function of s.
- Making the log-log plots Fq(s) versus s for each value of q, we can examine the scaling behavior of Fq(s). If the series xk are long-range power-law correlated, Fq(s) increases following a power-law:
- If 0 < H < 0.5 then the time series is long-range anticorrelated, that is, an increase in the value is more likely to be followed by a decrease (anti-persistent behavior) and vice versa.
- If H = 0.5 the time series is uncorrelated (white noise). In this case, the probability that an increase will be followed by an increase or decrease is equal.
- If H > 0.5 the time series is long range positively correlated, that is, an increase is more likely to be followed by an increase (persistent behavior) and vice versa.
- L: the spectrum is left-truncated.
- LL: there is a high degree of truncation on the left side. (i.e., when the left leg of a spectrum is truncated more than its half-way point).
- R: the spectrum is right-truncated.
- S: the spectrum is symmetrical (there is no significant truncation).
3. Results and Discussion
3.1. Air Temperature Multifractal Characteristics
3.2. Spatial Distributions
3.3. Multifractal Spectrum Parameters Intercorrelations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pielke, R.A. Mesoscale Meteorological Modelling; Academic Press Inc: Orlando, FL, USA, 1984. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685–1689. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H.A.; Havlin, S.; Bunde, A. Detecting long-range correlations with detrended fluctuation analysis. Physica A 2001, 295, 441–454. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Cizeau, P.; Meyer, M.; Peng, C.K.; Stanley, H.E. Correlations in economic time series. Physica A 1997, 245, 437–440. [Google Scholar] [CrossRef] [Green Version]
- Di Matteo, T.; Aste, T.; Dacorogna, M.M. Scaling behaviors in differently developed markets. Physica A 2003, 324, 183–188. [Google Scholar] [CrossRef]
- Barbi, M.; Chillemi, S.; Di Garbo, A.; Balocchi, R.; Carpeggiani, C.; Emdin, M.; Michelassi, C.; Santarcangelo, E. Predictability and nonlinearity of the heart rhythm. Chaos Soliton Fractals 1998, 9, 507–515. [Google Scholar] [CrossRef]
- Buldyrev, S.V.; Dokholyan, N.V.; Goldberger, A.L.; Havlin, S.; Peng, C.K.; Stanley, H.E.; Viswanathan, G.M. Analysis of DNA sequences using methods of statistical physics. Physica A 1998, 249, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Hu, J.; Mao, X.; Perc, M. Culturomics meets random fractal theory: Insights into long-range correlations of social and natural phenomena over the past two centuries. J. R. Soc. Interface 2012, 9, 1956–1964. [Google Scholar] [CrossRef] [PubMed]
- Varotsos, C.A.; Melnikova, I.; Efstathiou, M.N.; Tzanis, C. 1/f noise in the UV solar spectral irradiance. Theor. Appl. Climatol. 2013, 111, 641–648. [Google Scholar] [CrossRef]
- Chattopadhyay, G.; Chattopadhyay, S. Study on statistical aspects of monthly sunspot number time series and its long-range correlation through detrended fluctuation analysis. Indian J. Phys. 2014, 88, 1135–1140. [Google Scholar] [CrossRef]
- Eichner, J.F.; Koscielny-Bunde, E.; Bunde, A.; Havlin, S.; Schellnhuber, H.J. Power-law persistence and trends in the atmosphere: A detailed study of long temperature records. Phys. Rev. E 2003, 68, 046133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartos, I.; Janosi, I.M. Nonlinear correlations of daily temperature records over land. Nonlinear Process. Geophys. 2006, 13, 571–576. [Google Scholar] [CrossRef] [Green Version]
- Orun, M.; Koçak, K. Application of detrended fluctuation analysis to temperature data from Turkey. Int. J. Clim. 2009, 29, 2130–2136. [Google Scholar] [CrossRef]
- Yuan, N.; Fu, Z.; Mao, J. Different scaling behaviors in daily temperature records over China. Physica A 2010, 389, 4087–4095. [Google Scholar] [CrossRef]
- Kalamaras, N.; Philipppopoulos, K.; Deligiorgi, D. Scaling Properties of Meteorological Time Series Using Detrended Fluctuation Analysis. In Perspectives on Atmospheric Sciences, Proceedings of the 13th International Conference of Meteorology, Climatology and Atmospheric Physics, Thessaloniki, Greece, 19–21 September 2016; Karacostas, T.S., Bais, A.F., Nastos, P.T., Eds.; Springer Atmospheric Physics; Springer: Cham, Switzerland, 2016; pp. 545–550. [Google Scholar]
- Podobnik, B.; Ivanov, P.C.; Jazbinsek, V.; Trontelj, Z.; Stanley, H.E.; Grosse, I. Power-law correlated processes with asymmetric distributions. Phys. Rev. E 2005, 71, 025104. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Chen, X.; Fu, Z. Temporal–spatial diversities of long-range correlation for relative humidity over China. Physica A 2007, 383, 585–594. [Google Scholar] [CrossRef]
- Jiang, L.; Li, N.; Zhao, X. Scaling behaviors of precipitation over China. Theor. Appl. Climatol. 2017, 128, 63–70. [Google Scholar] [CrossRef]
- He, W.; Zhao, S.; Liu, Q.; Jiang, Y.; Deng, B. Long-range correlation in the drought and flood index from 1470 to 2000 in eastern China. Int. J. Clim. 2016, 36, 1676–1685. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Tzanis, C. A new tool for the study of the ozone hole dynamics over Antarctica. Atmos. Environ. 2012, 47, 428–434. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Milinevsky, G.; Grytsai, A.; Efstathiou, M.; Tzanis, C. Scaling effect in planetary waves over Antarctica. Int. J. Remote Sens. 2008, 29, 2697–2704. [Google Scholar] [CrossRef]
- Varotsos, C.; Efstathiou, M.; Tzanis, C.; Deligiorgi, D. On the limits of the air pollution predictability: The case of the surface ozone at Athens, Greece. Environ. Sci. Pollut. Res. 2012, 19, 295–300. [Google Scholar] [CrossRef]
- Varotsos, C.; Tzanis, C.; Efstathiou, M.; Deligiorgi, D. Tempting long-memory in the historic surface ozone concentrations at Athens, Greece. Atmos. Pollut. Res. 2015, 6, 1055–1057. [Google Scholar] [CrossRef]
- Horvatic, D.; Stanley, H.E.; Podobnik, B. Detrended cross-correlation analysis for non-stationary time series with periodic trends. Europhys. Lett. 2011, 94, 18007. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 2002, 316, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Kalamaras, N.; Philippopoulos, K.; Deligiorgi, D.; Tzanis, C.G.; Karvounis, G. Multifractal scaling properties of daily air temperature time series. Chaos Soliton Fractals 2017, 98, 38–43. [Google Scholar] [CrossRef]
- Svensson, C.; Olsson, J.; Berndtsson, R. Multifractal properties of daily rainfall in two different climates. Water Resour. Res. 1996, 332, 2463–2472. [Google Scholar] [CrossRef]
- Du, H.; Wu, Z.; Zong, S.; Meng, X.; Wang, L. Assessing the characteristics of extreme precipitation over northeast China using the multifractal detrended fluctuation analysis. J. Geophys. Res. Atmos. 2013, 118, 6165–6174. [Google Scholar] [CrossRef] [Green Version]
- Kavasseri, R.G.; Nagarajan, R. A multifractal description of wind speed records. Chaos Soliton Fractals 2005, 24, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Fu, Z.; Deng, X.; Mao, J. A brief description to different multi-fractal behaviors of daily wind speed records over China. Phys. Lett. A 2009, 373, 4134–4141. [Google Scholar] [CrossRef]
- Pedron, I.T. Correlation and multifractality in climatological time series. J. Phys. Conf. Ser. 2010, 246, 012034. [Google Scholar] [CrossRef] [Green Version]
- Baranowski, P.; Krzyszczak, J.; Slawinski, C.; Hoffmann, H.; Kozyra, J.; Nieróbca, A.; Siwek, K.; Gluza, A. Multifractal analysis of meteorological time series to assess climate impacts. Clim. Res. 2015, 65, 39–52. [Google Scholar] [CrossRef]
- Xue, Y.; Pan, W.; Lu, W.; He, H. Multifractal nature of particulate matters (PMs) in Hong Kong urban air. Sci. Total Environ. 2015, 532, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Movahed, M.S.; Jafari, G.R.; Ghasemi, F.; Rahvar, S.; Tabar, M.R.R. Multifractal detrended fluctuation analysis of sunspot time series. J. Stat. Mech. Theory Exp. 2006, 2, P02003. [Google Scholar] [CrossRef]
- Laib, M.; Telesca, L.; Kanevski, M. Long-range fluctuations and multifractality in connectivity density time series of a wind speed monitoring network. Chaos 2018, 28, 033108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, H.; Baranowski, P.; Krzyszczak, J.; Zubik, M.; Sławiński, C.; Gaiser, T.; Ewert, F. Temporal properties of spatially aggregated meteorological time series. Agric. For. Meteorol. 2017, 234–235, 247–257. [Google Scholar] [CrossRef]
- Krzyszczak, J.; Baranowski, P.; Zubik, M.; Hoffmann, H. Temporal scale influence on multifractal properties of agro-meteorological time series. Agric. For. Meteorol. 2017, 239, 223–235. [Google Scholar] [CrossRef]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Durre, I.; Menne, M.J.; Gleason, B.E.; Houston, T.G.; Vose, R.S. Comprehensive Automated Quality Assurance of Daily Surface Observations. J. Appl. Meteorol. Clim. 2010, 49, 1615–1633. [Google Scholar] [CrossRef]
- Chen, Z.; Ivanov, P.C.; Hu, K.; Stanley, H.E. Effect of nonstationarities on detrended fluctuation analysis. Phys. Rev. E 2002, 65, 041107. [Google Scholar] [CrossRef]
- Mirzayof, D.; Ashkenazy, Y. Preservation of long range temporal correlations under extreme random dilution. Physica A 2010, 389, 5573–5580. [Google Scholar] [CrossRef]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–33. [Google Scholar]
- Li, E.; Mu, X.; Zhao, G.; Gao, P. Multifractal Detrended Fluctuation Analysis of Streamflow in the Yellow River Basin, China. Water 2015, 7, 1670–1686. [Google Scholar] [CrossRef] [Green Version]
- Bishop, S.M.; Yarham, S.I.; Navapurkar, V.U.; Menon, D.K.; Ercole, A. Multifractal analysis of hemodynamic behavior: Intraoperative instability and its pharmacological manipulation. Anesthesiology 2012, 117, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Ihlen, E.A.F. Introduction to multifractal detrended fluctuation analysis in Matlab. Front. Physiol. 2012, 3, 141. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y.; Thurner, K.; Ehrenberger, K. Multifractal spectra as a measure of complexity in human posture. Fractals 2002, 10, 103–116. [Google Scholar] [CrossRef]
- Burgueno, A.; Lana, X.; Serra, C.; Martinez, M.D. Daily extreme temperature multifractals in Catalonia (NE Spain). Phys. Lett. A 2014, 378, 874–885. [Google Scholar] [CrossRef]
- Mali, P. Multifractal characterization of global temperature anomalies. Theor. Appl. Climatol. 2014, 121, 641–648. [Google Scholar] [CrossRef]
- Lin, M.; Yan, S.; Zhao, G.; Wang, G. Multifractal Detrended Fluctuation Analysis of Interevent Time Series in a Modified OFC Model. Commun. Theor. Phys. 2013, 59, 1–6. [Google Scholar] [CrossRef]
- Hu, K.; Ivanov, P.C.; Chen, Z.; Carpena, P.; Stanley, H.E. Effect of trends on detrended fluctuation analysis. Phys. Rev. E 2001, 64, 011114. [Google Scholar] [CrossRef] [PubMed]
- Makowiec, D.; Fuliński, A. Multifractal Detrended Fluctuation Analysis as the Estimator of Long-Range Dependence. Acta Phys. Polonica B 2010, 41, 1025–1050. [Google Scholar]
- Li-Hao, G.; Zun-Tao, F. Multi-fractal Behaviors of Relative Humidity over China. Atmos. Ocean. Sci. Lett. 2013, 6, 74–78. [Google Scholar] [CrossRef]
- Maheras, P. The synoptic weather types and objective delimitation of the winter period in Greece. Weather 1988, 43, 40–45. [Google Scholar] [CrossRef]
- Prezerakos, N.G.; Angouridakis, V.E. Synoptic consideration of snowfall in Athens. J. Clim. 1984, 4, 269–285. [Google Scholar] [CrossRef]
- Metaxas, D.A. The interannual variability of the Etesian frequency as a response of atmospheric circulation anomalies. Bull. Hell. Meteorol. Soc. 1977, 2, 30–40. [Google Scholar]
- Metaxas, D.A.; Philandras, C.M.; Nastos, P.T.; Repapis, C.C. Variability of precipitation pattern in Greece during the year. Fresenius Environ. Bull. 1999, 8, 1–6. [Google Scholar]
- Bartzokas, A.; Lolis, C.J.; Metaxas, D.A. A study on the intra-annual variation and the spatial distribution of precipitation amount and duration over Greece on a 10 day basis. Int. J. Clim. 2003, 23, 207–222. [Google Scholar] [CrossRef] [Green Version]
- Bountas, N.; Boboti, N.; Feloni, E.; Zeikos, L.; Markonis, Y.; Tegos, A.; Mamassis, N.; Koutsoyiannis, D. Temperature variability over Greece: Links between space and time. In Proceedings of the 5th EGU Leonardo Conference, Kos Island, Greece, 17–19 October 2013. [Google Scholar]
No. | Station | Lat (°N) | Lon (°E) | Elevation (m) | Period | Completeness (%) |
---|---|---|---|---|---|---|
1 | Alexandroupoli | 40°51′27″ | 25°56′49″ | 3.52 | 1973–2014 | 99.64 |
2 | Andravida | 37°55′22″ | 21°17′15″ | 10.10 | 1973–2014 | 98.75 |
3 | Elefsina | 38°04′03″ | 23°33′08″ | 26.54 | 1973–2014 | 99.14 |
4 | Hellinikon | 37°53′23″ | 23°44′31″ | 43.13 | 1973–2012 | 98.51 |
5 | Herakleion | 35°20′07″ | 25°10′55″ | 39.00 | 1973–2014 | 99.93 |
6 | Kastoria | 40°26′56″ | 21°16′25″ | 654.64 | 1981–2014 | 97.18 |
7 | Kerkira | 39°36′29″ | 19°54′50″ | 1.13 | 1973–2014 | 99.94 |
8 | Kithira | 36°08′57″ | 22°59′19″ | 166.10 | 1973–2014 | 97.02 |
9 | Kos | 36°48′02″ | 27°05′29″ | 126.00 | 1983–2014 | 99.21 |
10 | Lamia | 38°52′35″ | 22°26′10″ | 12.46 | 1973–2014 | 96.19 |
11 | Larisa | 39°38′46″ | 22°27′37″ | 72.72 | 1973–2014 | 98.70 |
12 | Limnos | 39°55′22″ | 25°13′58″ | 1.90 | 1977–2014 | 99.40 |
13 | Methoni | 36°49′31″ | 21°42′16″ | 51.84 | 1973–2014 | 97.97 |
14 | Milos | 36°44′19″ | 24°25′45″ | 166.85 | 1973–2010 | 97.93 |
15 | Mitilini | 39°03′15″ | 26°36′14″ | 4.22 | 1973–2014 | 99.52 |
16 | Naxos | 37°06′05″ | 25°22′24″ | 9.00 | 1973–2014 | 97.24 |
17 | Preveza | 38°55′19″ | 20°46′08″ | 2.10 | 1973–2014 | 98.47 |
18 | Rodos | 36°24′08″ | 28°05′18″ | 6.63 | 1973–2014 | 99.93 |
19 | Skiros | 38°57′46″ | 24°29′27″ | 22.00 | 1973–2014 | 98.10 |
20 | Souda | 35°31′44″ | 24°08′43″ | 147.64 | 1973–2014 | 98.74 |
21 | Thessaloniki | 40°31′39″ | 22°58′18″ | 1.68 | 1973–2014 | 99.89 |
22 | Tripoli | 37°31′29″ | 22°23′50″ | 650.57 | 1973–2014 | 97.95 |
Station | Singularity Spectrum Width αmax − αmin | Value of α for f(α) = max | Asymmetry Parameter B | Truncation Type | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmean | Tmax | Tmin | Tmean | Tmax | Tmin | Tmean | Tmax | Tmin | Tmean | Tmax | Tmin | |
1 | 0.545 | 0.473 | 0.539 | 0.685 | 0.678 | 0.692 | 0.180 | 0.213 | 0.048 | L | L | L |
2 | 0.664 | 0.591 | 0.639 | 0.720 | 0.728 | 0.742 | 0.496 | 0.227 | 0.349 | L | R | LL |
3 | 0.629 | 0.628 | 0.614 | 0.708 | 0.700 | 0.704 | 0.416 | 0.504 | 0.250 | LL | LL | LL |
4 | 0.659 | 0.715 | 0.644 | 0.719 | 0.703 | 0.717 | 0.399 | 0.315 | −0.018 | LL | LL | LL |
5 | 0.458 | 0.471 | 0.286 | 0.712 | 0.683 | 0.689 | 0.375 | 0.466 | −0.322 | L | LL | R |
6 | 0.479 | 0.481 | 0.432 | 0.713 | 0.662 | 0.737 | 0.038 | 0.091 | −0.484 | L | L | R |
7 | 0.447 | 0.342 | 0.515 | 0.712 | 0.711 | 0.717 | 0.224 | 0.286 | 0.153 | L | L | L |
8 | 0.388 | 0.431 | 0.364 | 0.688 | 0.679 | 0.697 | 0.497 | 0.374 | 0.627 | LL | L | L |
9 | 0.511 | 0.438 | 0.602 | 0.747 | 0.723 | 0.761 | 0.037 | 0.144 | 0.039 | S | L | S |
10 | 0.500 | 0.547 | 0.476 | 0.718 | 0.670 | 0.716 | 0.478 | 0.423 | 0.490 | L | L | LL |
11 | 0.659 | 0.717 | 0.666 | 0.684 | 0.699 | 0.734 | 0.685 | 0.569 | 0.420 | LL | LL | LL |
12 | 0.566 | 0.527 | 0.475 | 0.725 | 0.695 | 0.692 | 0.255 | 0.257 | 0.158 | L | L | L |
13 | 0.548 | 0.589 | 0.508 | 0.734 | 0.713 | 0.680 | 0.396 | 0.525 | 0.357 | L | LL | L |
14 | 0.470 | 0.439 | 0.492 | 0.696 | 0.682 | 0.709 | 0.214 | 0.215 | 0.226 | L | L | L |
15 | 0.532 | 0.446 | 0.537 | 0.715 | 0.678 | 0.715 | 0.269 | 0.074 | 0.301 | L | S | LL |
16 | 0.677 | 0.734 | 0.672 | 0.775 | 0.711 | 0.748 | 0.305 | 0.183 | 0.402 | LL | LL | LL |
17 | 0.727 | 0.759 | 0.716 | 0.720 | 0.700 | 0.728 | 0.577 | 0.493 | 0.522 | LL | LL | LL |
18 | 0.437 | 0.435 | 0.395 | 0.730 | 0.706 | 0.760 | 0.097 | 0.183 | 0.669 | S | L | L |
19 | 0.544 | 0.489 | 0.402 | 0.703 | 0.679 | 0.699 | 0.409 | 0.369 | 0.409 | L | L | L |
20 | 0.688 | 0.720 | 0.693 | 0.691 | 0.686 | 0.705 | 0.287 | 0.194 | 0.236 | LL | LL | LL |
21 | 0.463 | 0.431 | 0.496 | 0.717 | 0.693 | 0.721 | 0.299 | 0.345 | −0.109 | L | L | R |
22 | 0.380 | 0.349 | 0.436 | 0.734 | 0.689 | 0.713 | 0.317 | 0.162 | −0.068 | L | R | R |
Station | Singularity Spectrum Width αmax − αmin | Value of α for f(α) = max | Asymmetry Parameter B | Truncation Type | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmean | Tmax | Tmin | Tmean | Tmax | Tmin | Tmean | Tmax | Tmin | Tmean | Tmax | Tmin | |
23 | 0.491 | 0.584 | 0.387 | 0.791 | 0.728 | 0.731 | 0.339 | 0.320 | 0.565 | L | L | LL |
24 | 0.577 | 0.542 | 0.517 | 0.697 | 0.668 | 0.713 | 0.294 | 0.306 | 0.298 | L | LL | L |
25 | 0.494 | 0.449 | 0.516 | 0.693 | 0.670 | 0.694 | 0.255 | 0.325 | −0.082 | L | L | S |
26 | 0.488 | 0.487 | 0.511 | 0.683 | 0.694 | 0.676 | 0.068 | 0.043 | −0.106 | L | L | S |
27 | 0.426 | 0.499 | 0.311 | 0.751 | 0.749 | 0.733 | 0.720 | 0.450 | 0.704 | L | L | L |
28 | 0.409 | 0.334 | 0.195 | 0.742 | 0.722 | 0.750 | −0.022 | 0.455 | −0.328 | R | L | L |
29 | 0.458 | 0.405 | 0.459 | 0.743 | 0.752 | 0.731 | 0.121 | 0.410 | 0.312 | L | L | L |
30 | 0.367 | 0.541 | 0.312 | 0.776 | 0.753 | 0.765 | 0.165 | 0.600 | 1.046 | L | L | S |
31 | 0.408 | 0.452 | 0.373 | 0.759 | 0.751 | 0.721 | −0.098 | −0.233 | 0.114 | S | R | L |
32 | 0.392 | 0.397 | 0.445 | 0.700 | 0.653 | 0.751 | 0.139 | 0.125 | 0.180 | L | L | L |
33 | 0.506 | 0.431 | 0.463 | 0.716 | 0.689 | 0.743 | 0.337 | 0.341 | 0.294 | L | L | L |
34 | 0.459 | 0.448 | 0.385 | 0.703 | 0.677 | 0.684 | 0.262 | 0.099 | 0.270 | L | S | L |
35 | 0.489 | 0.418 | 0.487 | 0.707 | 0.688 | 0.710 | −0.058 | −0.052 | −0.275 | S | S | R |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalamaras, N.; Tzanis, C.G.; Deligiorgi, D.; Philippopoulos, K.; Koutsogiannis, I. Distribution of Air Temperature Multifractal Characteristics Over Greece. Atmosphere 2019, 10, 45. https://doi.org/10.3390/atmos10020045
Kalamaras N, Tzanis CG, Deligiorgi D, Philippopoulos K, Koutsogiannis I. Distribution of Air Temperature Multifractal Characteristics Over Greece. Atmosphere. 2019; 10(2):45. https://doi.org/10.3390/atmos10020045
Chicago/Turabian StyleKalamaras, Nikolaos, Chris G. Tzanis, Despina Deligiorgi, Kostas Philippopoulos, and Ioannis Koutsogiannis. 2019. "Distribution of Air Temperature Multifractal Characteristics Over Greece" Atmosphere 10, no. 2: 45. https://doi.org/10.3390/atmos10020045
APA StyleKalamaras, N., Tzanis, C. G., Deligiorgi, D., Philippopoulos, K., & Koutsogiannis, I. (2019). Distribution of Air Temperature Multifractal Characteristics Over Greece. Atmosphere, 10(2), 45. https://doi.org/10.3390/atmos10020045