Detecting Intermediates and Products of Fast Heterogeneous Reactions on Liquid Surfaces via Online Mass Spectrometry
Abstract
:1. Introduction
2. Online Mass Spectrometry of Chemical Reactions on Liquid Microjets
3. Mass Spectra Reflect the Composition of the Outermost Interfacial Layers of the Liquid Microjets
4. Products of Gas-Liquid Reactions are Mainly Formed on Liquid Microjets Rather Than on Daughter Microdroplets
5. Applied Electric Fields Deflected Charged Microdroplets but Did Not Affect Interfacial Chemistry
6. Iodide Catalyzes Ozone Oxidations in Marine Aerosols
7. The Disproportionation of Nitrogen Dioxide Catalyzed by Anions on Aqueous Aerosols Catalyzed by Anions Is the “Unknown Source of Atmospheric Nitrous Acid”
8. Chemistry on the Surface of the Human Lung Is Unusually Selective
9. Summary
Author Contributions
Funding
Conflicts of Interest
References
- National Academies of Sciences, Engineering, and Medicine. The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow; National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Goldstein, E.B. Encyclopedia of Perception; SAGE Publications: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- Wilson, M.A.; Pohorille, A.; Pratt, L.R. Molecular dynamics of the water liquid-vapor interface. J. Phys. Chem. 1987, 91, 4873–4878. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, D.J.; Valsaraj, K.T. Adsorption and reaction of trace gas-phase organic compounds on atmospheric water film surfaces: A critical review. Environ. Sci. Technol. 2010, 44, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Valsaraj, K.T. Hydrophobic compounds in the environment—Adsorption equilibrium at the air-water-interface. Water Res. 1994, 28, 819–830. [Google Scholar] [CrossRef]
- Ingram, A.J.; Boeser, C.L.; Zare, R.N. Going beyond electrospray: Mass spectrometric studies of chemical reactions in and on liquids. Chem. Sci. 2016, 7, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Houle, F.A.; Wiegel, A.A.; Wilson, K.R. Changes in reactivity as chemistry becomes confined to an interface. The case of free radical oxidation of c30h62 alkane by OH. J. Phys. Chem. Lett. 2018, 9, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, J.B.; Abbate, J.P.D.; Barnes, I.; Roberts, J.M.; Melamed, M.L.; Ammann, M.; Bertram, A.K.; Cappa, C.D.; Carlton, A.G.; Carpenter, L.J.; et al. The essential role for laboratory studies in atmospheric chemistry. Environ. Sci. Technol. 2017, 51, 2519–2528. [Google Scholar] [CrossRef] [PubMed]
- Laskin, J.; Laskin, A.; Nizkorodov, S.A. Mass spectrometry analysis in atmospheric chemistry. Anal. Chem. 2018, 90, 166–189. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.B. Electrospray Ionization Mass Spectrometry; Wiley: New York, NY, USA, 1997; p. 571. [Google Scholar]
- Yamashita, M.; Fenn, J.B. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 1984, 88, 4451–4459. [Google Scholar] [CrossRef]
- Enami, S.; Colussi, A.J. Long-range specific ion-ion interactions in hydrogen-bonded liquid films. J. Chem. Phys 2013, 138, 184706. [Google Scholar] [CrossRef] [Green Version]
- Enami, S.; Colussi, A.J. Criegee chemistry on aqueous organic surfaces. J. Phys. Chem. Lett. 2017, 8, 1615–1623. [Google Scholar] [CrossRef]
- Enami, S.; Hoffmann, M.R.; Colussi, A.J. Acidity enhances the formation of a persistent ozonide at aqueous ascorbate/ozone gas interfaces. Proc. Natl. Acad. Sci. USA 2008, 105, 7365–7369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enami, S.; Mishra, H.; Hoffmann, M.R.; Colussi, A.J. Hofmeister effects in micromolar electrolyte solutions. J. Chem. Phys 2012, 136, 154707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enami, S.; Vecitis, C.D.; Cheng, J.; Hoffmann, M.R.; Colussi, A.J. Mass spectrometry of interfacial layers during fast aqueous aerosol/ozone gas reactions of atmospheric interest. Chem. Phys. Lett. 2008, 455, 316–320. [Google Scholar] [CrossRef]
- Manisali, I.; Chen, D.D.Y.; Schneider, B.B. Electrospray ionization source geometry for mass spectrometry: Past, present and future. Trends Anal. Chem. 2006, 25, 243–256. [Google Scholar] [CrossRef]
- Kahen, K.; Jorabchi, K.; Gray, C.; Montaser, A. Spatial mapping of droplet velocity and size for direct and indirect nebulization in plasma spectrometry. Anal. Chem. 2004, 76, 7194–7201. [Google Scholar] [CrossRef] [PubMed]
- Mabbett, S.R.; Zilch, L.W.; Maze, J.T.; Smith, J.W.; Jarrold, M.F. Pulsed acceleration charge detection mass spectrometry: Application to weighing electrosprayed droplets. Anal. Chem. 2007, 79, 8431–8439. [Google Scholar] [CrossRef] [PubMed]
- Zilch, L.W.; Maze, J.T.; Smith, J.W.; Ewing, G.E.; Jarrold, M.F. Charge separation in the aerodynamic breakup of micrometer-sized water droplets. J. Phys. Chem. A 2008, 112, 13352–13363. [Google Scholar] [CrossRef]
- Zilch, L.W.; Maze, J.T.; Smith, J.W.; Jarrold, M.F. Freezing, fragmentation, and charge separation in sonic sprayed water droplets. Int. J. Mass Spectrom. 2009, 283, 191–199. [Google Scholar] [CrossRef]
- Lasheras, J.; Villermaux, E.; Hopfinger, E. Break-up and atomization of a round water jet by a high-speed annular air jet. J. Fluid Mech. 1998, 357, 351–379. [Google Scholar] [CrossRef]
- Theofanous, T.; Li, G. On the physics of aerobreakup. Phys. Fluids 2008, 20, 052103. [Google Scholar] [CrossRef]
- Yang, L.; Fan, Y.; Gao, Y.Q. Differences of cations and anions: Their hydration, surface adsorption, and impact on water dynamics. J. Phys. Chem. B 2011, 115, 12456–12465. [Google Scholar] [CrossRef] [PubMed]
- Dodd, E.E. The statistics of liquid spray and dust electrification by the Hopper and Laby method. J. Appl. Phys. 1953, 24, 73–80. [Google Scholar] [CrossRef]
- Kebarle, P.; Tang, L. From ions in solution to ions in the gas-phase—The mechanism of electrospray mass-spectrometry. Anal. Chem. 1993, 65, A972. [Google Scholar] [CrossRef]
- Bailey, A.G. Electrostatic Spraying of Liquids; Research Studies Press: Taunton, Somerset, UK, 1988. [Google Scholar]
- Hirabayashi, A.; Sakairi, M.; Koizumi, H. Sonic spray mass-spectrometry. Anal. Chem. 1995, 67, 2878–2882. [Google Scholar] [CrossRef] [PubMed]
- Pól, J.; Kauppila, T.J.; Haapala, M.; Saarela, V.; Franssila, S.; Ketola, R.A.; Kotiaho, T.; Kostiainen, R. Microchip sonic spray ionization. Anal. Chem. 2007, 79, 3519–3523. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Acharya, S.; Biswas, R.; Bagchi, B.; Zare, R.N. Enhancement of reaction rate in small-sized droplets: A combined analytical and simulation study. J. Chem. Phys. 2018, 148, 244704. [Google Scholar] [CrossRef] [PubMed]
- Enami, S.; Vecitis, C.D.; Cheng, J.; Hoffmann, M.R.; Colussi, A.J. Global inorganic source of atmospheric bromine. J. Phys. Chem. A 2007, 111, 8749–8752. [Google Scholar] [CrossRef] [PubMed]
- Bain, R.M.; Sathyamoorthi, S.; Zare, R.N. “On-droplet” chemistry: The cycloaddition of diethyl azodicarboxylate and quadricyclane. Angew. Chem. Int. Ed. 2017, 56, 15083–15087. [Google Scholar] [CrossRef]
- Cheng, J.; Hoffmann, M.R.; Colussi, A.J. Anion fractionation and reactivity at air/water: Methanol interfaces. Implications for the origin of hofmeister effects. J. Phys. Chem. B 2008, 112, 7157–7161. [Google Scholar] [CrossRef]
- Cheng, J.; Vecitis, C.; Hoffmann, M.R.; Colussi, A.J. Experimental anions affinities for the air/water interface. J. Phys. Chem. B 2006, 110, 25598–25602. [Google Scholar] [CrossRef]
- Wise, P.K.; Ben-Amotz, D. Interfacial adsorption of neutral and ionic solutes in a water droplet. J. Phys. Chem. B 2018, 122, 3447–3453. [Google Scholar] [CrossRef] [PubMed]
- Mishra, H.; Enami, S.; Nielsen, R.J.; Hoffmann, M.R.; Goddard, W.A.; Colussi, A.J. Anions dramatically enhance proton transfer through water interfaces. Proc. Natl. Acad. Sci. USA 2012, 109, 10228–10232. [Google Scholar] [CrossRef]
- Enami, S.; Stewart, L.A.; Hoffmann, M.R.; Colussi, A.J. Superacid chemistry on mildly acidic water. J. Phys. Chem. Lett. 2010, 1, 3488–3493. [Google Scholar] [CrossRef]
- Enami, S.; Hoffmann, M.R.; Colussi, A.J. Proton availability at the air/water interface. J. Phys. Chem. Lett. 2010, 1, 1599–1604. [Google Scholar] [CrossRef]
- Enami, S.; Hoffmann, M.R.; Colussi, A.J. Ozonolysis of uric acid at the air/water interface. J. Phys. Chem. B 2008, 112, 4153–4156. [Google Scholar] [CrossRef] [PubMed]
- Muller, B.; Heal, M.R. The mass accommodation coefficient of ozone on an aqueous surface. Phys. Chem. Chem. Phys. 2002, 4, 3365–3369. [Google Scholar] [CrossRef] [Green Version]
- Enami, S.; Fujii, T.; Sakamoto, Y.; Hama, T.; Kajii, Y. Carboxylate ion availability at the air-water interface. J. Phys. Chem. A 2016, 120, 9224–9234. [Google Scholar] [CrossRef]
- Enami, S.; Hoffmann, M.R.; Colussi, A.J. Dry deposition of biogenic terpenes via cationic oligomerization on environmental aqueous surfaces. J. Phys. Chem. Lett. 2012, 3, 3102–3108. [Google Scholar] [CrossRef]
- Enami, S.; Hoffmann, M.R.; Colussi, A.J. OH-radical specific addition to glutathione S-atom at the air-water interface: Relevance to the redox balance of the lung epithelial lining fluid. J. Phys. Chem. Lett. 2015, 6, 3935–3943. [Google Scholar] [CrossRef]
- Enami, S.; Mishra, H.; Hoffmann, M.R.; Colussi, A.J. Protonation and oligomerization of gaseous isoprene on mildly acidic surfaces: Implications for atmospheric chemistry. J. Phys. Chem. A 2012, 116, 6027–6032. [Google Scholar] [CrossRef]
- Cheng, J.; Psillakis, E.; Hoffmann, M.R.; Colussi, A.J. Acid dissociation versus molecular association of perfluoroalkyl oxoacids: Environmental implications. J. Phys. Chem. A 2009, 113, 8152–8156. [Google Scholar] [CrossRef] [PubMed]
- Colussi, A.J. Can the pH at the air/water interface be different from the pH of bulk water? Proc. Natl. Acad. Sci. USA 2018, 115, E7887. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Cole, R.B. Formation and decompositions of chloride adduct ions, [M + Cl]−, in negative ion electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2000, 11, 932–941. [Google Scholar] [CrossRef]
- Enami, S.; Colussi, A.J. Chemical signatures of surface microheterogeneity on liquid mixtures. J. Chem. Phys. 2019, 150, 024702. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, S.; Matsugi, A.; Hama, T.; Enami, S. Chain-propagation, chain-transfer, and hydride-abstraction by cyclic carbocations on water surfaces. Phys. Chem. Chem. Phys. 2018, 20, 25256–25267. [Google Scholar] [CrossRef] [PubMed]
- Liggio, J.; Li, S.M.; Brook, J.R.; Mihele, C. Direct polymerization of isoprene and alpha-pinene on acidic aerosols. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Connelly, B.M.; Tolbert, M.A. Reaction of isoprene on thin sulfuric acid films: Kinetics, uptake, and product analysis. Environ. Sci. Technol. 2010, 44, 4603–4608. [Google Scholar] [CrossRef]
- Mishra, H.; Enami, S.; Nielsen, R.J.; Stewart, L.A.; Hoffmann, M.R.; Goddard, W.A.; Colussi, A.J. Bronsted basicity of the air-water interface. Proc. Nat. Acad. Sci. USA 2012, 109, 18679–18683. [Google Scholar] [CrossRef] [Green Version]
- Chaplin, M. Theory vs experiment: What is the surface charge of water. Water 2009, 1, 1–28. [Google Scholar]
- Beattie, J.K.; Djerdjev, A.N.; Warr, G.G. The surface of neat water is basic. Faraday Discuss. 2009, 141, 31–39. [Google Scholar] [CrossRef]
- Colussi, A.J.; Enami, S. Comment on “surface acidity of water probed by free energy calculation for trimethylamine protonation”. J. Phys. Chem. C 2014, 118, 2894. [Google Scholar] [CrossRef]
- Kallay, N.; Preočanin, T.; Selmani, A.; Kovačević, D.; Lützenkirchen, J.; Nakahara, H.; Shibata, O. Thermodynamic model of charging the gas/water interface. J. Phys. Chem. C 2014, 119, 997–1007. [Google Scholar] [CrossRef]
- Rimbert, N.; Castanet, G. Crossover between Rayleigh-Taylor instability and turbulent cascading atomization mechanism in the bag-breakup regime. Phys. Rev. E 2011, 84, 016318. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.F.; Wilson, K.R. Nanoscale interfacial gradients formed by the reactive uptake of OH radicals onto viscous aerosol surfaces. Chem. Sci. 2015, 6, 7020–7027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heine, N.; Houle, F.A.; Wilson, K.R. Connecting the elementary reaction pathways of criegee intermediates to the chemical erosion of squalene interfaces during ozonolysis. Environ. Sci. Technol. 2017, 51, 13740–13748. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.; Wilson, K. The reactive-diffusive length of OH and ozone in model organic aerosols. J. Phys. Chem. A 2016, 120, 6800–6812. [Google Scholar] [CrossRef] [PubMed]
- Simpson, W.; Frieß, U.; Thomas, J.L.; Lampel, J.; Platt, U. Polar nighttime chemistry produces intense reactive bromine events. Geophys. Res. Lett. 2018, 45, 9987–9994. [Google Scholar] [CrossRef]
- Schmidt, J.A.; Jacob, D.; Horowitz, H.M.; Hu, L.; Sherwen, T.; Evans, M.J.; Liang, Q.; Suleiman, R.M.; Oram, D.; Le Breton, M. Modeling the observed tropospheric bro background: Importance of multiphase chemistry and implications for ozone, OH, and mercury. J. Geophys. Res. Atmos. 2016, 121. [Google Scholar] [CrossRef]
- Duce, R.A.; Hoffman, E.J. Chemical fractionation at air-sea interface. Ann. Rev. Earth Planet. Sci. 1976, 4, 187. [Google Scholar] [CrossRef]
- Liu, Q.; Schurter, L.M.; Muller, C.E.; Aloisio, S.; Francisco, J.S.; Margerum, D.W. Kinetics and mechanisms of aqueous ozone reactions with bromide, sulfite, hydrogen sulfite, iodide, and nitrite ions. Inorg. Chem. 2001, 40, 4436–4442. [Google Scholar] [CrossRef]
- Mochida, M.; Hirokawa, J.; Akimoto, H. Unexpected large uptake of O3 on sea salts and the observed Br2 formation. Geophys. Res. Lett. 2000, 27, 2629–2632. [Google Scholar] [CrossRef]
- Artiglia, L.; Edebeli, J.; Orlando, F.; Chen, S.; Lee, M.-T.; Arroyo, P.C.; Gilgen, A.; Bartels-Rausch, T.; Kleibert, A.; Vazdar, M. A surface-stabilized ozonide triggers bromide oxidation at the aqueous solution-vapour interface. Nat. Commun. 2017, 8, 700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sotelo, J.; Beltran, F.; Benitez, F.; Beltran-Heredia, J. Henry’s law constant for the ozone-water system. Water Res. 1989, 23, 1239–1246. [Google Scholar] [CrossRef]
- Lee, J.K.; Banerjee, S.; Nam, H.G.; Zare, R.N. Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 2015, 48, 437–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, E.R.; Schwartz, S.E. Sea Salt Aerosol Production: Mechanisms, Methods, Measurements and Models—A Critical Review; American Geophysical Union: Washington, DC, USA, 2004; Volume Geophysical Monograph 152. [Google Scholar]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Spataro, F.; Ianniello, A. Sources of atmospheric nitrous acid: State of the science, current research needs, and future prospects. J. Air Waste Manag. Assoc. 2014, 64, 1232–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crilley, L.R.; Kramer, L.; Pope, F.D.; Whalley, L.K.; Cryer, D.R.; Heard, D.E.; Lee, J.D.; Reed, C.; Bloss, W.J. On the interpretation of in situ HONO observations via photochemical steady state. Faraday Discuss. 2016, 189, 191–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squadrito, G.L.; Postlethwait, E.M. On the hydrophobicity of nitrogen dioxide: Could there be a “lens” effect for NO2 reaction kinetics? Nitric Oxide 2009, 21, 104–109. [Google Scholar] [CrossRef]
- Schwartz, S.E.; Lee, Y.-N. Laboratory study of NO2 reaction with dispersed and bulk liquid water. Atmos. Environ. 1995, 29, 2557–2559. [Google Scholar] [CrossRef]
- Enami, S.; Hoffmann, M.R.; Colussi, A.J. Absorption of inhaled NO2. J. Phys. Chem. B 2009, 113, 7977–7981. [Google Scholar] [CrossRef]
- Enami, S.; Hoffmann, M.R.; Colussi, A.J. Molecular control of reactive gas uptake “on water”. J. Phys. Chem. A 2010, 114, 5817–5822. [Google Scholar] [CrossRef]
- Yabushita, A.; Enami, S.; Sakamoto, Y.; Kawasaki, M.; Hoffmann, M.R.; Colussi, A.J. Anion-catalyzed dissolution of NO2 on aqueous microdroplets. J. Phys. Chem. A 2009, 113, 4844–4848. [Google Scholar] [CrossRef] [PubMed]
- Kinugawa, T.; Enami, S.; Yabushita, A.; Kawasaki, M.; Hoffmann, M.R.; Colussi, A.J. Conversion of gaseous nitrogen dioxide to nitrate and nitrite on aqueous surfactants. Phys. Chem. Chem. Phys. 2011, 13, 5144–5149. [Google Scholar] [CrossRef] [PubMed]
- Bambauer, A.; Brantner, B.; Paige, M.; Novakov, T. Laboratory study of NO2 reaction with dispersed and bulk liquid water. Atmos. Environ. 1994, 28, 3225–3232. [Google Scholar] [CrossRef]
- Novakov, T. Laboratory study of NO2 reaction with dispersed and bulk liquid water—Reply. Atmos. Environ. 1995, 29, 2559–2560. [Google Scholar] [CrossRef]
- Sorgel, M.; Regelin, E.; Bozem, H.; Diesch, J.M.; Drewnick, F.; Fischer, H.; Harder, H.; Held, A.; Hosaynali-Beygi, Z.; Martinez, M.; et al. Quantification of the unknown HONO daytime source and its relation to NO2. Atmos. Chem. Phys. 2011, 11, 10433–10447. [Google Scholar] [CrossRef]
- Colussi, A.J.; Enami, S.; Yabushita, A.; Hoffmann, M.R.; Liu, W.-G.; Mishra, H.; Goddard, W.A., III. Tropospheric aerosol as a reactive intermediate. Faraday Discuss. 2013, 165, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Beirle, S.; Boersma, K.F.; Platt, U.; Lawrence, M.G.; Wagner, T. Megacity emissions and lifetimes of nitrogen oxides probed from space. Science 2011, 333, 1737–1739. [Google Scholar] [CrossRef] [PubMed]
- Wennberg, P.O. Atmospheric chemistry—Radicals follow the sun. Nature 2006, 442, 145–146. [Google Scholar] [CrossRef]
- Pope, C.A.; Ezzati, M.; Dockery, D.W. Fine particulate air pollution and life expectancies in the united states: The role of influential observations. J. Air Waste Manag. Assoc. 2013, 63, 129–132. [Google Scholar] [CrossRef]
- Cox, L.A.; Popken, D.A. Has reducing fine particulate matter and ozone caused reduced mortality rates in the united states? Ann. Epidemiol. 2015, 25, 162–173. [Google Scholar] [CrossRef]
- Paulsen, C.E.; Carroll, K.S. Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery. Chem. Rev. 2013, 113, 4633–4679. [Google Scholar] [CrossRef] [PubMed]
- Winterbourn, C.C. Are free radicals involved in thiol-based redox signaling? Free Radic. Biol. Med. 2015, 80, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Poole, L.B.; Schöneich, C. Introduction: What We Do and Do Not Know Regarding Redox Processes of Thiols in Signaling Pathways; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Enami, S.; Hoffmann, M.R.; Colussi, A.J. Ozone oxidizes glutathione to a sulfonic acid. Chem. Res. Toxicol. 2009, 22, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Enami, S.; Hoffmann, M.R.; Colussi, A.J. Simultaneous detection of cysteine sulfenate, sulfinate, and sulfonate during cysteine interfacial ozonolysis. J. Phys. Chem. B 2009, 113, 9356–9358. [Google Scholar] [CrossRef] [PubMed]
- Enami, S.; Sakamoto, Y.; Colussi, A.J. Fenton chemistry at aqueous interfaces. Proc. Natl. Acad. Sci. USA 2014, 111, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Crump, K.E.; Juneau, D.G.; Poole, L.B.; Haas, K.M.; Grayson, J.M. The reversible formation of cysteine sulfenic acid promotes b-cell activation and proliferation. Eur. J. Immunol. 2012, 42, 2152–2164. [Google Scholar] [CrossRef] [PubMed]
- Michalek, R.D.; Nelson, K.J.; Holbrook, B.C.; Yi, J.S.; Stridiron, D.; Daniel, L.W.; Fetrow, J.S.; King, S.B.; Poole, L.B.; Grayson, J.M. The requirement of reversible cysteine sulfenic acid formation for t cell activation and function. J. Immunol. 2007, 179, 6456–6467. [Google Scholar] [CrossRef] [PubMed]
- Roos, G.; Messens, J. Protein sulfenic acid formation: From cellular damage to redox regulation. Free Radic. Biol. Med. 2011, 51, 314–326. [Google Scholar] [CrossRef]
- Fiser, B.; Jojart, B.; Csizmadia, I.G.; Viskolcz, B. Glutathione—Hydroxyl radical interaction: A theoretical study on radical recognition process. PLoS ONE 2013, 8, e73652. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colussi, A.J.; Enami, S. Detecting Intermediates and Products of Fast Heterogeneous Reactions on Liquid Surfaces via Online Mass Spectrometry. Atmosphere 2019, 10, 47. https://doi.org/10.3390/atmos10020047
Colussi AJ, Enami S. Detecting Intermediates and Products of Fast Heterogeneous Reactions on Liquid Surfaces via Online Mass Spectrometry. Atmosphere. 2019; 10(2):47. https://doi.org/10.3390/atmos10020047
Chicago/Turabian StyleColussi, Agustín J., and Shinichi Enami. 2019. "Detecting Intermediates and Products of Fast Heterogeneous Reactions on Liquid Surfaces via Online Mass Spectrometry" Atmosphere 10, no. 2: 47. https://doi.org/10.3390/atmos10020047
APA StyleColussi, A. J., & Enami, S. (2019). Detecting Intermediates and Products of Fast Heterogeneous Reactions on Liquid Surfaces via Online Mass Spectrometry. Atmosphere, 10(2), 47. https://doi.org/10.3390/atmos10020047