The Internal Multidecadal Variability of SST in the Pacific and Its Impact on Air Temperature and Rainfall over Land in the Northern Hemisphere
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Estimation of the IMV of SST
3. Results
3.1. Spatial and Temporal Features of IMV in the Pacific
3.2. The Impact of NPIMV
3.3. The Impact of SPIMV
4. Conclusions and Discussion
4.1. Conclusions
4.2. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Zhang, Y.; Wallace, J.M.; Battisti, D.S. ENSO-like interdecadal variability: 1900–1993. J. Clim. 1997, 10, 1004–1020. [Google Scholar] [CrossRef]
- Power, S.; Casey, T.; Folland, C.; Colman, A.; Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 1999, 15, 319–324. [Google Scholar] [CrossRef]
- Parker, D.; Folland, C.; Scaife, A.; Jeff Knight, J.; Colman, A.; Baines, P.; Dong, B. Decadal to multidecadal variability and the climate change background. J. Geophys. Res. 2007, 112, D18115. [Google Scholar] [CrossRef]
- Folland, C.K.; Renwick, J.A.; Salinger, M.J.; Mullan, A.B. Relative influences of the interdecadal Pacific oscillation and ENSO on the south pacific convergence zone. Geophys. Res. Lett. 2002, 29, 21-1–21-4. [Google Scholar] [CrossRef]
- Henley, B.J.; Gergis, J.; Karoly, D.J.; Power, S.; Kennedy, J.; Folland, C.K. A tripole index for the interdecadal Pacific oscillation. Clim. Dyn. 2015, 45, 3077–3090. [Google Scholar] [CrossRef]
- Shakun, J.D.; Shaman, J. Tropical origins of North and South Pacific decadal variability. Geophys. Res. Lett. 2009, 36, L19711. [Google Scholar] [CrossRef]
- Hasselmann, K. Stochastic climate models. Part I. Theory. Tellus 1976, 28, 473–485. [Google Scholar] [CrossRef]
- Frankignoul, C.; Reynolds, R.W. Testing a dynamical model for mid-latitude sea surface temperature anomalies. J. Phys. Oceanogr. 1983, 13, 1131–1145. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Branstator, G.W.; Karoly, D.; Arun Kumar, A.; Lau, N.-C.; Ropelewski, C. Process during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophy. Res. 1998, 103, 14291–14324. [Google Scholar] [CrossRef]
- Newman, M.; Compo, G.P.; Alexander, M. ENSO-forced variability of the Pacific decadal oscillation. J. Clim. 2003, 16, 3853–3857. [Google Scholar] [CrossRef]
- Latif, M.; Barnett, T.P. Causes of decadal climate variability over the North Pacific and North America. Science 1994, 266, 634–637. [Google Scholar] [CrossRef]
- Schneider, N.; Cornuelle, B.D. The forcing of the Pacific decadal oscillation. J. Clim. 2005, 18, 4335–4373. [Google Scholar] [CrossRef]
- Miyasaka, T.; Nakamura, H.; Taguchi, B.; Nonaka, M. Multidecadal modulations of the low-frequency climate variability in the wintertime North Pacific since 1950. Geophys. Res. Lett. 2014, 41, 2948–2955. [Google Scholar] [CrossRef]
- Meehl, G.A.; Hu, A.; Arblaster, J.M.; Fasullo, J.; Trenberth, K.E. Externally forced and internally generated decadal climate variability associated with the interdecadal Pacific oscillation. J. Clim. 2013, 26, 7298–7310. [Google Scholar] [CrossRef]
- Li, C.; Xian, P. Interdecadal variation of SST in the North Pacific and the anomalies of atmospheric circulation and climate. Clim. Environ. Res. 2003, 8, 909–915. [Google Scholar]
- Dai, A. The influence of the inter-decadal Pacific oscillation on US rainfall during 1923–2010. Clim. Dyn. 2013, 41, 633–646. [Google Scholar] [CrossRef]
- Xu, Y.; Hu, A. How would the twenty-first-century warming influence Pacific decadal variability and its connection to North American rainfall: Assessment based on a revised procedure for the IPO/PDO. J. Clim. 2018, 31, 1547–1563. [Google Scholar] [CrossRef]
- Qian, C.; Zhou, T. Multidecadal variability of North China aridity and its relationship to PDO during 1900–2010. J. Clim. 2013, 27, 1210–1222. [Google Scholar] [CrossRef]
- Wu, Z.; Dou, J.; Lin, H. Potential influence of the November-December southern hemisphere annular mode on the East Asian winter rainfall: A new mechanism. Clim. Dyn. 2015, 44, 1215–1226. [Google Scholar] [CrossRef]
- Houghton, J.T.; Jenkins, G.J.; Ephraums, J.J. Climate Change: The IPCC Scientific Assessment; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Robock, A.; Mao, J. Winter warming from large volcanic eruptions. Geophys. Res. Lett. 1992, 12, 2405–2408. [Google Scholar] [CrossRef]
- Lean, J.; Beer, J.; Bradley, R. Reconstruction of solar irradiance since 1600: Implications for climate change. Geophys. Res. Lett. 1995, 22, 3195–3198. [Google Scholar] [CrossRef]
- Colfescu, I.; Schneider, E.K.; Chen, H. Consistency of 20th century sea level pressure trends as simulated by a coupled and uncoupled GCM. Geophys. Res. Lett. 2013, 40, 1–5. [Google Scholar] [CrossRef]
- Chen, H.; Schneider, E.K.; Wu, Z. Mechanisms of internally generated decadal-to-multidecadal variability of SST in the Atlantic ocean in a coupled GCM. Clim. Dyn. 2016, 46, 1517–1546. [Google Scholar] [CrossRef]
- Mckinnon, K.A.; Deser, C. Internal variability and regional climate trends in an observational large ensemble. J. Clim. 2018. [Google Scholar] [CrossRef]
- Ting, M.F.; Kushnir, Y.; Seager, R.; Li, C. Forced and internal twentieth-century SST trends in the North Atlantic. J. Clim. 2009, 22, 1469–1481. [Google Scholar] [CrossRef]
- Frankignoul, C.; Gastineau, G.; Kwon, Y.O. Estimation of the SST response to anthropogenic and external forcing, and its impact on the Atlantic multidecadal oscillation and the Pacific decadal oscillation. J. Clim. 2017, 30, 9871–9895. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 1063–1082. [Google Scholar] [CrossRef]
- Poli, P.; Hersbach, H.; Tan, D.G.H.; Dee, D.P.; Thépaut, J.-N.; Simmons, A.; Peubey, C.; Laloyaux, P.; Komori, T.; Berrisford, P.; et al. The Data Assimilation System and Initial Performance Evaluation of the ECMWF Pilot Reanalysis of the 20th-Century Assimilating Surface Observations Only (ERA-20C); ERA Report Series; ECMWF: Berkshire, UK, 2013. [Google Scholar]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Ziese, M. GPCC Full Data Reanalysis Version 6.0 at 1.0°: Monthly Land-Surface Rainfall from Rain-Gauges Built on GTS-Based and Historic Data; Global Precipitation Climatology Centre (GPCC): Berlin, Germany, 2011. [Google Scholar] [CrossRef]
- Jones, P.D.; Harris, I.C. Climatic Research Unit (CRU) Time-Series Datasets of Variations in Climate with Variations in Other Phenomena; NCAS British Atmospheric Data Centre: Oxford, UK, 2008. [Google Scholar]
- Trenberth, K.E.; Shea, D.J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 2006, 33, L2704. [Google Scholar] [CrossRef]
- Schneider, E.K.; Fan, M. Weather noise forcing of surface climate variability. J. Atmos. Sci. 2007, 64, 3265–3280. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E.; Wallace, J.M.; Smoloak, B.V.; Chen, X. On the time-varying trend in global–mean surface temperature. Clim. Dyn. 2011, 37, 759–773. [Google Scholar] [CrossRef]
- Francombe, L.M.; England, M.H.; Mann, M.E.; Steinman, B.A. Separating internal variability from the externally forced climate response. J. Clim. 2015, 28, 8184–8202. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Widmann, M.; Dymnikov, V.P.; Wallace, J.M.; Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 1999, 12, 1990–2009. [Google Scholar] [CrossRef]
- Feldl, N.; Roe, G.H. Climate variability and the shape of daily precipitation: A case study of ENSO and the American West. J. Clim. 2011, 24, 2483–2499. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the northern hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, X. Relationship between Pacific decadal oscillation and climate variabilities in China. Acta Meteorol. Sin. 2003, 61, 641–654. [Google Scholar]
- Newman, M.; Alexander, M.A.; Ault, T.R.; Cobbd, K.M.; Desere, C.; Di Lorenzod, E.; Mantuaf, N.J.; Millerg, A.J.; Minobeh, S.; Nakamurai, H.; et al. The Pacific decadal oscillation, revisited. J. Clim. 2016, 29, 4399–4427. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experimental design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; He, D.; Zhu, Z. The Internal Multidecadal Variability of SST in the Pacific and Its Impact on Air Temperature and Rainfall over Land in the Northern Hemisphere. Atmosphere 2019, 10, 153. https://doi.org/10.3390/atmos10030153
Chen H, He D, Zhu Z. The Internal Multidecadal Variability of SST in the Pacific and Its Impact on Air Temperature and Rainfall over Land in the Northern Hemisphere. Atmosphere. 2019; 10(3):153. https://doi.org/10.3390/atmos10030153
Chicago/Turabian StyleChen, Hua, Donglin He, and Zhiwei Zhu. 2019. "The Internal Multidecadal Variability of SST in the Pacific and Its Impact on Air Temperature and Rainfall over Land in the Northern Hemisphere" Atmosphere 10, no. 3: 153. https://doi.org/10.3390/atmos10030153
APA StyleChen, H., He, D., & Zhu, Z. (2019). The Internal Multidecadal Variability of SST in the Pacific and Its Impact on Air Temperature and Rainfall over Land in the Northern Hemisphere. Atmosphere, 10(3), 153. https://doi.org/10.3390/atmos10030153