Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea
Abstract
:1. Introduction
2. Methods
2.1. COAWST Model
2.2. Experimental Design
2.3. Uncoupled Simulations (WRFUNCP1-15)
2.4. Coupled Simulations (AO1-2)
2.5. Ocean Spin-Up
2.6. Data
3. Results
3.1. Microphysics Schemes
3.2. PBL Schemes
3.3. Role of SST and Coupled Simulation
3.4. Sensitivity Analysis of the Coupled Simulations
4. Conclusions and Remarks
- -
- a sensitivity to the microphysics and boundary layer schemes was observed, which may significantly affect the track, even more than the intensity, of the cyclone;
- -
- the sensitivity to coupling time is limited compared to do that to physics parameterizations and is dependent on the set of schemes considered;
- -
- the 1D ocean model, although it suffers from limited flexibility (MLD set in the model namelist), is able to reproduce pretty well the evolution of the cyclone, given a high-resolution initial SST field produced by ROMS after a long spin-up time;
- -
- air–sea interaction processes are fundamental for the proper numerical simulation of the cyclone, and substituding the real SST with an average field may dramatically affect the intensity of the cyclone;
- -
- atmosphere–ocean coupled systems are the best way to take into account realistically and in a consistent way the exchange of heat and momentum between the atmosphere and the ocean.
- -
- A multi-physics ensemble, using different PBL and microphysical parameterization schemes, produces a large spread, especially in terms of cyclone track.
- -
- The spread of a multi-physics ensemble is too large to provide any useful information about the detailed areas possibly affected by the cyclone, and this is probably a consequence of the fact that some physical schemes are not specifically tuned for the Mediterranean area.
- -
- A comprehensive study, including a large of number of cases of Mediterranean cyclones, should be performed, in order to identify the parameterization(s) that perform better in the region for these specific features; in search of the best configuration, one probably will not find that a certain numerical setup is the best for all cases (Pytharoulis et al., 2018), but it is plausible that that a few implementations will work reasonably well for all cyclones.
- -
- After an “optimal” setup is identified, a coupled numerical simulation after a long spin up time should provide a high-resolution SST field as a lower boundary to the atmospheric model.
- -
- If the computational resources are sufficient, a coupled numerical simulation should be performed, since only this strategy allows one to correctly reproduce the exchange of heat and momentum between the ocean and the atmosphere. Although the advantage in terms of cyclone track and intensity is limited in the present case, we reasonably expect that a great benefit in terms of the operational prediction of wind speed, surface fluxes, and precipitation (Ricchi et al., 2016) can be achieved.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Campins, J.; Genovés, A.; Picornell, M.A.; Jansà, A. Climatology of Mediterranean cyclones using the ERA-40 dataset. Int. J. Climatol. 2010, 31, 1596–1614. [Google Scholar] [CrossRef]
- Buzzi, A.; Tibaldi, S. Cyclogenesis in the lee of the Alps: A case study. Q. J. R. Meteorol. Soc. 1978, 104, 271–287. [Google Scholar] [CrossRef]
- Rasmussen, E.; Zick, C. A subsynoptic vortex over the Mediterranean with some resemblance to polar lows. Tellus A 1987, 39A, 408–425. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Nickovic, S.; Jovic, D.; Kallos, G.; Tremback, C.J. Observations and model simulations of a winter sub-synoptic vortex over the central Mediterranean. Meteorol. Appl. 1999, 6, 371–383. [Google Scholar] [CrossRef]
- Royal Meteorological Society (Great Britain). In Meteorological Applications; Cambridge University Press: Cambridge, UK, 2000.
- Cioni, G.; Malguzzi, P.; Buzzi, A. Thermal structure and dynamical precursor of a Mediterranean tropical-like cyclone. Q. J. R. Meteorol. Soc. 2016, 142, 1757–1766. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R.; Ramis, C. Surface heat fluxes influence on medicane trajectories and intensification. Atmos. Res. 2013, 123, 400–411. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Laviola, S.; Malvaldi, A.; Conte, D.; Levizzani, V.; Price, C. Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modelling and satellite approach. Geophys. Res. Lett. 2013, 40, 2400–2405. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Rotunno, R. Development Mechanisms for Mediterranean Tropical-Like Cyclones (Medicanes). Q. J. R. Meteorol. Soc. 2019. [Google Scholar] [CrossRef]
- Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. Mediterranean Tropical-Like Cyclones in Present and Future Climate. J. Clim. 2014, 27, 7493–7501. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, M.M.; Cerrai, D.; Laviola, S.; Cattani, E.; Levizzani, V. Potential vorticity patterns in Mediterranean “hurricanes”. Geophys. Res. Lett. 2017, 44, 2537–2545. [Google Scholar] [CrossRef]
- Di Muzio, E.; Riemer, M.; Fink, A.H.; Maier-Gerber, M. Assessing the predictability of Medicanes in ECMWF ensemble forecasts using an object-based approach. Q. J. R. Meteorol. Soc. 2019. [Google Scholar] [CrossRef]
- Cioni, G.; Cerrai, D.; Klocke, D. Investigating the predictability of a Mediterranean tropical-like cyclone using a storm-resolving model. Q. J. R. Meteorol. Soc. 2018, 144, 1598–1610. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Mastrangelo, D.; Conte, D. Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmos. Res. 2015, 153, 360–375. [Google Scholar] [CrossRef]
- Ragone, F.; Mariotti, M.; Parodi, A.; Von Hardenberg, J.; Pasquero, C. A Climatological Study of Western Mediterranean Medicanes in Numerical Simulations with Explicit and Parameterized Convection. Atmosphere 2018, 9, 397. [Google Scholar] [CrossRef]
- Pytharoulis, I.; Kartsios, S.; Tegoulias, I.; Feidas, H.; Miglietta, M.; Matsangouras, I.; Karacostas, T. Sensitivity of a Mediterranean Tropical-Like Cyclone to Physical Parameterizations. Atmosphere 2018, 9, 436. [Google Scholar] [CrossRef]
- Davolio, S.; Miglietta, M.M.; Moscatello, A.; Pacifico, F.; Buzzi, A.; Rotunno, R. Natural Hazards and Earth System Sciences Numerical forecast and analysis of a tropical-like cyclone in the Ionian Sea. Hazards Earth Syst. Sci. 2009, 9, 551–562. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Moscatello, A.; Conte, D.; Mannarini, G.; Lacorata, G.; Rotunno, R. Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmos. Res. 2011, 101, 412–426. [Google Scholar] [CrossRef]
- Pytharoulis, I.; Matsangouras, I.T.; Tegoulias, I.; Kotsopoulos, S.; Karacostas, T.S.; Nastos, P.T. Prospectives on Atmospherics Sciences; Springer: Cham, Switzerland, 2017; pp. 115–121. [Google Scholar] [CrossRef]
- Akhtar, N.; Brauch, J.; Dobler, A.; Béranger, K.; Ahrens, B. Medicanes in an ocean-atmosphere coupled regional climate model. Hazards Earth Syst. Sci. 2014, 14, 2189–2201. [Google Scholar] [CrossRef]
- Ricchi, A.; Miglietta, M.; Barbariol, F.; Benetazzo, A.; Bergamasco, A.; Bonaldo, D.; Cassardo, C.; Falcieri, F.M.; Modugno, G.; Russo, A.; et al. Sensitivity of a Mediterranean Tropical-Like Cyclone to Different Model Configurations and Coupling Strategies. Atmosphere 2017, 8, 92. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a Coupled Ocean—Atmosphere—Wave—Sediment Transport (COAWST) Modeling System. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef]
- Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G. Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model. Comput. Geosci. 2008, 34, 1284–1306. [Google Scholar] [CrossRef]
- Ricchi, A.; Miglietta, M.M.; Falco, P.P.; Benetazzo, A.; Bonaldo, D.; Bergamasco, A.; Sclavo, M.; Carniel, S. On the use of a coupled ocean–atmosphere–wave model during an extreme cold air outbreak over the Adriatic Sea. Atmos. Res. 2016, 172–173, 48–65. [Google Scholar] [CrossRef]
- Olabarrieta, M.; Warner, J.C.; Armstrong, B.; Zambon, J.B.; He, R. Ocean–atmosphere dynamics during Hurricane Ida and Nor’Ida: An application of the coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system. Ocean Model. 2012, 43–44, 112–137. [Google Scholar] [CrossRef]
- Skamarock, W.C. Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR. p. 113. Available online: https://doi.org/10.5065/D68S4MVH (accessed on 10 October 2018).
- Shchepetkin, A.F.; Mcwilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Warner, J.C.; Sullivan, C.; Voulgaris, G.; Work, P.; Haas, K.; Hanes, D.M. The South Carolina Coastal Erosion Study: Numerical Modeling of Circulation and Sediment Transport in Long Bay, SC. Am. Geophys. Union, Fall Meet. 2004, Abstr. id. OS21B-1226. Available online: http://adsabs.harvard.edu/abs/2004AGUFMOS21B1226W (accessed on 5 October 2018).
- Larson, J.W.; Craig, A.P.; Drake, J.B.; Erickson, D.J.; Branstetter, M.L.; Ham, M.W. A Massively Parallel Dynamical Core for Continental-to Global-Scale River Transport. Available online: http://people.physics.anu.edu.au/~jwl105/Pubs/2007/larson-et-al-ParRTM-ModSim07.pdf (accessed on 25 September 2018).
- Jacob, R.; Larson, J.; Ong, E. M × N Communication and Parallel Interpolation in Community Climate System Model Version 3 Using the Model Coupling Toolkit. Int. J. High Perform. Comput. Appl. 2005, 19, 293–307. [Google Scholar] [CrossRef]
- Lim, K.-S.S.; Hong, S.-Y.; Lim, K.-S.S.; Hong, S.-Y. Development of an Effective Double-Moment Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef] [Green Version]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Dudhia, J.; Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef] [Green Version]
- Pinardi, N.; Allen, I.; Demirov, E.; De Mey, P.; Korres, G.; Lascaratos, A.; Le Traon, P.-Y.; Maillard, C.; Manzella, G.; Tziavos, C. The Mediterranean ocean forecasting system: First phase of implementation (1998–2001). Ann. Geophys. 2003, 21, 3–20. [Google Scholar] [CrossRef]
- Sandwell, D.T. A detailed view of the South Pacific geoid from satellite altimetry. J. Geophys. Res. Solid Earth 1984, 89, 1089–1104. [Google Scholar] [CrossRef]
- Warner, J.C.; Sherwood, C.R.; Arango, H.G.; Signell, R.P. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model. 2005, 8, 81–113. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Janjic, Z.I.; Gerrity, J.P., Jr.; Nickovic, S. An Alternative Approach to Nonhydrostatic Modeling. Mon. Weather Rev. 2008, 129, 1164–1178. [Google Scholar] [CrossRef]
- Pollard, R.T.; Rhines, P.B.; Thompson, R.O.R.Y. The deepening of the wind-Mixed layer. Geophys. Fluid Dyn. 1972, 4, 381–404. [Google Scholar] [CrossRef]
- Tateo, A.; Miglietta, M.M.; Fedele, F.; Menegotto, M.; Monaco, A.; Bellotti, R. Ensemble using different Planetary Boundary Layer schemes in WRF model for wind speed and direction prediction over Apulia region. Adv. Sci. Res. 2017, 14, 95–102. [Google Scholar] [CrossRef]
- Sukoriansky, S.; Galperin, B.; Perov, V. A quasi-normal scale elimination model of turbulence and its application to stably stratified flows. Nonlinear Process. Geophys. 2006, 13, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, M.; Niino, H. An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. Boundary-Layer Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Sukoriansky, S.; Galperin, B.; Staroselsky, I. A quasinormal scale elimination model of turbulent flows with stable stratification. Phys. Fluids 2005, 17, 085107. [Google Scholar] [CrossRef]
- Carniel, S.; Benetazzo, A.; Bonaldo, D.; Falcieri, F.M.; Miglietta, M.M.; Ricchi, A.; Sclavo, M. Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event. Ocean Model. 2016, 101, 101–112. [Google Scholar] [CrossRef]
Runs | MP | MP | PBL | PBL | SST |
---|---|---|---|---|---|
WRFUNCP-CTL | 8 | Thompson | 2 | MYJ | 3 km Spinup |
WRFUNCP-1 | 1 | Kessler | 2 | MYJ | 3 km Spinup |
WRFUNCP-2 | 2 | Lin | 2 | MYJ | 3 km Spinup |
WRFUNCP-3 | 3 | WSM3 | 2 | MYJ | 3 km Spinup |
WRFUNCP-4 | 4 | WSM5 | 2 | MYJ | 3 km Spinup |
WRFUNCP-5 | 5 | Eta (Ferrier) | 2 | MYJ | 3 km Spinup |
WRFUNCP-6 | 6 | WSM6 | 2 | MYJ | 3 km Spinup |
WRFUNCP-7 | 14 | WDM5 | 2 | MYJ | 3 km Spinup |
WRFUNCP-8 | 16 | WDM6 | 2 | MYJ | 3 km Spinup |
WRFUNCP-9 | 14 | WDM5 | 1 | YSU | 3 km Spinup |
WRFUNCP-10 | 14 | WDM5 | 2 | MYJ | 3 km Spinup |
WRFUNCP-11 | 14 | WDM5 | 4 | QNSE | 3 km Spinup |
WRFUNCP-12 | 14 | WDM5 | 5 | MYNN2 | 3 km Spinup |
WRFUNCP-13 | 14 | WDM5 | 8 | BouLac | 3 km Spinup |
WRFUNCP-14 | 14 | WDM5 | 2 | MYJ | OML-1D |
WRFUNCP-15 | 14 | WDM5 | 2 | MYJ | FLAT-SST |
AO1 | 14 | WDM5 | 2 | MYJ | AO-1800s |
AO2 | 14 | WDM5 | 2 | MYJ | AO-600s |
Pbl1 Mp8 dt600 | Pbl1 Mp8 Dt1800 | Pbl1 Mp14 Dt600 | Pbl1 Mp14 Dt1800 | Pbl2 Mp8 Dt600 | Pbl2 Mp8 Dt1800 | Pbl2 Mp14 Dt600 | Pbl2 Mp14 Dt1800 | Pbl5 Mp8 Dt600 | Pbl5 Mp8 Dt1800 | Pbl5 Mp14 Dt600 | Pbl5 Mp14 Dt1800 | Pbl8 Mp8 Dt600 | Pbl8 Mp8 Dt1800 | Pbl8 Mp14 Dt600 | Pbl5 Mp14 Dt1800 |
30.12 | 36.81 | 43.89 | 44.25 | 34.65 | 36.6 | 33.9 | 35.2 | 47.4 | 37.5 | 38.8 | 37.7 | 31.7 | 39.9 | 47.9 | 38.01 |
26.84 | 27.49 | 46.24 | 45 | 27 | 27.13 | 28.8 | 27.7 | 32.41 | 26.79 | 25.97 | 27.1 | 35.22 | 39.22 | 49.31 | 47.7 |
27.6 | 33.33 | 40.22 | 41.02 | 31.28 | 31 | 30.8 | 31.5 | 45 | 35.28 | 36.43 | 35.25 | 32 | 35.9 | 44.6 | 38.5 |
Pbl1 Mp8 dt600 | Pbl1 Mp8 Dt1800 | Pbl1 Mp14 Dt600 | Pbl1 Mp14 Dt1800 | Pbl2 Mp8 Dt600 | Pbl2 Mp8 Dt1800 | Pbl2 Mp14 Dt600 | Pbl2 Mp14 Dt1800 | Pbl5 Mp8 Dt600 | Pbl5 Mp8 Dt1800 | Pbl5 Mp14 Dt600 | Pbl5 Mp14 Dt1800 | Pbl8 Mp8 Dt600 | Pbl8 Mp8 Dt1800 | Pbl8 Mp14 Dt600 | Pbl5 Mp14 Dt1800 |
30.12 | 36.81 | 43.89 | 44.25 | 34.65 | 36.6 | 33.9 | 35.2 | 47.4 | 37.5 | 38.8 | 37.7 | 31.7 | 39.9 | 47.9 | 38.01 |
26.84 | 27.49 | 46.24 | 45 | 27 | 27.13 | 28.8 | 27.7 | 32.41 | 26.79 | 25.97 | 27.1 | 35.22 | 39.22 | 49.31 | 47.7 |
27.6 | 33.33 | 40.22 | 41.02 | 31.28 | 31 | 30.8 | 31.5 | 45 | 35.28 | 36.43 | 35.25 | 32 | 35.9 | 44.6 | 38.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricchi, A.; Miglietta, M.M.; Bonaldo, D.; Cioni, G.; Rizza, U.; Carniel, S. Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea. Atmosphere 2019, 10, 202. https://doi.org/10.3390/atmos10040202
Ricchi A, Miglietta MM, Bonaldo D, Cioni G, Rizza U, Carniel S. Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea. Atmosphere. 2019; 10(4):202. https://doi.org/10.3390/atmos10040202
Chicago/Turabian StyleRicchi, Antonio, Mario Marcello Miglietta, Davide Bonaldo, Guido Cioni, Umberto Rizza, and Sandro Carniel. 2019. "Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea" Atmosphere 10, no. 4: 202. https://doi.org/10.3390/atmos10040202
APA StyleRicchi, A., Miglietta, M. M., Bonaldo, D., Cioni, G., Rizza, U., & Carniel, S. (2019). Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea. Atmosphere, 10(4), 202. https://doi.org/10.3390/atmos10040202