Sensitivity of a Mediterranean Tropical-Like Cyclone to Physical Parameterizations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Model, Data, and Experimental Setup
2.2. Phase Space Diagrams
2.3. Synoptic Overview
3. Results and Discussion
3.1. Microphysical Parameterizations
3.2. Cumulus Parameterizations
3.3. Boundary Layer/Surface Layer Parameterizations
3.4. Aggregate Statistics
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michaelides, S.; Karacostas, T.; Sánchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Emanuel, K. Genesis and maintenance of Mediterranean hurricanes. Adv. Geosci. 2005, 2, 217–220. [Google Scholar] [CrossRef]
- Fita, L.; Flaounas, E. Medicanes as subtropical cyclones: The December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. Q. J. R. Meteorol Soc. 2018, 144, 1028–1044. [Google Scholar] [CrossRef]
- Da Rocha, R.P.; Reboita, M.S.; Gozzo, L.F.; Dutra, L.M.M.; de Jesus, E.M. Subtropical cyclones over the oceanic basins: A review. Ann. N. Y. Acad. Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Miglietta, M.M.; Laviola, S.; Malvaldi, A.; Conte, D.; Levizzani, V.; Price, C. Analysis of tropical-like cyclones over the Mediterranean Sea through a combined modelling and satellite approach. Geophys. Res. Lett. 2013, 40, 2400–2405. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H.; Gualdi, S. A long-term climatology of medicanes. Clim. Dyn. 2014, 43, 1183–1195. [Google Scholar] [CrossRef]
- Nastos, P.T.; Papadimou, K.K.; Matsangouras, I.T. Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns. Atmos. Res. 2018, 206, 156–166. [Google Scholar] [CrossRef]
- Pytharoulis, I. Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmos. Res. 2018, 208, 167–179. [Google Scholar] [CrossRef]
- Winstanley, D. The north African flood disaster, September 1969. Weather 1970, 25, 390–403. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R. Meteorological environments associated with medicane development. Int. J. Climatol. 2013, 33, 1–14. [Google Scholar] [CrossRef]
- Moscatello, A.; Miglietta, M.M.; Rotunno, R. Numerical analysis of a Mediterranean ‘hurricane’ over southeastern Italy. Mon. Weather Rev. 2008, 136, 4373–4397. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Lagouvardos, K.; Kotroni, V.; Nickovic, S.; Jovic, D.; Kallos, G. Observations and model simulations of a winter subsynoptic vortex over the central Mediterranean. Meteorol. Appl. 1999, 6, 371–383. [Google Scholar] [CrossRef]
- Pytharoulis, I.; Craig, G.C.; Ballard, S.P. Study of the hurricane-like Mediterranean cyclone of January 1995. Phys. Chem. Earth (B) 1999, 24, 627–632. [Google Scholar] [CrossRef]
- Pytharoulis, I.; Craig, G.C.; Ballard, S.P. The hurricane-like Mediterranean cyclone of January 1995. Meteorol. Appl. 2000, 7, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Homar, V.; Romero, R.; Stensrud, D.J.; Ramis, C.; Alonso, S. Numerical diagnosis of a small, quasi-tropical cyclone over the western Mediterranean: Dynamical vs. boundary factors. Q. J. R. Meteorol. Soc. 2003, 129, 1469–1490. [Google Scholar] [CrossRef] [Green Version]
- Davolio, S.; Miglietta, M.M.; Moscatello, A.; Pacifico, F.; Buzzi, A.; Rotunno, R. Numerical forecast and analysis of a tropical-like cyclone in the Ionian Sea. Nat. Hazards Earth Syst. Sci. 2009, 9, 551–562. [Google Scholar] [CrossRef] [Green Version]
- Miglietta, M.M.; Moscatello, A.; Conte, D.; Mannarini, G.; Lacorata, G.; Rotunno, R. Numerical analysis of a Mediterranean “hurricane” over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmos. Res. 2011, 101, 412–426. [Google Scholar] [CrossRef]
- Chaboureau, J.-P.; Pantillon, F.; Lambert, D.; Richard, E.; Claud, C. Tropical transition of a Mediterranean storm by jet crossing. Q. J. R. Meteorol. Soc. 2012, 138, 596–611. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R.; Ramis, C. Surface heat fluxes influence on medicane trajectories and intensification. Atmos. Res. 2013, 123, 400–411. [Google Scholar] [CrossRef]
- Cioni, G.; Malguzzi, P.; Buzzi, A. Thermal structure and dynamical precursor of a Mediterranean tropical-like cyclone. Q. J. R. Meteorol. Soc. 2016, 142, 1757–1766. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Cerrai, D.; Laviola, S.; Cattani, E.; Levizzani, V. Potential vorticity patterns in Mediterranean “hurricanes”. Geophys. Res. Lett. 2017, 44, 2537–2545. [Google Scholar] [CrossRef]
- Carrió, D.S.; Homar, V.; Jansa, A.; Romero, R.; Picornell, M.A. Tropicalization process of the 7 November 2014 Mediterranean cyclone: Numerical sensitivity study. Atmos. Res. 2017, 197, 300–312. [Google Scholar] [CrossRef]
- Rao, D.V.B.; Prasad, D.H. Sensitivity of tropical cyclone intensification to boundary layer and convective processes. Nat. Hazards 2007, 41, 429–445. [Google Scholar] [CrossRef]
- Li, X.; Pu, Z. Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Weather Rev. 2008, 136, 4819–4838. [Google Scholar] [CrossRef]
- Rambabu, S.; Vani, D.G.; Ramakrishna, S.S.V.S.; Rama, G.V.; Apparao, B.V. Sensitivity of movement and intensity of severe cyclone AILA to the physical processes. J. Earth Syst. Sci. 2013, 122, 979–990. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, S.; Nachamkin, J.; Doyle, J.D.; Thompson, G.; Grasso, L.; Holt, T.; Moskaitis, J.; Jin, H.; Hodur, R.M.; et al. The impact of ice phase cloud parameterizations on tropical cyclone prediction. Mon. Weather Rev. 2014, 142, 606–625. [Google Scholar] [CrossRef]
- Quitián-Hernández, L.; Fernández-González, S.; González-Alemán, J.J.; Valero, F.; Martín, M.L. Analysis of sensitivity to different parameterization schemes for a subtropical cyclone. Atmos. Res. 2018, 204, 21–36. [Google Scholar] [CrossRef]
- Green, B.W.; Zhang, F. Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Mon. Weather Rev. 2013, 141, 2308–2324. [Google Scholar] [CrossRef]
- Kepert, J.D. Choosing a boundary layer parameterization for tropical cyclone modeling. Mon. Weather Rev. 2012, 140, 1427–1445. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Mastrangelo, D.; Conte, D. Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmos. Res. 2015, 153, 360–375. [Google Scholar] [CrossRef]
- Pytharoulis, I.; Matsangouras, I.T.; Tegoulias, I.; Kotsopoulos, S.; Karacostas, T.S.; Nastos, P.T. Numerical study of the medicane of November 2014. In Perspectives on Atmospheric Sciences; Karacostas, T.S., Bais, A., Nastos, P.T., Eds.; Springer International Publishing: Basel, Switzerland, 2017; pp. 115–121. [Google Scholar]
- Ricchi, A.; Miglietta, M.M.; Barbariol, F.; Benetazzo, A.; Bergamasco, A.; Bonaldo, D.; Cassardo, C.; Falcieri, F.M.; Modugno, G.; Russo, G.A.; et al. Sensitivity of a mediterranean tropical-like cyclone to different model configurations and coupling strategies. Atmosphere 2017, 8, 92. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A description of the Advanced Research WRF Version 3. NCAR/TN-475+STR, USA. 2008, p. 113. Available online: http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf (accessed on 31 August 2018).
- Dimitriadou, K. Satellite Analysis of Tropical-Like Mediterranean Cyclones (Medicanes). Master’s Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2017. (in Greek with English abstract). Available online: http://ikee.lib.auth.gr/record/294318/files/GRI-2017-20238 (accessed on 31 August 2018).
- Wang, W.; Bruyère, C.; Duda, M.; Dudhia, J.; Gill, D.; Kavulich, M.; Keene, K.; Lin, H.-C.; Michalakes, J.; Rizvi, S.; et al. ARW version 3 Modeling System User’s Guide; National Center for Atmospheric Research—Mesoscale and Microscale Division: Boulder, CO, USA, 2016; p. 408. Available online: http://www2.mmm.ucar.edu/wrf/users/docs/user_guide_V3.7/ARWUsersGuideV3.7.pdf (accessed on 31 August 2018).
- Chen, F.; Dudhia, J. Coupling an advanced land-surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Tegen, I.; Hollrig, P.; Chin, M.; Fung, I.; Jacob, D.; Penner, J. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res. 1997, 102, 23895–23915. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Rogers, E.; Black, T.; Ferrier, B.; Lin, Y.; Parrish, D.; DiMego, G. Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in Resolution, New Cloud Microphysics, Modified Precipitation Assimilation, Modified 3DVAR Analysis; NOAA/NWS Technical Procedures Bulletin 488; Washington, DC, USA, 2001. Available online: http://www.emc.ncep.noaa.gov/mmb/mmbpll/mesoimpl/eta12tpb/ (accessed on 31 August 2018).
- Hong, S.Y.; Lim, J.O.J. The WRF single-moment 6-class Microphysics Scheme (WSM6). J. Korean Meteorol. Soc. 2006, 42, 129–151. Available online: http://www.inscc.utah.edu/~u0758091/MPschemes/WSM6-hong_and_lim_JKMS.pdf (accessed on 31 August 2018).
- Tao, W.K.; Simpson, J.; McCumber, M. An ice-water saturation adjustment. Mon. Weather Rev. 1989, 117, 231–235. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Neale, R.B.; Chen, C.C.; Gettelman, A.; Lauritzen, P.H.; Park, S.; Williamson, D.L.; Conley, A.J.; Garcia, R.; Kinnison, D.; Lamarque, J.F.; et al. Description of the NCAR Community Atmosphere Model (CAM5.0); Technical Note, NCAR/TN-486+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2012; p. 289. [Google Scholar]
- Lim, K.S.S.; Hong, S.Y. Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models. Mon. Weather Rev. 2010, 138, 1587–1612. [Google Scholar] [CrossRef]
- Mansell, E.R.; Ziegler, C.L.; Bruning, E.C. Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci. 2010, 67, 171–194. [Google Scholar] [CrossRef]
- Hong, S.Y.; Park, H.; Cheong, H.B.; Kim, J.E.E.; Koo, M.S.; Jang, J.; Ham, S.; Hwang, S.O.; Park, B.K.; Chang, E.-C.; et al. The Global/Regional Integrated Model System (GRIMs). Asia-Pac. J. Atmos. Sci. 2013, 49, 219–243. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain-Fritsch convective parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Janjic, Z.I. The step-mountain Eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Janjic, Z.I. Comments on “Development and evaluation of a convection scheme for use in climate models”. J. Atmos. Sci. 2000, 57, 3686. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef] [Green Version]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Han, J.; Pan, H.L. Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Weather Forecast. 2011, 26, 520–533. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Jimenez, P.A.; Dudhia, J. Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteorol. Climatol. 2012, 51, 300–316. [Google Scholar] [CrossRef]
- Sukoriansky, S.; Galperin, B.; Perov, V. Application of a new spectral theory of stably stratified turbulence to the atmospheric boundary layer over sea ice. Bound.-Lay. Meteorol. 2005, 117, 231–257. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. An improved Mellor-Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Lay. Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Pleim, J.E. A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Bougeault, P.; Lacarrere, P. Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Weather Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Bretherton, C.S.; Park, S. A new moist turbulence parameterization in the Community Atmosphere Model. J. Clim. 2009, 22, 3422–3448. [Google Scholar] [CrossRef]
- Grenier, H.; Bretherton, C.S. A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Weather Rev. 2001, 129, 357–377. [Google Scholar] [CrossRef]
- Jimenez, P.A.; Dudhia, J.; Gonzalez-Rouco, J.F.; Navarro, J.; Montavez, J.P.; Garcia-Bustamante, E. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Hare, J.E.; Grachev, A.A.; Edson, J.B. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Clim. 2003, 16, 571–591. [Google Scholar] [CrossRef]
- Donelan, M.A.; Haus, B.K.; Reul, N.; Plant, W.J.; Stiassnie, M.; Graber, H.C.; Brown, O.B.; Saltzaman, E.S. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 2004, 31, L18306. [Google Scholar] [CrossRef]
- Powell, M.D.; Vickery, P.J.; Reinhold, T.A. Reduced drag coefficient for high wind speeds in tropical cyclones. Nature 2003, 24, 395–419. [Google Scholar] [CrossRef] [PubMed]
- Garratt, J.R. The Atmospheric Boundary Layer; Cambridge University Press: Cambridge, UK, 1992; p. 316. [Google Scholar]
- Rizza, U.; Canepa, E.; Ricchi, A.; Bonaldo, D.; Carniel, S.; Morichetti, M.; Passerini, G.; Santiloni, L.; Puhales, F.S.; Miglietta, M.M. Influence of wave state and sea spray on the roughness length: Feedback on medicanes. Atmosphere 2018, 9, 301. [Google Scholar] [CrossRef]
- Hart, R.E. A cyclone phase space derived from thermal wind and thermal asymmetry. Mon. Weather Rev. 2003, 131, 585–616. [Google Scholar] [CrossRef]
- Evans, J.L.; Hart, R.E. Objective indicators of the life cycle evolution of extratropical transition for Atlantic tropical cyclones. Mon. Weather Rev. 2003, 131, 909–925. [Google Scholar] [CrossRef]
- Wang, T. An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Weather Rev. 2002, 130, 3022–3036. [Google Scholar] [CrossRef]
- Pytharoulis, I. Numerical study of the transformation of African easterly waves into tropical cyclones in north Atlantic. In Proceedings of the 23rd conference on Hurricanes and Tropical meteorology, Dallas, TX, USA, 10–15 January 1999; American Meteorological Society: Boston, MA, USA; pp. 925–928. [Google Scholar]
- Emanuel, K.A. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci. 1986, 43, 585–604. [Google Scholar] [CrossRef]
- Schubert, W.H.; Hack, J.J.; Silva Dias, P.L.; Fulton, S.R. Geostrophic adjustment in an axisymmetric vortex. J. Atmos. Sci. 1980, 37, 1464–1484. [Google Scholar] [CrossRef]
- Rodts, S.M.A.; Duynkerke, P.G.; Jonker, H.J.J. Size distributions and dynamical properties of shallow cumulus clouds from aircraft observations and satellite data. J. Atmos. Sci. 2003, 60, 1895–1912. [Google Scholar] [CrossRef]
- Torn, R.D.; Davis, C.A. The influence of shallow convection on tropical cyclone track forecasts. Mon. Weather Rev. 2012, 140, 2188–2197. [Google Scholar] [CrossRef]
- O’Shay, A.J.; Krishnamurti, T.N. An examination of a model’s components during tropical cyclone recurvature. Mon. Weather Rev. 2004, 132, 1143–1166. [Google Scholar] [CrossRef]
- Zhu, H.; Smith, R.K. The importance of three physical processes in a minimal three-dimensional tropical cyclone model. J. Atmos. Sci. 2002, 59, 1825–1840. [Google Scholar] [CrossRef]
- Zhu, H.; Smith, R.K.; Ulrich, W. A minimal three-dimensional tropical cyclone model. J. Atmos. Sci. 2001, 58, 1924–1944. [Google Scholar] [CrossRef]
Exp. Name | Microphysics | Microphysical Species | Cumulus | PBL/Surface Layer/Surface Fluxes (isftcflx) |
---|---|---|---|---|
ctrl | WSM6 | vcrisg | inactive | YSU/revised MM5/1 |
mp4 | WSM5 | vcris | ||
mp5 | Eta (Ferrier) | vcrst | ||
mp6h | WSM6 | vcrish | ||
mp7 | Goddard | vcrisg | ||
mp8 | new Thompson | vcrisg | ||
mp11 | CAM5.1 | vcris | ||
mp14 | WDM5 | vcris | ||
mp16 | WDM6 | vcrisg | ||
mp19 | NSSL | vcrisgh | ||
shcu | shallow GRIMS | |||
cu1 | KF | |||
cu2 | BMJ | |||
cu3 | GF | |||
cu5 | Grell 3D | |||
cu6 | Tiedtke | |||
cu14 | new SAS | |||
cu16 | new Tiedtke | |||
bl1_1-0 | YSU/revised MM5/0 | |||
bl1_1-2 | YSU/revised MM5/2 | |||
bl2_2-0 | MYJ/Eta/- | |||
bl4_4-0 | QNSE/QNSE/- | |||
bl5_1-0 | MYNN2.5/revised MM5/0 | |||
bl5_1-1 | MYNN2.5/revised MM5/1 | |||
bl5_1-2 | MYNN2.5/revised MM5/2 | |||
bl6_5-0 | MYNN3/MYNN/- | |||
bl7_1-0 | ACM2/revised MM5/0 | |||
bl7_1-1 | ACM2/revised MM5/1 | |||
bl7_1-2 | ACM2/revised MM5/2 | |||
bl8_1-0 | Boulac/revised MM5/0 | |||
bl8_1-1 | Boulac/revised MM5/1 | |||
bl8_1-2 | Boulac/revised MM5/2 | |||
bl9_1-0 | UW/revised MM5/0 | |||
bl9_1-1 | UW/revised MM5/1 | |||
bl9_1-2 | UW/revised MM5/2 | |||
bl12_1-0 | GBM/revised MM5/0 | |||
bl12_1-1 | GBM/revised MM5/1 | |||
bl12_1-2 | GBM/revised MM5/2 |
Parameter | mp | cu | bl | blC_1-0 | blC_1-1 | blC_1-2 | ctrl |
---|---|---|---|---|---|---|---|
min mslp | 990.2 ± 2.6 | 987.6 ± 1.9 | 989.6 ± 2.8 | 991.5 ± 2.6 | 988.9 ± 2.0 | 989.4 ± 3.0 | 985.6 |
min mslp TLC | 989.9 ± 2.4 | 987.7 ± 2.1 | 989.8 ± 3.1 | 992.1 ± 2.9 | 989.0 ± 2.2 | 989.5 ± 3.1 | 985.6 |
max ws10m | 34.2 ± 2.4 | 35.0 ± 3.1 | 29.8 ± 2.6 | 28.4 ± 2.4 | 31.3 ± 2.9 | 30.2 ± 2.2 | 36.5 |
max ws10m TLC | 29.3 ± 2.2 | 29.1 ± 2.3 | 27.9 ± 2.9 | 25.3 ± 2.7 | 29.6 ± 2.3 | 28.9 ± 2.1 | 31.5 |
track error | 62.1 ± 25.6 | 81.6 ± 42.5 | 55.5 ± 24.2 | 48.9 ± 15.5 | 48.0 ± 19.3 | 67.5 ± 37.5 | 36.9 |
TLC duration | 11.1 ± 6.17 | 13.0 ± 5.41 | 12.0 ± 5.37 | 8.5 ± 5.82 | 14.5 ± 3.51 | 12.0 ± 4.65 | 15 |
Parameter | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
min mslp WRF | 989.5 | 2.7 | 984.5 | 993.9 |
min mslp ECMWF | 995.8 | 3.2 | 986.4 | 1001.2 |
track error WRF | 64.4 | 30.7 | 30.9 | 176.7 |
track error ECMWF | 139.5 | 54.7 | 62.8 | 309.0 |
max distance WRF | - | - | 153.8 | 404.7 |
max distance ECMWF | - | - | 543.1 | 589.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pytharoulis, I.; Kartsios, S.; Tegoulias, I.; Feidas, H.; Miglietta, M.M.; Matsangouras, I.; Karacostas, T. Sensitivity of a Mediterranean Tropical-Like Cyclone to Physical Parameterizations. Atmosphere 2018, 9, 436. https://doi.org/10.3390/atmos9110436
Pytharoulis I, Kartsios S, Tegoulias I, Feidas H, Miglietta MM, Matsangouras I, Karacostas T. Sensitivity of a Mediterranean Tropical-Like Cyclone to Physical Parameterizations. Atmosphere. 2018; 9(11):436. https://doi.org/10.3390/atmos9110436
Chicago/Turabian StylePytharoulis, Ioannis, Stergios Kartsios, Ioannis Tegoulias, Haralambos Feidas, Mario Marcello Miglietta, Ioannis Matsangouras, and Theodore Karacostas. 2018. "Sensitivity of a Mediterranean Tropical-Like Cyclone to Physical Parameterizations" Atmosphere 9, no. 11: 436. https://doi.org/10.3390/atmos9110436
APA StylePytharoulis, I., Kartsios, S., Tegoulias, I., Feidas, H., Miglietta, M. M., Matsangouras, I., & Karacostas, T. (2018). Sensitivity of a Mediterranean Tropical-Like Cyclone to Physical Parameterizations. Atmosphere, 9(11), 436. https://doi.org/10.3390/atmos9110436