Observed Multi-Timescale Differences between Summertime Near-Surface Equivalent Temperature and Temperature for China and Their Linkage with Global Sea Surface Temperatures
Abstract
:1. Introduction
2. Data and Methods
2.1. Observational and Reanalysis Datasets
2.2. Calculation of Equivalent Temperature
2.3. Ensemble Empirical Mode Decomposition
3. Results
3.1. Leading Modes of T and Te at Different Timescales
3.2. The Role of T and LH Terms in Determining the Variations of Te
3.3. Similarities and Differences in the Linkage between SST and the Leading Mode of T and Te
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007.
- IPCC. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013.
- IPCC. Climate Change 2018: Global Warming of 1.5°C. 2018; in press. Available online: https://www.ipcc.ch/sr15/ (accessed on 3 August 2019).
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Cambridge University Press: Cambridge, UK, 2012.
- Qian, C.; Zhang, X.; Li, Z. Linear trends in temperature extremes in China, with an emphasis on non-Gaussian and serially dependent characteristics. Clim. Dyn. 2018, 53, 533–550. [Google Scholar] [CrossRef] [Green Version]
- Pielke Sr, R.A.; Davey, C.; Morgan, J. Assessing “global warming” with surface heat content. Eos Trans. Am. Geophys. Union 2004, 85, 210–211. [Google Scholar] [CrossRef]
- Davey, C.A.; Pielke, R.A.; Gallo, K.P. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States: Equivalent temperature as an alternative measure of heat content. Glob. Planet. Chang. 2006, 54, 19–32. [Google Scholar] [CrossRef]
- Fall, S.; Diffenbaugh, N.S.; Niyogi, D.; Pielke Sr, R.A.; Rochon, G. Temperature and equivalent temperature over the United States (1979–2005). Int. J. Climatol. 2010, 30, 2045–2054. [Google Scholar] [CrossRef]
- Sherwood, S.C.; Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl. Acad. Sci. USA 2010, 107, 9552–9555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, J.P.; Stouffer, R.J.; John, J.G. Reductions in labour capacity from heat stress under climate warming. Nat. Clim. Chang. 2013, 3, 563–566. [Google Scholar] [CrossRef]
- Knutson, T.R.; Ploshay, J.J. Detection of anthropogenic influence on a summertime heat stress index. Clim. Chang. 2016, 138, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Pal, J.S.; Eltahir, E.A.B. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Chang. 2016, 6, 197–200. [Google Scholar] [CrossRef]
- Findell, K.L.; Berg, A.; Gentine, P.; Krasting, J.P.; Lintner, B.R.; Malyshev, S.; Santanello, J.A.; Shevliakova, E. The impact of anthropogenic land use and land cover change on regional climate extremes. Nat. Commun. 2017, 8, 989. [Google Scholar] [CrossRef] [PubMed]
- Karl, T.R.; Knight, R.W. The 1995 Chicago heat wave: How likely is a recurrence? Bull. Am. Meteorol. Soc. 1997, 78, 1107–1120. [Google Scholar] [CrossRef]
- Grumm, R.H. The central European and Russian heat event of July–August 2010. Bull. Am. Meteorol. Soc. 2011, 92, 1285–1296. [Google Scholar] [CrossRef]
- Kang, S.; Eltahir, E.A.B. North china plain threatened by deadly heatwaves due to climate change and irrigation. Nat. Commun. 2018, 9, 2894. [Google Scholar] [CrossRef] [PubMed]
- Younger, K.; Mahmood, R.; Goodrich, G.; Pielke, R.A.; Durkee, J. Mesoscale surface equivalent temperature (te) for east central USA. Theor. Appl. Climatol. 2019, 136, 65–75. [Google Scholar] [CrossRef]
- Yin, H.; Sun, Y.; Wan, H.; Zhang, X.; Lu, C. Detection of anthropogenic influence on the intensity of extreme temperatures in China. Int. J. Climatol. 2017, 37, 1229–1237. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Zwiers, F.W.; Song, L.; Wan, H.; Hu, T.; Yin, H.; Ren, G. Rapid increase in the risk of extreme summer heat in Eastern China. Nat. Clim. Chang. 2014, 4, 1082–1085. [Google Scholar] [CrossRef]
- Qian, C. On trend estimation and significance testing for non-Gaussian and serially dependent data: Quantifying the urbanization effect on trends in hot extremes in the megacity of Shanghai. Clim. Dyn. 2016, 47, 329–344. [Google Scholar] [CrossRef]
- Ren, G.; Zhou, Y. Urbanization effect on trends of extreme temperature indices of national stations over mainland China, 1961–2008. J. Clim. 2014, 27, 2340–2360. [Google Scholar] [CrossRef]
- Qian, C.; Yan, Z.; Cao, L.; Li, Z. Climatic changes in the twenty-four solar terms based on temperature observations back to 1873. Clim. Environ. Res. 2018, 23, 670–682. (In Chinese) [Google Scholar] [CrossRef]
- Wu, Z.; Jiang, Z.; Li, J.; Zhong, S.; Wang, L. Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency. Clim. Dyn. 2012, 39, 2393–2402. [Google Scholar] [CrossRef]
- Hu, K.; Huang, G.; Huang, R. The impact of tropical Indian Ocean variability on summer surface air temperature in China. J. Clim. 2011, 24, 5365–5377. [Google Scholar] [CrossRef]
- Wu, R.; Yang, S.; Liu, S.; Sun, L.; Lian, Y.; Gao, Z. Changes in the relationship between Northeast China summer temperature and ENSO. J. Geophys. Res. Atmos. 2010, 115, D21107. [Google Scholar] [CrossRef]
- Chen, Y.; Zhai, P. Revisiting summertime hot extremes in China during 1961–2015: Overlooked compound extremes and significant changes. Geophys. Res. Lett. 2017, 44, 5096–5103. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, F.; Xu, J.; Chen, Y.; Sang, Y.-F.; Liu, C. Dependence of trends in and sensitivity of drought over china (1961–2013) on potential evaporation model. Geophys. Res. Lett. 2016, 43, 206–213. [Google Scholar] [CrossRef]
- Chai, R.; Sun, S.; Chen, H.; Zhou, S. Changes in reference evapotranspiration over china during 1960–2012: Attributions and relationships with atmospheric circulation. Hydrol. Process. 2018, 32, 3032–3048. [Google Scholar] [CrossRef]
- Pielke Sr, R.A. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus Convective rainfall. Rev. Geophys. 2001, 39, 151–177. [Google Scholar] [CrossRef]
- Henderson-Sellers, B. A new formula for latent heat of vaporization of water as a function of temperature. Q. J. R. Meteorol. Soc. 1984, 110, 1186–1190. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Qian, C.; Fu, C.; Wu, Z.; Yan, Z. On the secular change of spring onset at Stockholm. Geophys. Res. Lett. 2009, 36, L12706. [Google Scholar] [CrossRef]
- Franzke, C. Nonlinear trends, long-range dependence, and climate noise properties of surface temperature. J. Clim. 2012, 25, 4172–4183. [Google Scholar] [CrossRef]
- Kim, T.; Shin, J.-Y.; Kim, S.; Heo, J.-H. Identification of relationships between climate indices and long-term precipitation in south korea using ensemble empirical mode decomposition. J. Hydrol. 2018, 557, 726–739. [Google Scholar] [CrossRef]
- Wu, Z.; Huang Norden, E. A study of the characteristics of white noise using the empirical mode decomposition method. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 460, 1597–1611. [Google Scholar] [CrossRef]
- Wilks, D.S. Chapter 12—Principal component (eof) analysis. In International Geophysics; Wilks, D.S., Ed.; Academic Press: Cambridge, MA, USA, 2011; Volume 100, pp. 519–562. [Google Scholar]
- Bretherton, C.S.; Widmann, M.; Dymnikov, V.P.; Wallace, J.M.; Bladé, I. The effective number of spatial degrees of freedom of a time-varying field. J. Clim. 1999, 12, 1990–2009. [Google Scholar] [CrossRef]
- Committee of Chinese National Assessment Report on Climate Change. Third China’s National Assessment Report on Climate Change; China Science Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Wu, R.; Yang, S.; Liu, S.; Sun, L.; Lian, Y.; Gao, Z. Northeast China summer temperature and North Atlantic SST. J. Geophys. Res. Atmos. 2011, 116, D16116. [Google Scholar] [CrossRef]
- Wang, J.; Yang, B.A.O.; Ljungqvist, F.C.; Zhao, Y.A.N. The relationship between the Atlantic Multidecadal Oscillation and temperature variability in China during the last millennium. J. Quat. Sci. 2013, 28, 653–658. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.D.; Gan, T.Y.; Lau, N.-C. Elevated increases in human-perceived temperature under climate warming. Nat. Clim. Chang. 2018, 8, 43–47. [Google Scholar] [CrossRef]
EEMD-REOF Principal Components | ||||||||
---|---|---|---|---|---|---|---|---|
SST Indices | T-IMF1 | Te-IMF1 | T-IMF2 | Te-IMF2 | T-IMF3 | Te-IMF3 | T-IMF4 | Te-IMF4 |
Niño 3.4 | −0.30 * | −0.43 * | 0.06 | −0.31 * | 0.02 | −0.11 | −0.01 | 0.01 |
NAT | −0.03 | −0.10 | −0.03 | −0.23 | −0.03 | −0.20 | −0.37 | −0.33 |
PDO | −0.17 | −0.28 | −0.04 | −0.19 | −0.13 | −0.21 | −0.08 | 0.05 |
AMO | 0.06 | 0.12 | 0.01 | 0.09 | 0.17 | 0.01 | 0.67 * | 0.59 * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Li, X.; Li, X.; Chen, L.; Jin, L. Observed Multi-Timescale Differences between Summertime Near-Surface Equivalent Temperature and Temperature for China and Their Linkage with Global Sea Surface Temperatures. Atmosphere 2019, 10, 447. https://doi.org/10.3390/atmos10080447
Li J, Li X, Li X, Chen L, Jin L. Observed Multi-Timescale Differences between Summertime Near-Surface Equivalent Temperature and Temperature for China and Their Linkage with Global Sea Surface Temperatures. Atmosphere. 2019; 10(8):447. https://doi.org/10.3390/atmos10080447
Chicago/Turabian StyleLi, Jingping, Xiao Li, Xing Li, Lian Chen, and Likun Jin. 2019. "Observed Multi-Timescale Differences between Summertime Near-Surface Equivalent Temperature and Temperature for China and Their Linkage with Global Sea Surface Temperatures" Atmosphere 10, no. 8: 447. https://doi.org/10.3390/atmos10080447
APA StyleLi, J., Li, X., Li, X., Chen, L., & Jin, L. (2019). Observed Multi-Timescale Differences between Summertime Near-Surface Equivalent Temperature and Temperature for China and Their Linkage with Global Sea Surface Temperatures. Atmosphere, 10(8), 447. https://doi.org/10.3390/atmos10080447