Environmental Strategies for Selecting Eco-Routing in a Small City
Abstract
:1. Introduction
- Strategic decisions: Includes vehicle selection and maintenance (tyres, engine, brakes, etc.) [7].
- Operational decisions (eco-driving): Reduces fuel consumption by making gear changes at low revolutions, maintaining a constant speed, reducing accelerations and braking, and anticipating traffic by reducing the number of stops [8].
- Tactical decisions (eco-routing): Consists of choosing the itinerary with the least environmental impact. Different road types with different sections and slopes may produce different values of emissions and pollutants [9].
- Different traffic intensity.
- Road characteristics (number of lanes, lane separation, pavement, etc.).
- Powertrain type: Diesel and petrol.
2. Methodology
- Data on driver behavior were collected on 4 different route types in different weather and traffic conditions. Three of the itineraries selected were urban roads and one was a city bypass. All of them had different traffic intensity levels [20].
- Driver parameters were measured using a device installed on board (OBD-key, KBM Systems Ltd., London, UK) [21]; CO2 emissions linked to these were also estimated.
- The combined effects of selecting certain routes were studied for the different road and engine types as a proxy for eco-routing.
2.1. Case Study: City of Caceres, Spain
2.2. Routes Selection
2.3. Driver and Car Selection. Scheduling
- 1st period. Morning peak hour: 7:30–11:30 am
- 2nd period. Lunchtime: 12:00–4:00 pm
- 3rd period. Evening peak hour: 4:30–8:30 pm
2.4. Data Acquisition and Fuel Consumption
2.5. Pollutants Estimation
3. Results
3.1. Driver Performance
3.2. Validated Fuel Consumption and Estimated CO2 Emissions
3.3. Pollutants Estimation
4. Discussion and Conclusions
Policy Recommendation and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commission. Urban Mobility. 2017. Available online: http://bit.ly/2kLbVDu (accessed on 16 July 2019).
- Xia, H.; Boriboonsomsin, K.; Barth, M. Dynamic eco-driving for signalized arterial corridors and its indirect network-wide energy/emissions benefits. J. Intell. Transp. Syst. 2013, 17, 31–41. [Google Scholar] [CrossRef]
- Ahn, K.; Rakha, H. The effects of route choice decisions on vehicle energy consumption and emissions. Transp. Res. Part D 2008, 13, 151–167. [Google Scholar] [CrossRef]
- Wang, Y.; Boggio-Marzet, A. Evaluation of Eco-Driving Training for Fuel Efficiency and Emissions Reduction According to Road Type. Sustainability 2018, 10, 3891. [Google Scholar] [CrossRef]
- Barkenbus, J.N. Eco-driving: An overlooked climate change initiative. Energy Policy 2010, 38, 762–769. [Google Scholar] [CrossRef]
- Sivak, M.; Schoettle, B. Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy. Transp. Policy 2012, 22, 96–99. [Google Scholar] [CrossRef]
- Strömberg, H.; Karlsson, I.M.; Rexfelt, O. Eco-driving: Drivers’ understanding of the concept and implications for future interventions. Transport Policy 2015, 39, 48–54. [Google Scholar] [CrossRef]
- Ecowill. The Golden Rules of Eco-Driving. 2013. Available online: http://cieca.eu/sites/default/files/documents/projects_and_studies/ECOWILL_FINAL_REPORT.pdf (accessed on 16 July 2019).
- Boriboonsomsin, K.; Dean, J.; Barth, M. Examination of attributes and value of ecologically friendly route choices. Transp. Res. Rec. 2014, 2427, 13–25. [Google Scholar] [CrossRef]
- Ericsson, E.; Larsson, H.; Brundell-Freij, K. Optimizing route choice for lowest fuel consumption–potential effects of a new driver support tool. Transp. Res. Part C 2006, 14, 369–383. [Google Scholar] [CrossRef]
- Kono, T.; Fushiki, T.; Asada, K.; Nakano, K. Fuel Consumption Analysis and Prediction Model for “Eco” Route Search. In Proceedings of the 15th World Congress on Intelligent Transport Systems and ITS America’s, New York, NY, USA, 16–20 November 2008; Available online: https://trid.trb.org/view/902235 (accessed on 15 June 2019).
- Ahn, K.; Rakha, H. Network-wide impacts of eco-routing strategies: A large scale case study. Transp. Res. Part D 2013, 25, 119–130. [Google Scholar] [CrossRef]
- Pandazis, J.C.; Winder, A. Study of Intelligent Transport Systems for reducing CO2 emissions for passenger cars. Eur. Road Transp. Telemat. Implement. Coord. Organ. 2015, 1, 49. [Google Scholar]
- Zeng, W.; Miwa, T.; Morikawa, T. Prediction of vehicle CO2 emission and its application to eco-routing navigation. Transp. Res. Part C Emerg Technol. 2016, 68, 194–214. [Google Scholar] [CrossRef]
- Bandeira, J.M.; Almeida, T.G.; Khattak, A.J.; Rouphail, N.M.; Coelho, M.C. Generating emissions information for route selection: Experimental monitoring and routes characterization. J. Intell. Transp. Syst. 2013, 17, 3–17. [Google Scholar] [CrossRef]
- Mensing, F.; Bideaux, E.; Trigui, R.; Ribet, J.; Jeanneret, B. Eco-driving: An economic or ecologic driving style? Transp. Res. Part C 2013, 38, 110–121. [Google Scholar] [CrossRef]
- Boriboonsomsin, K.; Barth, M.J.; Zhu, W.; Vu, A. Eco-routing navigation system based on multisource historical and real-time traffic information. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1694–1704. [Google Scholar] [CrossRef]
- Lin, Y.C.; Nguyen, H. Development of an eco-cruise control system based on digital topographical data. Inventions 2016, 1, 19. [Google Scholar] [CrossRef]
- Guo, L.; Huang, S.; Sadek, A.W. An evaluation of environmental benefits of time-dependent green routing in the greater Buffalo–Niagara region. J. Intell. Transp. Syst. 2013, 17, 18–30. [Google Scholar] [CrossRef]
- Transportation Research Board (TRB). Highway Capacity Manual 2010, 6th ed.; National Academy of Sciences: Washington, DC, USA, 2010; ISBN 978-0-309-16077-3. [Google Scholar]
- OBDKey. KBM Systems Ltd.: London, UK, 2019. Available online: http://www.obdkey.com (accessed on 15 June 2019).
- COPERT 5.2.2. Emisia, S.A.: Thessaloniki, Greece, 2019. Available online: https://www.emisia.com/utilities/copert/download/ (accessed on 15 June 2019).
- European Union. Regulation (EC) No 715/2007 of the European Parliament and of the Council of 20 June 2007 on Type Approval of Motor Vehicles with Respect to Emissions from Light Passenger and Commercial Vehicles (Euro 5 and Euro 6) and on Access to Vehicle Repair and Maintenance Information. 2007. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32007R0715 (accessed on 15 June 2019).
- UNESCO (United Nations, Educational, Scientific and Cultural Organization). Available online: http://www.ciudadespatrimonio.org/ciudades/index.php?cd=3 (accessed on 15 June 2019).
- Ayuntamiento de Cáceres. Plan de Infraestructuras para la Movilidad Urbana Sostenible. 2014. Available online: http://zetaestaticos.com/comun/upload/0/580/580017.pdf (accessed on 15 June 2019).
- U.S. Department of Transportation. Highway Functional Classification: Concepts, Criteria and Procedure. 2013. Available online: https://www.fhwa.dot.gov/planning/processes/statewide/related/highway_functional_classifications/fcauab.pdf (accessed on 15 June 2019).
- Dirección General de Tráfico. Censo Conductores 2017. Available online: http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/censo-conductores/tablas-estadisticas/2017/ (accessed on 15 June 2019).
- Dirección General de Tráfico. Parque de Vehículos por Provincias. 2018. Available online: http://www.dgt.es/es/seguridad-vial/estadisticas-e-indicadores/parque-vehiculos/tablas-estadisticas/ (accessed on 15 June 2019).
- Instituto para la Diversificación y Ahorro de la Energía (IDAE). Consumo de Carburante y Emisiones de CO2 en Coches Nuevos. 2019. Available online: http://coches.idae.es/base-datos/marca-y-modelo (accessed on 15 June 2019).
- Ayuntamiento de Cáceres. Estudio de Tráfico y Movilidad. Revisión y Adaptación del Plan General Municipal de Cáceres. 2010. Available online: https://sig.caceres.es/PGM2010/TOMO_VI_EST_TRAFICO/ESTUDIO_DE_TRAFICO_REFUNDIDO.pdf (accessed on 15 June 2019).
- Coloma, J.F.; García, M.; Wang, Y. Eco-Driving Effects Depending on The Travelled Road. Correlation Between Fuel Consumption Parameters. Transp. Res. Procedia 2018, 33, 259–266. [Google Scholar] [CrossRef]
- Ericsson, E. Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transp. Res. Part D 2001, 6, 325–345. [Google Scholar] [CrossRef]
- Andersen, O.; Jensen, C.S.; Torp, K.; Yang, B. Ecotour: Reducing the environmental footprint of vehicles using eco-routes. In Proceedings of the 2013 IEEE 14th International Conference on Mobile Data Management, Milan, Italy, 3–6 June 2013; Volume 1, pp. 338–340. [Google Scholar]
- Kim, D.W.; Yoon, J.W.; Park, S.; Kim, K.; Lee, T. Fuel consumption parameters for realizing and verifying fuel consumption prospect algorithm of vehicle driving route information system. Int. J. Automot. Technol. 2013, 14, 955–964. [Google Scholar] [CrossRef]
- Rakha, H.A.; Ahn, K.; Moran, K. Integration framework for modeling eco-routing strategies: Logic and preliminary results. Int. J. Trans. Sci. Technol. 2012, 1, 259–274. [Google Scholar] [CrossRef]
- Zhou, M.; Jin, H.; Wang, W. A review of vehicle fuel consumption models to evaluate eco-driving and eco-routing. Transp. Res. Part D Transp. Environ. 2016, 49, 203–218. [Google Scholar] [CrossRef]
- Dhaou, I.B. Fuel estimation model for ECO-driving and ECO-routing. In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden, Germany, 5–9 June 2011; pp. 37–42. [Google Scholar]
- Perez-Prada, F.; Monzon, A.; Valdes, C. Managing traffic flows for cleaner cities: The role of green navigation systems. Energies 2017, 10, 791. [Google Scholar] [CrossRef]
- Sun, J.; Liu, H.X. Stochastic eco-routing in a signalized traffic network. Transp. Res. Procedia 2015, 7, 110–128. [Google Scholar] [CrossRef]
- Jereb, B.; Batkovič, T.; Herman, L.; Šipek, G.; Kovše, Š.; Gregorič, A.; Močnik, G. Exposure to Black Carbon during Bicycle Commuting–Alternative Route Selection. Atmosphere 2018, 9, 21. [Google Scholar] [CrossRef]
- Garcia-Castro, A.; Monzon, A.; Valdes, C.; Romana, M. Modelling different penetration rates of eco-driving in urban areas. Impacts on traffic flow and emissions. Int. J. Sustain. Transp. 2017, 11, 282–294. [Google Scholar] [CrossRef]
- Lejri, D.; Can, A.; Schiper, N.; Leclercq, L. Accounting for traffic speed dynamics when calculating COPERT and PHEM pollutant emissions at the urban scale. Transp. Res. Part D Transp. Environ. 2018, 63, 588–603. [Google Scholar] [CrossRef] [Green Version]
Type | Route | Lanes | Length (km) | Travel Time (min) | Average Velocity (km/h) | Speed Limit (km/h) | Average Slope (%) | AADT (vehicles/day) [25] |
---|---|---|---|---|---|---|---|---|
Urban Roads | 1—Local street | 1 × 1 lanes | 6.1 | 15 | 24.4 | 50 | 2.9 | 14960 |
2—Urban collector | 2 × 2 lanes separated by barrier. Parking both sides | 6.7 | 14 | 28.7 | 30-50 | 2.4 | 14850 | |
3—Perimeter | 2 × 2 separated by barrier or continuous double line | 6.7 | 13 | 31 | 50 | 2.2 | 12930 | |
Bypass | 4—Arterial road | 2 × 2 separated by barrier. | 10.3 | 12 | 51.5 | 50-80 | 2.0 | 10500 |
Items | Diesel 1.6 | Petrol 1.2 |
---|---|---|
Commercial segment | Medium | Mini |
Transmission Gearbox | Manual | Manual |
Authorized mass (kg) | 2010 | 1305 |
Power (HP) | 110.05 | 93.75 |
Dimensions (LxWxH) (mm) | 4419 × 1814 × 1510 | 3546 × 1627 × 1488 |
Seats | 5 | 4 |
CO2 emissions (g/km) | 109 | 115 |
CO2 emissions (g/l) | 2658 | 2347 |
Consumption classification |
Country Month/Year | Environmental Information | Vehicle Characteristics | Share | ||||||
---|---|---|---|---|---|---|---|---|---|
Min Temp | Max Temp | Humidity | Category | Fuel | Segment | Euro Standard | Urban Peak | Urban off Peak | |
Spain | 13.4 C | 26.8 C | 47% | Passenger | Petrol | Mini | Euro 5 | 25% | 75% |
May/2017 | Diesel | Medium |
Vehicle | Total km Driven | Number of Trips | |||||
---|---|---|---|---|---|---|---|
R1 Local Street | R2 Urban Collector | R3 Perimeter | R4 Arterial Road | Total | |||
Type | Diesel, 1.6 l | 1010 | 39 | 35 | 35 | 39 | 148 |
Petrol, 1.2 l | 1091 | 40 | 34 | 34 | 34 | 142 | |
Total | - | 2101 | 79 | 69 | 69 | 73 | 290 |
Parameters/Standard Deviations | R1 Local Street | R2 Urban Collector | R3 Perimeter | R4 Arterial Road | ||||
---|---|---|---|---|---|---|---|---|
Average length (km) | 6.1 | 0.5 | 6.7 | 0.6 | 6.7 | 0.53 | 10.3 | 0.81 |
Average number of stops | 6.54 | 0.87 | 4.97 | 0.6 | 4.97 | 0.61 | 3.01 | 0.98 |
Average rpm | 1440 | 580 | 1493 | 502 | 1585 | 503 | 1812 | 648 |
Maximum rpm | 3506 | 665 | 3406 | 601 | 3536 | 614 | 3741 | 613 |
Average positive acceleration m/s2 | 0.35 | 0.11 | 0.36 | 0.1 | 0.44 | 0.11 | 0.54 | 0.13 |
Maximum positive acceleration m/s2 | 2.31 | 0.82 | 2.07 | 0.8 | 2.25 | 1.05 | 2.66 | 0.96 |
Average negative acceleration m/s2 | −0.41 | 0.13 | −0.40 | 0.11 | −0.48 | 0.12 | −0.57 | 0.15 |
Maximum negative acceleration m/s2 | −2.35 | 1.09 | −2.31 | 1.12 | −2.54 | 1.12 | −2.95 | 1.31 |
Factor | Local Street, Urban Collector, Perimeter (Urban Roads) | Arterial Road (Bypass) |
---|---|---|
Fuel Consumption/CO2 emissions | Positive | Negative |
Pollutants emissions (CO, NOx, PM) | Positive | Negative |
Population affected by pollutants | Negative | Positive |
Travel time | Negative | Positive |
Congestion | Negative | Positive |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coloma, J.F.; García, M.; Wang, Y.; Monzón, A. Environmental Strategies for Selecting Eco-Routing in a Small City. Atmosphere 2019, 10, 448. https://doi.org/10.3390/atmos10080448
Coloma JF, García M, Wang Y, Monzón A. Environmental Strategies for Selecting Eco-Routing in a Small City. Atmosphere. 2019; 10(8):448. https://doi.org/10.3390/atmos10080448
Chicago/Turabian StyleColoma, Juan Francisco, Marta García, Yang Wang, and Andrés Monzón. 2019. "Environmental Strategies for Selecting Eco-Routing in a Small City" Atmosphere 10, no. 8: 448. https://doi.org/10.3390/atmos10080448
APA StyleColoma, J. F., García, M., Wang, Y., & Monzón, A. (2019). Environmental Strategies for Selecting Eco-Routing in a Small City. Atmosphere, 10(8), 448. https://doi.org/10.3390/atmos10080448