Performance of the RegCM4.6 for High-Resolution Climate and Extreme Simulations over Tibetan Plateau
Abstract
:1. Introduction
2. Material and Methods
2.1. The Regional Climate Model
2.2. Observational Datasets and Chosen Indicators
3. Results
3.1. Spatial Pattern of Seasonal Mean Temperature and Precipitation
3.2. Interannual Variations of Annual Mean Temperature and Precipitation Anomalies
3.3. Annual Cycle of Monthly Mean Temperature and Precipitation
3.4. Daily Precipitation
3.5. Uncertainties
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qiu, J. China: The Third Pole. Nat. Cell Biol. 2008, 454, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Yao, T.; Xue, Y.; Chen, D.; Chen, F.; Thompson, L.; Cui, P.; Koike, T.; Lau, W.K.-M.; Lettenmaier, D.; Mosbrugger, V.; et al. Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bull. Am. Meteorol. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Duan, A.M.; Wu, G. Role of the Tibetan Plateau Thermal Forcing in the Summer Climate Patterns Over Subtropical Asia. Clim. Dyn. 2005, 24, 793–807. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Yin, Y.; Zheng, D.; Yang, Q. Climatic Trends Over the Tibetan Plateau During 1971–2000. J. Geogr. Sci. 2007, 17, 141–151. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, J.; Guan, X.; Chen, B.; Zhang, L. Long-Term Trends of Precipitable Water and Precipitation Over the Tibetan Plateau Derived from Satellite and Surface Measurements. J. Quant. Spectrosc. Radiat. Transf. 2013, 122, 64–71. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Aguilar, E.; Yan, Y. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res. Space Phys. 2008, 113, 113. [Google Scholar] [CrossRef] [Green Version]
- You, Q.; Kang, S.; Wu, Y.; Yan, Y. Climate Change Over the Yarlung Zangbo River Basin during 1961–2005. J. Geogr. Sci. 2007, 17, 409–420. [Google Scholar] [CrossRef]
- Bibi, S.; Wang, L.; Li, X.; Zhou, J.; Chen, D.; Yao, T. Climatic and Associated Cryospheric, Biospheric, and Hydrological Changes on the Tibetan Plateau: A Review. Int. J. Clim. 2018, 38, e1–e17. [Google Scholar] [CrossRef] [Green Version]
- Biemans, H.; Siderius, C.; Lutz, A.F.; Nepal, S.; Ahmad, B.; Hassan, S.M.T.; Von Bloh, W.; Wijngaard, R.R.; Wester, P.; Shrestha, A.B.; et al. Importance of Snow and Glacier Meltwater for Agriculture on the Indo-Gangetic Plain. Nat. Sustain. 2019, 2, 594–601. [Google Scholar] [CrossRef]
- Klein, J.A.; Hopping, K.A.; Yeh, E.T.; Nyima, Y.; Boone, R.B.; Galvin, K.A. Unexpected Climate Impacts on the Tibetan Plateau: Local and Scientific Knowledge in Findings of Delayed Summer. Glob. Environ. Chang. 2014, 28, 141–152. [Google Scholar] [CrossRef]
- Cuo, L.; Zhang, Y.; Wang, Q.; Zhang, L.; Zhou, B.; Hao, Z.; Su, F. Climate Change on the Northern Tibetan Plateau during 1957–2009: Spatial Patterns and Possible Mechanisms. J. Clim. 2013, 26, 85–109. [Google Scholar] [CrossRef] [Green Version]
- Maurer, J.M.; Schaefer, J.M.; Rupper, S.; Corley, A. Acceleration of Ice Loss Across the Himalayas Over the Past 40 Years. Sci. Adv. 2019, 5, eaav7266. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Yu, Z.; Liang, Z.; Acharya, K. Hydrologic Response of a High Altitude Glacierized Basin in the Central Tibetan Plateau. Glob. Planet Chang. 2014, 118, 69–84. [Google Scholar] [CrossRef]
- Li, B.; Zhang, J.; Yu, Z.; Liang, Z.; Chen, L.; Acharya, K. Climate Change Driven Water Budget Dynamics of a Tibetan Inland Lake. Glob. Planet Chang. 2017, 150, 70–80. [Google Scholar] [CrossRef]
- Gu, H.; Yu, Z.; Wang, J.; Wang, G.; Yang, T.; Ju, Q.; Yang, C.; Xu, F.; Fan, C. Assessing CMIP5 General Circulation Model Simulations of Precipitation and Temperature Over China. Int. J. Climatol. 2014, 35, 2431–2440. [Google Scholar] [CrossRef]
- Gu, H.; Yu, Z.; Yang, C.; Ju, Q.; Yang, T.; Zhang, D. High-Resolution Ensemble Projections and Uncertainty Assessment of Regional Climate Change Over China in CORDEX East Asia. Hydrol. Earth Syst. Sci. 2018, 22, 3087–3103. [Google Scholar] [CrossRef] [Green Version]
- Su, F.; Duan, X.; Chen, D.; Hao, Z.; Cuo, L. Evaluation of the Global Climate Models in the CMIP5 over the Tibetan Plateau. J. Clim. 2013, 26, 3187–3208. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Dong, W. Assessment of Simulations of Snow Depth in the Qinghai-Tibetan Plateau Using CMIP5 Multi-Models. Arct. Antarct. Alp. Res. 2015, 47, 611–625. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Wang, G.; Yu, Z.; Mei, R. Assessing Future Climate Changes and Extreme Indicators in East and South Asia Using the RegCM4 Regional Climate Model. Clim. Chang. 2012, 114, 301–317. [Google Scholar] [CrossRef]
- Xu, J.; Koldunov, N.V.; Remedio, A.R.; Sein, D.; Zhi, X.; Jiang, X.; Xu, M.; Zhu, X.; Fraedrich, K.; Jacob, D. On the Role of Horizontal Resolution Over the Tibetan Plateau in the REMO Regional Climate Model. Clim. Dyn. 2018, 51, 4525–4542. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Xiao, L.; Chen, D.; Xu, J.; Zhang, H. Comparison Between Past and Future Extreme Precipitations Simulated by Global and Regional Climate Models Over the Tibetan Plateau. Int. J. Climatol. 2017, 38, 1285–1297. [Google Scholar] [CrossRef]
- Sato, T.; Yoshikane, T.; Satoh, M.; Miura, H.; Fujinami, H. Resolution Dependency of the Diurnal Cycle of Convective Clouds over the Tibetan Plateau in a Mesoscale Model. J. Meteorol. Soc. Jpn. 2008, 86, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.-J.; Shi, Y.; Giorgi, F. Comparison of Convective Parameterizations in RegCM4 Experiments Over China with CLM as the Land Surface Model. Atmos. Ocean. Sci. Lett. 2016, 9, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Xiao, L.; Chen, D.; Chen, F.; Xu, J.; Xu, Y. Quantification of the Relative Role of Land-Surface Processes and Large-Scale Forcing in Dynamic Downscaling Over the Tibetan Plateau. Clim. Dyn. 2016, 48, 1705–1721. [Google Scholar] [CrossRef]
- Wang, X.; Pang, G.; Yang, M.; Zhao, G. Evaluation of Climate on the Tibetan Plateau Using ERA-Interim Reanalysis and Gridded Observations during the Period 1979–2012. Quat. Int. 2017, 444, 76–86. [Google Scholar] [CrossRef]
- Gao, Y.; Li, K.; Chen, F.; Jiang, Y.; Lu, C. Assessing and Improving Noah-MP Land Model Simulations for the Central Tibetan Plateau. J. Geophys. Res. Atmos. 2015, 120, 9258–9278. [Google Scholar] [CrossRef]
- Wang, X.; Yang, M.; Pang, G. Sensitivity of Regional Climate Simulations to Land-Surface Schemes on the Tibetan Plateau. Clim. Res. 2014, 62, 25–43. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Wortmann, M.; Shi, P.; Hattermann, F.; Lobanova, A.; Aich, V. Analysis of Multi-Dimensional Hydrological Alterations Under Climate Change for Four Major River Basins in Different Climate Zones. Clim. Chang. 2016, 141, 483–498. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Xu, C.-Y.; Gourley, J.J.; Shi, P. Understanding the Discharge Regime of a Glacierized Alpine Catchment in the Tianshan Mountains Using an Improved HBV-D Hydrological Model. Glob. Planet Chang. 2019, 172, 211–222. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Yang, X.H.; Hao, Y.; Guo, H.; Kossi, F.; Xin, Z.; Wei, W.; Zhang, Z.; Zhang, X.; et al. Analysis of Precipitation Extremes in the Qinghai-Tibetan Plateau, China: Spatio-Temporal Characteristics and Topography Effects. Atmosphere 2017, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Nepal, S.; Shrestha, A.B. Impact of Climate Change on the Hydrological Regime of the Indus, Ganges and Brahmaputra River Basins: A Review of the Literature. Int. J. Water Resour. Dev. 2015, 31, 201–218. [Google Scholar] [CrossRef] [Green Version]
- Lutz, A.F.; Immerzeel, W.W.; Shrestha, A.B.; Bierkens, M.F.P. Consistent Increase in High Asia’s Runoff Due to Increasing Glacier Melt and Precipitation. Nat. Clim. Chang. 2014, 4, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Yu, Z.; Peltier, W.R.; Wang, X. Studies and Comprehensive Evaluation of RegCM4.6.1 High-Resolution Climate Simulations Over the Tibetan Plateau. Clim. Dyn. 2020, 54, 3781–3801. [Google Scholar] [CrossRef]
- Oh, S.-G.; Park, J.-H.; Lee, S.-H.; Suh, M.-S. Assessment of the RegCM4 over East Asia and Future Precipitation Change Adapted to the RCP Scenarios. J. Geophys. Res. Atmos. 2014, 119, 2913–2927. [Google Scholar] [CrossRef]
- Pal, J.S.; Giorgi, F.; Bi, X.; Elguindi, N.; Solmon, F.; Gao, X.; Rauscher, S.A.; Francisco, R.; Zakey, A.; Winter, J.; et al. Regional Climate Modeling for the Developing World: The ICTP RegCM3 and RegCNET. Bull. Am. Meteorol. Soc. 2007, 88, 1395–1410. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Giorgi, F. Use of the RegCM System over East Asia: Review and Perspectives. Engineering 2017, 3, 766–772. [Google Scholar] [CrossRef]
- Gao, X.; Ying, S.; Giorgi, F. A High Resolution Simulation of Climate Change Over China. Sci. China Earth Sci. 2010, 54, 462–472. [Google Scholar] [CrossRef]
- Kang, S.; Im, E.-S.; Ahn, J.-B. The Impact of Two Land-Surface Schemes on the Characteristics of Summer Precipitation Over East Asia From the RegCM4 Simulations. Int. J. Climatol. 2014, 34, 3986–3997. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, G.; Gao, X. Role of Resolution in Regional Climate Change Projections Over China. Clim. Dyn. 2017, 51, 2375–2396. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Kang, S. Double-Nested Dynamical Downscaling Experiments over the Tibetan Plateau and Their Projection of Climate Change under Two RCP Scenarios. J. Atmos. Sci. 2013, 70, 1278–1290. [Google Scholar] [CrossRef]
- Wang, X.; Pang, G.; Yang, M.; Wan, G. Effects of Modified Soil Water-Heat Physics on RegCM4 Simulations of Climate Over the Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 6692–6712. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Jones, C.; Asrar, G.R. Addressing Climate Information Needs at the Regional Level: The CORDEX Framework. WMO Bull. 2009, 58, 175–183. [Google Scholar]
- Kiehl, J.T.; Hack, J.J.; Bonan, G.B.; Boville, B.A.; Breigleb, B.P.; Williamson, D.; Rasch, P. Description of the Ncar Community Climate Model CCM3; National Center for Atmospheric Research: Boulder, CO, USA, 1996. [Google Scholar]
- Holtslag, A.A.M.; Boville, B.A. Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model. J. Clim. 1993, 6, 1825–1842. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. A Scheme for Representing Cumulus Convection in Large-Scale Models. J. Atmos. Sci. 1991, 48, 2313–2329. [Google Scholar] [CrossRef]
- Zeng, X.; Zhao, M.; Dickinson, R.E. Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data. J. Clim. 1998, 11, 2628–2644. [Google Scholar] [CrossRef]
- Oleson, K.W.; Niu, G.-Y.; Yang, Z.-L.; Lawrence, D.; Thornton, P.; Lawrence, P.J.; Stöckli, R.; Dickinson, R.E.; Bonan, G.B.; Levis, S.; et al. Improvements to the Community Land Model and Their Impact on the Hydrological Cycle. J. Geophys. Res. Space Phys. 2008, 113. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, T. Water Vapor Transport for Summer Precipitation Over the Tibetan Plateau: Multidata Set Analysis. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Yao, T.; MacClune, K.; White, J.W.C.; Schilla, A.; Vaughn, B.; Vachon, R.; Ichiyanagi, K. Stable Isotopic Variations in West China: A Consideration of Moisture Sources. J. Geophys. Res. Space Phys. 2007, 112, 112. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J. Impact of Moisture Divergence on Systematic Errors in Precipitation Around the Tibetan Plateau in a General Circulation Model. Clim. Dyn. 2016, 47, 2923–2934. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, F. Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 Reanalysis Datasets against Independent Sounding Observations over the Tibetan Plateau. J. Clim. 2013, 26, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Brands, S.; Herrera, S.; Fernández, J.; Gutiérrez, J.M. How Well Do CMIP5 Earth System Models Simulate Present Climate Conditions in Europe and Africa? Clim. Dyn. 2013, 41, 803–817. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W. An Improved in Situ and Satellite SST Analysis for Climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- He, J.; Yang, K.; Tang, W.; Lu, H.; Qin, J.; Chen, Y.; Li, X. The First High-Resolution Meteorological Forcing Dataset for Land Process Studies Over China. Sci. Data 2020, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, K.; He, J.; Qin, J.; Shi, J.; Du, J.; He, Q. Improving Land Surface Temperature Modeling for Dry Land of China. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Yang, K.; He, J.; Tang, W.; Qin, J.; Cheng, C.C. On Downward Shortwave and Longwave Radiations Over High Altitude Regions: Observation and Modeling in the Tibetan Plateau. Agric. For. Meteorol. 2010, 150, 38–46. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 1. Model Evaluation in the Present Climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing Multiple Aspects of Model Performance in a Single Diagram. J. Geophys. Res. Space Phys. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Lin, C.; Chen, D.; Yang, K.; Ou, T. Impact of Model Resolution on Simulating the Water Vapor Transport through the Central Himalayas: Implication for Models’ Wet Bias Over the Tibetan Plateau. Clim. Dyn. 2018, 51, 3195–3207. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M.; Stephenson, D.B.; Christensen, O.B.; Ferro, C.A.T.; Frei, C.; Goyette, S.; Halsnaes, K.; Holt, T.; Jylhä, K.; Koffi, B.; et al. Future Extreme Events in European Climate: An Exploration of Regional Climate Model Projections. Clim. Chang. 2007, 81, 71–95. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, M.; Romera, R.; Sánchez, E.; Fita, L.; Cardoso, R.M.; Jimenez-Guerrero, P.; Montavez, J.P.; Cabos, W.; Liguori, G.; Gaertner, M. Present-Climate Precipitation and Temperature Extremes Over Spain From a Set of High Resolution RCMs. Clim. Res. 2013, 58, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Yu, Z.; Yang, C.; Ju, Q. Projected Changes in Hydrological Extremes in the Yangtze River Basin with an Ensemble of Regional Climate Simulations. Water 2018, 10, 1279. [Google Scholar] [CrossRef] [Green Version]
- Halenka, T.; Kalvová, J.; Chládová, Z.; Demeterová, A.; Zemánková, K.; Belda, M. On the Capability of RegCM to Capture Extremes in Long Term Regional Climate Simulation—Comparison with the Observations for Czech Republic. Theor. Appl. Climatol. 2006, 86, 125–145. [Google Scholar] [CrossRef]
- Seth, A.; Rojas, M.; Liebmann, B.; Qian, J. Daily Rainfall Analysis for South America From a Regional Climate Model and Station Observations. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Zhang, S.; Lu, S.; Bao, Y.; Ma, D. Sensitivity of Precipitation Over China to Different Cumulus Parameterization Schemes in RegCM4. J. Meteorol. Res. 2015, 29, 119–131. [Google Scholar] [CrossRef]
- Lüthi, D.; Cress, A.; Davies, H.C.; Frei, C.; Schär, C. Interannual Variability and Regional Climate Simulations. Theor. Appl. Climatol. 1996, 53, 185–209. [Google Scholar] [CrossRef]
- Vidale, P.L. Predictability and Uncertainty in a Regional Climate Model. J. Geophys. Res. Space Phys. 2003, 108, 4586. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, J.; Chen, D. Evaluation of WRF Mesoscale Climate Simulations Over the Tibetan Plateau during 1979–2011. J. Clim. 2015, 28, 2823–2841. [Google Scholar] [CrossRef] [Green Version]
- Khandu; Awange, J.; Anyah, R.; Kuhn, M.; Fukuda, Y. Assessing Regional Climate Simulations of the Last 30 Years (1982–2012) Over Ganges–Brahmaputra–Meghna River Basin. Clim. Dyn. 2016, 49, 2329–2350. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X. Evaluation of Multireanalysis Products with In Situ Observations Over the Tibetan Plateau. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Feng, J.; Fu, C. Inter-Comparison of 10-Year Precipitation Simulated by Several RCMs for Asia. Adv. Atmos. Sci. 2006, 23, 531–542. [Google Scholar] [CrossRef]
- Guo, D.; Sun, J.; Yu, E.-T. Evaluation of CORDEX Regional Climate Models in Simulating Temperature and Precipitation Over the Tibetan Plateau. Atmos. Ocean. Sci. Lett. 2018, 11, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Wu, Y.; Li, Y.; Shu, J. Simulation of Interannual Variability of Summer Rainfall Over the Tibetan Plateau by the Weather Research and Forecasting Model. Int. J. Climatol. 2018, 39, 756–767. [Google Scholar] [CrossRef]
- Gerber, F.; Besic, N.; Sharma, V.; Mott, R.; Daniels, M.; Gabella, M.; Berne, A.; Germann, U.; Lehning, M. Spatial Variability in Snow Precipitation and Accumulation in COSMO–WRF Simulations and Radar Estimations Over Complex Terrain. Cryosphere 2018, 12, 3137–3160. [Google Scholar] [CrossRef] [Green Version]
- Russo, E.; Kirchner, I.; Pfahl, S.; Schaap, M.; Cubasch, U. Sensitivity Studies with the Regional Climate Model COSMO-CLM 5.0 over the CORDEX Central Asia Domain. Geosci. Model Dev. 2019, 12, 5229–5249. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Sobel, A.H.; Zhang, F.; Sun, Y.Q.; Yue, Y.; Zhou, L. Regional Simulation of the October and November MJO Events Observed during the CINDY/DYNAMO Field Campaign at Gray Zone Resolution. J. Clim. 2015, 28, 2097–2119. [Google Scholar] [CrossRef]
- Huang, D.; Gao, S. Impact of Different Reanalysis Data on WRF Dynamical Downscaling over China. Atmos. Res. 2018, 200, 25–35. [Google Scholar] [CrossRef]
- Zhang, Q.; Pan, Y.; Wang, S.; Xu, J.; Tang, J. High-Resolution Regional Reanalysis in China: Evaluation of 1 Year Period Experiments. J. Geophys. Res. Atmos. 2017, 122, 10–801. [Google Scholar] [CrossRef]
- Kanamaru, H.; Kanamitsu, M. Scale-Selective Bias Correction in a Downscaling of Global Analysis Using a Regional Model. Mon. Weather Rev. 2007, 135, 334–350. [Google Scholar] [CrossRef]
- Moalafhi, D.B.; Sharma, A.; Evans, J.P.; Mehrotra, R.; Rocheta, E. Impact of Bias-Corrected Reanalysis-Derived Lateral Boundary Conditions on WRF Simulations. J. Adv. Model Earth Syst. 2017, 9, 1828–1846. [Google Scholar] [CrossRef] [Green Version]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation Seasonality and Variability over the Tibetan Plateau as Resolved by the High Asia Reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef] [Green Version]
- Hasson, S.U. Seasonality of Precipitation over Himalayan Watersheds in CORDEX South Asia and their Driving CMIP5 Experiments. Atmosphere 2016, 7, 123. [Google Scholar] [CrossRef] [Green Version]
- Hasson, S.U.; Böhner, J.; Chishtie, F. Low Fidelity of CORDEX and Their Driving Experiments Indicates Future Climatic Uncertainty Over Himalayan Watersheds of Indus Basin. Clim. Dyn. 2018, 52, 777–798. [Google Scholar] [CrossRef]
Acronym | Definition | Unit |
---|---|---|
RX1DAY | Maximum daily precipitation | mm/day |
SDII | Simple daily intensity index (the annual total precipitation divided by the number of wet days) | mm/day |
R10MM | Heavy precipitation days (days with daily precipitation larger than 10 mm) | day |
CDD | Consecutive dry days index (days with daily precipitation less than 1 mm) | day |
CWD | Consecutive wet days index | day |
Temperature (°C) | Precipitation (mm/day) | |||
---|---|---|---|---|
R30 | R10 | R30 | R10 | |
BIAS | ||||
Winter (DJF) | −1.56 | 0.47 | 0.62 | 0.78 |
Spring (MAM) | −4.58 | −2.29 | 0.87 | 0.81 |
Summer (JJA) | −2.37 | 0.59 | 1.4 | 0.5 |
Autumn (SON) | −1.83 | 0.69 | 1.06 | 1.03 |
RMSE | ||||
DJF | 4.35 | 3.03 | 1.03 | 1.27 |
MAM | 5.52 | 3.27 | 2.17 | 2.2 |
JJA | 4.56 | 3.37 | 6.24 | 2.2 |
SON | 3.93 | 2.44 | 3.02 | 2.59 |
SCOR | ||||
DJF | 0.71 | 0.85 | 0.48 | 0.38 |
MAM | 0.84 | 0.91 | 0.65 | 0.6 |
JJA | 0.74 | 0.82 | 0.37 | 0.48 |
SON | 0.77 | 0.87 | 0.48 | 0.51 |
Index | OBS | R30 | R10 | |
---|---|---|---|---|
TP | R10mm | 6.4 | 14.5 | 12.9 |
RX1DAY | 18.6 | 32.9 | 25.5 | |
CWD | 11.0 | 16.8 | 18.4 | |
CDD | 81.5 | 38.6 | 36.9 | |
SDII | 3.7 | 4.6 | 4.1 | |
Yellow river | R10mm | 8.5 | 9.8 | 4.8 |
RX1DAY | 22.3 | 27.5 | 19.0 | |
CWD | 10.2 | 15.0 | 10.9 | |
CDD | 65.7 | 47.2 | 43.4 | |
SDII | 4.4 | 4.1 | 3.3 | |
Yangtze river | R10mm | 13.0 | 20.8 | 17.1 |
RX1DAY | 25.1 | 41.3 | 30.1 | |
CWD | 15.5 | 21.9 | 22.0 | |
CDD | 59.8 | 32.5 | 32.2 | |
SDII | 4.8 | 5.2 | 4.6 | |
Mekong river | R10mm | 12.3 | 21.5 | 19.8 |
RX1DAY | 23.7 | 43.2 | 36.1 | |
CWD | 15.9 | 24.7 | 25.8 | |
CDD | 56.8 | 32.4 | 29.4 | |
SDII | 4.7 | 5.4 | 4.9 | |
Salween river | R10mm | 13.0 | 23.8 | 23.0 |
RX1DAY | 24.5 | 48.5 | 37.9 | |
CWD | 17.2 | 24.1 | 28.3 | |
CDD | 53.4 | 31.3 | 27.9 | |
SDII | 4.7 | 5.8 | 5.3 | |
Brahmaputra river | R10mm | 12.0 | 44.3 | 38.9 |
RX1DAY | 26.9 | 84.7 | 52.4 | |
CWD | 17.7 | 34.4 | 44.0 | |
CDD | 64.8 | 32.1 | 32.8 | |
SDII | 4.5 | 9.5 | 7.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, H.; Wang, X. Performance of the RegCM4.6 for High-Resolution Climate and Extreme Simulations over Tibetan Plateau. Atmosphere 2020, 11, 1104. https://doi.org/10.3390/atmos11101104
Gu H, Wang X. Performance of the RegCM4.6 for High-Resolution Climate and Extreme Simulations over Tibetan Plateau. Atmosphere. 2020; 11(10):1104. https://doi.org/10.3390/atmos11101104
Chicago/Turabian StyleGu, Huanghe, and Xiaoyan Wang. 2020. "Performance of the RegCM4.6 for High-Resolution Climate and Extreme Simulations over Tibetan Plateau" Atmosphere 11, no. 10: 1104. https://doi.org/10.3390/atmos11101104
APA StyleGu, H., & Wang, X. (2020). Performance of the RegCM4.6 for High-Resolution Climate and Extreme Simulations over Tibetan Plateau. Atmosphere, 11(10), 1104. https://doi.org/10.3390/atmos11101104