Interdecadal Change in the Relationship between Northern and Southern Hemisphere Meridional Circulation over the Western Pacific Ocean
Abstract
:1. Introduction
2. Datasets and Methods
3. Climatology of the Atmospheric Circulations over the Western Pacific Ocean
4. Interdecadal Change of the Relationship between the NHMC and SHMC
5. Possible Mechanisms
6. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nitta, T. Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Jpn. 1987, 64, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Wu, R.; Lau, K.M. Interannual Variability of the Asian Summer Monsoon: Contrasts between the Indian and the Western North Pacific–East Asian Monsoons. J. Clim. 2001, 14, 4073–4090. [Google Scholar] [CrossRef]
- Xue, F.; Dong, X.; Lin, R.P. Two anomalous convective systems in the tropical western Pacific and their influences on the East Asian summer monsoon. Atmos. Ocean. Sci. Lett. 2017, 10, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, H.; Chen, D. Precipitation anomalies in the Pan-Asian monsoon region during El Niño decaying summer 2016. Int. J. Climatol. 2018, 38, 3618–3632. [Google Scholar] [CrossRef]
- McCreary, J.P.; Anderson, D.L.T. A simple model of El Niño and the southern oscillation. Mon. Weather Rev. 1984, 112, 934–946. [Google Scholar] [CrossRef] [Green Version]
- Schopf, P.S.; Suarez, M.J. Vacillations in a coupled ocean–atmosphere model. J. Atmos. Sci. 1988, 45, 549–566. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Huang, R. Dynamical roles of zonal wind stresses over the tropical Pacific on the occurring and vanishing of El Niño. Part I: Diagnostic and theoretical analyses. Chin. J. Atmos. Sci. 1998, 22, 587–599. (In Chinese) [Google Scholar]
- Li, C.; Mu, M. El Niño occurrence and sub-surface ocean temperature anomalies in the Pacific warm pool. Chin. J. Atmos. Sci. 1999, 23, 513–521. (In Chinese) [Google Scholar] [CrossRef]
- Chang, C.P.; Li, T. A theory for the tropical tropospheric biennial oscillation. J. Atmos. Sci. 2000, 57, 2209–2224. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Sun, F. Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Jpn. 1992, 70, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.H.; Sumi, A.; Kimoto, M. Impact of El Niño on the East Asian monsoon: A diagnostic study of the 86/87 and 91/92 events. J. Meteor. Soc. Jpn. 1996, 74, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Lu, R.Y. Interannual variability of the summertime North Pacific subtropical high and its relation to atmospheric convection over the warm pool. J. Meteor. Soc. Jpn. 2001, 79, 771–783. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Wang, H. Pan-Asian Monsoon and its definition, principal modes of precipitation, and variability features. Sci. China Earth Sci. 2012, 55, 1–9. [Google Scholar] [CrossRef]
- Oh, H.; Ha, K.J. Thermodynamic characteristics and responses to ENSO of dominant intraseasonal modes in the East Asian summer monsoon. Clim. Dyn. 2015, 44, 1751–1766. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y. Shift of the principal mode of Pan-Asian monsoon summer precipitation in terms of spatial pattern. Atmos. Oceanic Sci. Lett. 2017, 10, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Carlson, B.E.; Del Genio, A.D. Evidence for strengthening of the tropical general circulation in the 1990s. Science 2002, 295, 838–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohn, B.; Park, S.C. Strengthened tropical circulations in past three decades inferred from water vapor transport. J. Geophys. Res. 2010, 115, D15112. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Lin, P. Poleward shift of subtropical jets inferred from satellite-observed lower-stratospheric temperatures. J. Clim. 2011, 24, 5597–5603. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, K.M.; Sud, Y.; Betts, A. Recent trends of the tropical hydrological cycle inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project data. J. Geophys. Res. 2011, 116, D09101. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Timbal, B.; Evans, A.; Lucas, C.; Smith, I. The Hadley circulation in reanalyses: Climatology, variability and change. J. Clim. 2013, 26, 3357–3376. [Google Scholar] [CrossRef]
- Zhou, B.T.; Wang, H.J. Interannual and interdecadal variations of the Hadley Circulation and its connection with tropical sea surface temperature. Chin. J. Geophys. 2006, 49, 1271–1278. (In Chinese) [Google Scholar] [CrossRef]
- Sun, B. Asymmetric variations in the tropical ascending branches of Hadley circulations and the associated mechanisms and effects. Adv. Atmos. Sci. 2018, 35, 317–333. [Google Scholar] [CrossRef]
- Zhou, B.T.; Cui, X. Modeling the influence of spring Hadley circulation on the summer tropical cyclone frequency in the western North Pacific. Chin. J. Geophys. 2009, 52, 2958–2963. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, B.T.; Cui, X. Modeling the relationship between spring Hadley circulation and the summer precipitation in the Yangtze River Valley. Clim. Environ. Res. 2008, 13, 182–188. (In Chinese) [Google Scholar]
- Chen, S.; Wei, K.; Chen, W.; Song, L. Regional changes in the annual mean Hadley circulation in recent decades. J. Geophys. Res. Atmos. 2014, 119, 7815–7832. [Google Scholar] [CrossRef]
- Huang, R.P.; Chen, S.F.; Chen, W.; Hu, P.; Yu, B. Recent strengthening of the regional Hadley circulation over the western Pacific during boreal spring. Adv. Atmos. Sci. 2019, 36, 1251–1264. [Google Scholar] [CrossRef]
- Ambrizzi, T.; Souza, E.B.; Pulwarty, R.S. The Hadley and Walker regional circulations and associated ENSO impacts on South American seasonal rainfall. In The Hadley Circulation: Present, Past, and Future; Diaz, H.F., Bradley, R.S., Eds.; Kluwer Academic: New York, NY, USA, 2005; pp. 203–235. [Google Scholar]
- Zhao, H.; Moore, G. Trends in the boreal summer regional Hadley and Walker circulations as expressed in precipitation records from Asia and Africa during the latter half of the 20th century. Int. J. Climatol. 2008, 28, 563–578. [Google Scholar] [CrossRef]
- Zeng, G.; Wang, W.C.; Sun, Z.B.; Li, Z.X. Atmospheric circulation cells associated with anomalous East Asian winter monsoon. Adv. Atmos. Sci. 2011, 28, 913–926. [Google Scholar] [CrossRef]
- Freitas, A.C.V.; Aímola, L.; Ambrizzi, T.; Oliveria, C.P. Changes in intensity of the regional Hadley cell in Indian Ocean and its impacts on surrounding regions. Meteorol. Atmos. Phys. 2017, 129, 1–18. [Google Scholar] [CrossRef]
- Huang, R.; Chen, S.; Chen, W.; Hu, P. Interannual variability of regional Hadley circulation intensity over western Pacific during boreal winter and its climatic impact over Asia–Australia region. J. Geophys. Res. Atmos. 2018, 123, 344–366. [Google Scholar] [CrossRef]
- Li, Y.P.; He, J.H. Contrast expermiments on the effect of the SH cold air activity on the SH summer monsoon. J. Nanjing Inst. Meteorol. 1990, 13, 32–39. (In Chinese) [Google Scholar]
- Zhu, Y. Variations of the summer Somali and Australia cross-equatorial flows and the implications for the Asian summer monsoon. Adv. Atmos. Sci. 2012, 29, 509–518. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D. The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year reanalysis project. Bull. Amer. Meteor. Soc. 1995, 77, 437–472. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Smith, T.M.; Reynolds, R.W.; Peterson, T.C.; Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 2008, 21, 2283–2296. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Gershunov, A.; Barett, T.P. Interdecadal modulation of ENSO teleconnections. Bull. Amer. Meteor. Soc. 1998, 79, 2715–2725. [Google Scholar] [CrossRef] [Green Version]
- Mantua, N.J.; Hare, S.R. The Pacific decadal oscillation. J. Oceanogr. 2002, 58, 35–44. [Google Scholar] [CrossRef]
- Wang, L.; Chen, W.; Huang, R.H. Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys. Res. Lett. 2008, 35, L20702. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Yeh, S.W. Influence of the Pacific decadal oscillation on the relationship between El Niño and the northeast Asian summer monsoon. J. Clim. 2010, 23, 4525–4537. [Google Scholar] [CrossRef]
- Feng, J.; Wang, L.; Chen, W. How Does the East Asian Summer Monsoon Behave in the Decaying Phase of El Niño during Different PDO Phases? J. Clim. 2014, 27, 2682–2698. [Google Scholar] [CrossRef]
- Xue, X.; Chen, W.; Chen, S.; Feng, J. PDO modulation of the ENSO impact on the summer South Asian high. Clim. Dyn. 2018, 50, 1393–1411. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Chen, D.; Wang, H. Interdecadal Change in the Relationship between Northern and Southern Hemisphere Meridional Circulation over the Western Pacific Ocean. Atmosphere 2020, 11, 1106. https://doi.org/10.3390/atmos11101106
Gao Y, Chen D, Wang H. Interdecadal Change in the Relationship between Northern and Southern Hemisphere Meridional Circulation over the Western Pacific Ocean. Atmosphere. 2020; 11(10):1106. https://doi.org/10.3390/atmos11101106
Chicago/Turabian StyleGao, Ya, Dong Chen, and Huijun Wang. 2020. "Interdecadal Change in the Relationship between Northern and Southern Hemisphere Meridional Circulation over the Western Pacific Ocean" Atmosphere 11, no. 10: 1106. https://doi.org/10.3390/atmos11101106
APA StyleGao, Y., Chen, D., & Wang, H. (2020). Interdecadal Change in the Relationship between Northern and Southern Hemisphere Meridional Circulation over the Western Pacific Ocean. Atmosphere, 11(10), 1106. https://doi.org/10.3390/atmos11101106