A Long-Term, 1-km Resolution Daily Meteorological Dataset for Modeling and Mapping Permafrost in Canada
Abstract
:1. Introduction
2. The Requirement of Meteorological Datasets for Permafrost Modeling and Mapping
3. Data and Methods
3.1. Datasets for Generating Met1km and Accuracy Assessment
3.2. Development of Met1km for the Historical Period
3.3. Development of Met1km for Future Climate Change Scenarios
3.4. Spatial Downscaling
3.5. Statsitical Measures for Accuracy Assessment
4. Result and Analysis
4.1. Met1km Format and General Temporal and Spatial Patterns of the Data
4.2. Testing the Re-Baselining Spatial Downscaling Method
4.3. Comparing Met1km with Climate Station Observations
4.4. Comparing with the Homogenized Daily Air Temperature and Precipitation Station Data
4.5. Comparing with a Gridded Monthly Anomaly Time-Series Dataset
4.6. Comparing the Accuracy of Met1km and the Source Datasets
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Dataset Name | Spatial Coverage | Spatial Resolution | Time Period | Climate Variables * | Methods and References |
---|---|---|---|---|---|
CANGRD | Canada landmass | 50 km | 1900–2017 (south) 1948–2017 (North) | Monthly anomalies of Tn, Tx, Ta, and P. | Interpolated using the adjusted and homogenized climate station data. |
NRCAN met dataset | North America landmass | 5 arc minutes (~10 km) | 1901–2013 for monthly, 1950-2013 for daily | Monthly and daily Tn, Tx, Ta, and P. | Interpolated from climate station data [40,59]. |
ClimateBC/ WNA/NA | North America landmass | 2.5 arc minutes (~5 km) or any point | 1901–2014, and future scenarios | Monthly Tn, Tx, Ta, and P. | Interpolated from climate station data. Software packages were developed [60]. |
PNWNA met | North western North America | 3.75 arc minutes (~6 km) | 1945–2012 | Daily Tn, Tx, Ta, P, and Wind. | Interpolated based on the adjusted and homogenized station data [41]. |
WFDEI-GEM-CaPA | Mackenzie River Basin | 0.125° | 1979–2100 | 3-hourly T, P, Pa, SR, LwR, SH, and Wind. | Blended three datasets together [61]. |
CHIRTS-daily | 60° S-70° N global land | 0.05° (~5 km) | 1983–2016 | Daily Tn and Tx. | Combined satellite infrared product, station observation, and ERA5 [56]. |
BEST | Global land and oceans | 0.25° for the U.S.A. and Europe, 1° global | 1701–recent (monthly) 1880–recent (daily) | Monthly and experimental for daily Tn, Tx, and P. | Interpolated based on 5000–7000 climate station data [62]. |
CRU datasets | Global landmass | 0.5° | 1901–2014 | Monthly Ta, dT, P, WetD, Vap, and Cloud. | Interpolated based on climate station data [37]. |
CHELSA, CHELSA cruts | Global landmass | 30 arc s (~1 km) | CHELSA: 1979 to 2013, CHELSAcruts: 1901–2016 | Monthly Tn, Tx and P. | CHELSA: down-scaled from the ERA interim reanalysis data. CHELSAcruts: downscaled from CRU data [57]. |
WorldClim2 | Global landmass | 30 arc s (~1 km) | Averages in 1970–2000 | Monthly Tn, Tx, Ta, P, SR, Vap, and Wind. | Interpolated based on climate station data and satellite derived covariates [29]. |
METEO 1KM | Global landmass | 1 km | 2011 | Daily Ta. | Combining climate station data, topographical and satellite images [30,31]. |
Terra Climate | Global landmass | 2.5 arc m (~4 km) | 1958–2019 | Monthly Tn, Tx, Ta, P, SR, Vap, and Wind. | Combining CRU, WorlClim, and JRA-55 [63]. |
Princeton dataset | Global landmass | 0.5°(V2) 0.25°(V3) | 1901–2012 (V2) 1948–2016 (V3) | 3-hourly, daily, monthly Tn, Tx, Ta, P, SR, LwR, Vap, and Wind. | Combining observation-based datasets with a climate reanalysis dataset [39]. |
CRU JRA | Global landmass | 0.5° | 1901–2017 | 6-hourly T, P, SH, Pa, Wind, SR and LwR. | Combining CRU data with JRA-55 [36]. |
WATCH Forcing Data (WFD) | Global landmass | 0.5° | 1901–2001 | 3- or 6-hourly T, P, SH, Pa, SR, LwR, Wind. | ERA-40 for 1958–2001 and re-ordering the ERA-40 for 1901–1957 [64]. |
WFDEI | Global landmass | 0.5° | 1979–2016 | 3-hourly T, P, SH, Pa, SR, LwR, Wind. | Similar to WED but using ERA-Interim [65]. |
20th century reanalysis (20CR) | Global | 2° | 1871–2012 | Multiple variables (6-hourly) from model reanalysis. | Model reanalysis mainly constrained by surface pressure [57,66]. |
ERA-20C | Global | About 125 km | 1900–2010 | Multiple variables (6-hourly) from model reanalysis. | Model reanalysis constrained by surface pressure and marine wind [67]. |
Daymet | North America, Puerto Rico, and Hawaii | 1 km | 1980–2017 | Daily Tn, Tx, P, SR, Vap, and Snow. | Interpolated based on climate station data [19]. |
GlobSim | Global | Any location | Same as the reanalysis datasets | Same as the reanalysis datasets. | A software toolkit to generate time series data for any sites from several reanalysis datasets [21]. |
Appendix B
Calculating Monthly Mean Downward Longwave Radiation
References
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Barry, R.G.; Knowles, K.; Heginbottom, J.A.; Brown, J. Statistics and characteristics of permafrost and ground ice distribution in the Northern Hemisphere. Polar Geogr. 1999, 23, 147–149. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frauenfeld, O.W.; Zhang, T.J.; Barry, R.G.; Gilichinsky, D. Interdecadal changes in seasonal freeze and thaw depths in Russia. J. Geophys. Res. 2004, 109, D05101. [Google Scholar] [CrossRef]
- Oberman, N.G. Contemporary Permafrost Degradation of Northern European Russia. In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 29 June 2008; Kane, D.L., Hinkel, K.M., Eds.; Institute of Northern Engineering, University of Alaska: Fairbanks, AK, USA, 2008; Volume 2, pp. 1305–1310. [Google Scholar]
- Thibault, S.; Payette, S. Recent permafrost degradation in bogs of the James Bay area, northern Quebec, Canada. Permafr. Periglac. Process. 2009, 20, 383. [Google Scholar] [CrossRef]
- James, M.; Lewkowicz, A.G.; Smith, S.L.; Miceli, C.M. Multi-decadal degradation and persistence of permafrost in the Alaska Highway corridor, northwest Canada. Environ. Res. Lett. 2013, 8, 045013. [Google Scholar] [CrossRef]
- Hjort, J.; Karjalainen, O.; Aalto, J.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Etzelmüller, B.; Luoto, M. Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun. 2018, 9, 5147. [Google Scholar] [CrossRef]
- Lewkowicz, A.G.; Way, R. Extremes of summer climate trigger thousands of thermokarst landslides in a high arctic environment. Nat. Commun. 2019, 10, 1329. [Google Scholar] [CrossRef] [Green Version]
- Yumashev, D.; Hope, C.; Schaefer, K.; Riemann-Campe, K.; Iglesias-Suarez, F.; Jafarov, E.; Burke, E.J.; Young, P.J.; Elshorbany, Y.; Whiteman, G. Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nat. Commun. 2019, 10, 1900. [Google Scholar] [CrossRef] [Green Version]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A.; et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Karjalainen, O.; Aalto, J.; Luoto, M.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Bernd Etzelmüller, B.; Hjort, J. Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Sci. Data 2019, 6, 190037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chen, W.; Riseborough, D.W. Temporal and spatial changes of permafrost in Canada since the end of the Little Ice Age. J. Geophys. Res. 2006, 111, D22103. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, W.; Riseborough, D.W. Disequilibrium response of permafrost thaw to climate warming in Canada over 1850–2100. Geophys. Res. Lett. 2008, 35, L02502. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Wang, X.; Chen, W.; Sladen, W.; Dyke, L.; Dredge, L.; Poitevin, J.; McLennan, D.; Stewart, H.; et al. Modelling and mapping permafrost at high spatial resolution in Wapusk National Park, Hudson Bay Lowlands. Can. J. Earth Sci. 2012, 49, 925–937. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Fraser, R.; Olthof, I.; Chen, W.; Mclennan, D.; Ponomarenko, S.; Wu, W. Modelling and mapping climate change impacts on permafrost at high spatial resolution for a region with complex terrain. Cryosphere 2012, 7, 1121–1137. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wolfe, S.A.; Morse, P.D.; Olthof, I.; Fraser, R.H. Spatiotemporal impacts of wildfire and climate warming on permafrost across a subarctic region, Canada. J. Geophys. Res. Earth Surf. 2015, 120, 2338–2356. [Google Scholar] [CrossRef] [Green Version]
- Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M. Statistical forecasting of current and future circum-Arctic ground temperatures and active layer thickness. Geophys. Res. Lett. 2018, 45, 4889–4898. [Google Scholar] [CrossRef] [Green Version]
- Thornton, P.E.; Thornton, M.M.; Mayer, B.W.; Wei, Y.; Devarakonda, R.; Vose, R.S.; Cook, R.B. Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3; ORNL DAAC: Oak Ridge, TN, USA, 2017. [Google Scholar]
- Thornton, P.E.; Running, S.W.; White, M.A. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 1997, 190, 214–251. [Google Scholar] [CrossRef] [Green Version]
- Cao, B.; Quan, X.; Brown, N.; Stewart-Jones, E.; Gruber, S. GlobSim (v1.0): Deriving meteorological time series for point locations from multiple global reanalyses. Geosci. Model. Dev. 2019, 12, 4661–4679. [Google Scholar] [CrossRef] [Green Version]
- Reeves Eyre, J.E.J.; Zeng, X. Evaluation of greenland near surface air temperature datasets. Cryosphere 2017, 11, 1591–1605. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, W.; Cihlar, J. A process-based model for quantifying the impact of climate change on permafrost thermal regimes. J. Geophys. Res. 2003, 108, 4695. [Google Scholar]
- Endrizzi, S.; Gruber, S.; Dall’Amico, M.; Rigon, R. GEOtop 2.0: Simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects. Geosci. Model. Dev. 2014, 7, 2831–2857. [Google Scholar] [CrossRef] [Green Version]
- Westermann, S.; Langer, M.; Boike, J.; Heikenfeld, M.; Peter, M.; Etzelmüller, B.; Krinner, G. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3. Geosci. Model. Dev. 2016, 9, 523–546. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, W.; Riseborough, D.W. Modeling the Long-Term Dynamics of Snow and Their Impacts on Permafrost in Canada. In Proceedings of the Ninth International Conference on Permafrost, Fairbanks, AK, USA, 29 June 2008; Kane, D.L., Hinkel, K.M., Eds.; Institute of Northern Engineering, University of Alaska: Fairbanks, AL, USA, 2008; pp. 2055–2060. [Google Scholar]
- Heginbottom, J.A.; Dubreuil, M.A.; Harker, P.T. Canada: Permafrost, National Atlas of Canada, 5th ed.; In MCR 4177; Natural Resources Canada: Ottawa, ON, Canada, 1995.
- Kettles, I.M.; Tarnoca, C.; Bauke, S.D. Predicted permafrost distribution in Canada under a climate warming scenario. In Current Research; Geological Survey of Canada: Ottawa, ON, Canada, 1997; pp. 109–115. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Kilibarda, M.; Hengl, T.; Heuvelink, G.; Gräler, B.; Pebesma, E.; Tadić, M.P.; Bajat, B. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res. 2017, 119, 2294–2313. [Google Scholar] [CrossRef] [Green Version]
- Kilibarda, M.; Tadić, M.P.; Hengl, T.; Luković, J.; Bajat, B. Global geographic and feature space coverage of temperature data in the context of spatio-temporal interpolation. Spat. Stat. 2015, 14, 22–38. [Google Scholar] [CrossRef]
- Nicolsky, D.J.; Romanovsky, V.E.; Panda, S.K.; Marchenko, S.S.; Muskett, R.R. Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope. J. Geophys. Res. Earth Surf. 2017, 122, 50–75. [Google Scholar] [CrossRef]
- Beltrami, H.; Gosselin, C.; Mareschal, J.C. Ground surface temperatures in Canada: Spatial and temporal variability. Geophys. Res. Lett. 2003, 30, 1499. [Google Scholar] [CrossRef] [Green Version]
- Hinkel, K.M.; Paetzold, F.; Nelson, F.E.; Bockheim, J.G. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Glob. Planet. Chang. 2001, 29, 293–309. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Cihlar, J.; Smith, S.L.; Riseborough, D.W. Changes in soil temperature and active-layer thickness during the 20th century in a region in western Canada. J. Geophys. Res. 2003, 108, 4696. [Google Scholar]
- Harris, I.C. CRU JRA v1.1: A Forcings Dataset of Gridded Land Surface Blend of Climatic Research Unit (CRU) and Japanese Reanalysis (JRA) Data; Jan.1901–Dec.2017; Centre for Environmental Data Analysis: Didcot, UK, 2019. [Google Scholar]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Met. Soc. Jap. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef] [Green Version]
- McKenney, D.W.; Hutchinson, M.F.; Papadopol, P.; Lawrence, K.; Pedlar, J.; Campbell, K.; Milewska, E.; Hopkinson, R.; Price, D.; Owen, T. Customized spatial climate models for North America. B Am. Meteorol. Soc. 2011, 92, 1611–1622. [Google Scholar] [CrossRef]
- Werner, A.T.; Schnorbus, M.A.; Shrestha, R.R.; Cannon, A.J.; Zwiers, F.W.; Dayon, G.; Anslow, F. A long-term, temporally consistent, gridded daily meteorological dataset for northwestern North America. Sci. Data 2019, 6, 180299. [Google Scholar] [CrossRef] [Green Version]
- Scinocca, J.F.; Kharin, V.V.; Jiao, Y.; Qian, M.W.; Lazare, M.; Solheim, L.; Flato, G.M.; Biner, S.; Desgagne, M.; Dugaa, B. Coordinated global and regional climate modeling. J. Clim. 2016, 29, 17–35. [Google Scholar] [CrossRef]
- Vincent, L.A.; Wang, X.L.; Milewska, E.J.; Wan, H.; Yang, F.; Swail, V. A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis. J. Geophys. Res. 2012, 117, D18110. [Google Scholar] [CrossRef]
- Environment Canada and the National Research Council of Canada. Can. Weather Energy Eng. Data Sets (CWEEDS Files) Can. Weather Energy Calc. (CWEC Files); Environment Canada and the National Research Council of Canada: Ottawa, ON, Canada, 2007; Updated User’s Manual.
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Mearns, L.O.; Arritt, R.; Biner, S.; Bukovsky, M.S.; McGinnis, S.; Sain, S.; Caya, D.; Correia, J., Jr.; Flory, D.; William Gutowski, W.; et al. The North American regional climate change assessment program: Overview of phase I results. Bull. Am. Meteorol. Soc. 2012, 93, 1337–1362. [Google Scholar] [CrossRef]
- Qian, B.; Wang, H.; He, Y.; Liu, J.; De Jong, R. Projecting spring wheat yield changes on the Canadian Prairies: Effects of resolutions of a regional climate model and statistical processing. Int. J. Climatol. 2016, 36, 3492–3506. [Google Scholar] [CrossRef] [Green Version]
- Qian, B.; Jing, Q.; Bélanger, G.; Shang, J.; Huffman, T.; Liu, J.; Hoogenboom, G. Simulated canola yield responses to climate change and adaptation in Canada. J. Agron. 2018, 110, 14. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Yang, J.Y.; Qian, B.; Drury, C.F.; Hoogenboom, G.; He, P.; Lapen, D.; Zhou, W. Climate change impacts on crop yield, soil water balance and nitrate leaching in the semiarid and humid regions of Canada. PLoS ONE 2018, 13, e0207370. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.H.; Boberg, F.; Christensen, O.B.; Lucas-Picher, P. On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys. Res. Lett. 2008, 35, L20709. [Google Scholar] [CrossRef]
- Iizumi, T.; Yokozawa, M.; Nishimori, M. Probabilistic evaluation of climate change impacts on paddy rice productivity in Japan. Clim. Chang. 2010, 107, 391–415. [Google Scholar] [CrossRef] [Green Version]
- Qian, B.; Gameda, S.; Hayhoe, H.; De Jong, R.; Bootsma, A. Comparison of LARS-WG and AAFC-WG stochastic weather generators for diverse Canadian climates. Clim. Res. 2004, 26, 175–191. [Google Scholar]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistanct quantile matching. J. Geophys. Res. 2010, 115, D10101. [Google Scholar] [CrossRef]
- Way, R.G.; Bonnaventure, P.P. Testing a reanalysis-based infilling method for areas with sparse discontinuous air temperature data in northeastern Canada. Atmos. Sci. Lett. 2015, 16, 398–407. [Google Scholar] [CrossRef]
- Zhang, X.; Flato, G.; Kirchmeier-Young, M.; Vincent, L.; Wan, H.; Wang, X.; Rong, R.; Fyfe, J.; Li, G.; Kharin, V.V. Changes in temperature and precipitation across Canada, Chapter 4. In Canada’s Changing Climate Report; Bush, E., Lemmen, D.S., Eds.; Government of Canada: Ottawa, ON, Canada, 2019; pp. 112–193. [Google Scholar]
- Verdin, A.; Funk, F.; Peterson, P.; Landsfeld, M.; Tuholske, C.; Grace, K. Development and validation of the CHIRTS-daily quasi-global high resolution daily temperature data set. Sci. Data 2020, 7, 303. [Google Scholar] [CrossRef]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [Green Version]
- Slivinski, L.C.; Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Giese, B.S.; McColl, C.; Allan, R.; Yin, X.; Vose, R.; Titchner, H.; et al. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 2019, 145, 2876–2908. [Google Scholar] [CrossRef] [Green Version]
- McKenney, D.W.; Pedlar, J.H.; Papadopol, P.; Hutchinson, M.F. The development of 1901–2000 historical monthly climate models for Canada and the United States. Agric. For. Meteorol. 2006, 138, 69–81. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X. Development of global hourly 0.5-degree land surface air temperature datasets. J. Clim. 2013, 26, 7676–7691. [Google Scholar] [CrossRef]
- Asong, Z.E.; Elshamy, M.E.; Princz, D.; Wheater, H.S.; Pomeroy, J.W.; Pietroniro, A.; Cannon, A. High-resolution meteorological forcing data for hydrological modelling and climate change impact analysis in the Mackenzie River Basin. Earth Syst. Sci. Data 2020, 12, 629–645. [Google Scholar] [CrossRef] [Green Version]
- Rohde, R.; Muller, R.A.; Jacobsen, R.; Muller, E.; Perlmutter, S.; Rosenfeld, A.; Wurtele, J.; Groom, D.; Wickham, C. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinf. Geostat. Overv. 2013, 1, 1. [Google Scholar]
- Abatzoglou, J.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weedon, G.P.; Gomes, S.; Viterbo, P.; Shuttleworth, W.J.; Blyth, E.; Osterle, H.; Adam, J.C.; Bellouin, N.; Boucher, O.; Best, M. Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. J. Hydrometeorol. 2011, 12, 823–848. [Google Scholar] [CrossRef] [Green Version]
- Weedon, G.P.; Balsamo, G.; Bellouin, N.; Gomes, S.; Best, M.J.; Viterbo, P. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 2014, 50, 7505–7514. [Google Scholar] [CrossRef] [Green Version]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Poli, P.; Hersbach, H.; Dee, D.P.; Berrisford, P.; Simmons, A.J.; Vitart, F.; Laloyaux, P.; Tan, D.G.H.; Peubey, C.; Thépaut, J.-N.; et al. ERA-20C: An atmospheric reanalysis of the twentieth century. J. Clim. 2016, 29, 4083–4097. [Google Scholar] [CrossRef]
- Flerchinger, G.N.; Xaio, W.; Marks, D.; Sauer, T.J.; Yu, Q. Comparison of algorithms for incoming atmospheric long-wave radiation. Water Resour. Res. 2009, 45, W03423. [Google Scholar] [CrossRef] [Green Version]
- Kimball, B.A.; Idso, S.B.; Aase, J.K. A model of thermal radiation from partly cloudy and overcast skies. Water Resour. Res. 1982, 18, 931–936. [Google Scholar] [CrossRef]
- Dilley, A.C.; O’Brien, D.M. Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water. Q. J. R. Meteorol. Soc. 1998, 124, 1391–1401. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Qian, B.; Hong, G. A Long-Term, 1-km Resolution Daily Meteorological Dataset for Modeling and Mapping Permafrost in Canada. Atmosphere 2020, 11, 1363. https://doi.org/10.3390/atmos11121363
Zhang Y, Qian B, Hong G. A Long-Term, 1-km Resolution Daily Meteorological Dataset for Modeling and Mapping Permafrost in Canada. Atmosphere. 2020; 11(12):1363. https://doi.org/10.3390/atmos11121363
Chicago/Turabian StyleZhang, Yu, Budong Qian, and Gang Hong. 2020. "A Long-Term, 1-km Resolution Daily Meteorological Dataset for Modeling and Mapping Permafrost in Canada" Atmosphere 11, no. 12: 1363. https://doi.org/10.3390/atmos11121363
APA StyleZhang, Y., Qian, B., & Hong, G. (2020). A Long-Term, 1-km Resolution Daily Meteorological Dataset for Modeling and Mapping Permafrost in Canada. Atmosphere, 11(12), 1363. https://doi.org/10.3390/atmos11121363