The Contribution of Geomagnetic Activity to Ionospheric foF2 Trends at Different Phases of the Solar Cycle by SWM
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Spectral Whitening Method
2.3. Traditional Approach to Isolating Solar Activity
3. Analysis and Discussion
3.1. Validating the Effects of Solar and Geomagnetic Activity
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prölss, G.W. Magnetic storm associated perturbations of the upper atmosphere. Magn. Storms 1997, 98, 227–241. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.M.; Codrescu, M.V.; Roble, R.G.; Richmond, A.D. How Does the Thermosphere and Ionosphere React to a Geomagnetic Storm? Magn. Storms 1997, 98, 203–225. [Google Scholar] [CrossRef]
- Zhou, M.; Li, B.; Huang, S.; Deng, X.; Ashour-Abdalla, M.; Nishimura, Y.; Yuan, Z.; Pang, Y.; Li, H. Observation of large-amplitude magnetosonic waves at dipolarization fronts. J. Geophys. Res. Space Phys. 2014, 119, 4335–4347. [Google Scholar] [CrossRef]
- Tang, R.; Summers, D.; Deng, X. Effects of cold electron number density variation on whistler-mode wave growth. Ann. Geophys. 2014, 32, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Yuan, Z.; Yu, X.; Huang, S.; Wang, D.; Wang, Z.; Qiao, Z.; Wygant, J.R. The enhancement of cosmic radio noise absorption due to hiss-driven energetic electron precipitation during substorms. J. Geophys. Res. Space Phys. 2015, 120, 5393–5407. [Google Scholar] [CrossRef]
- Liu, L.; Wan, W.; Ning, B.; Pirog, O.M.; Kurkin, V.I. Solar activity variations of the ionospheric peak electron density. J. Geophys. Res. 2006, 111, 304. [Google Scholar] [CrossRef]
- Yiğit, E.; Kilcik, A.; Elias, A.G.; Dönmez, B.; Ozguc, A.; Yurchshyn, V.; Rozelot, J.P. Critical frequencies of the ionospheric F1 and F2 layers during the last four solar cycles: Sunspot group type dependencies. J. Atmos. Sol.-Terr. Phys. 2018, 171, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Yue, X.; Wang, W.; Zhang, S.; Liu, L.; Liu, H.; Wan, W. Long-term trend of topside ionospheric electron density derived from DMSP data during 1995–2017. J. Geophys. Res. Space Phys. 2019, 124, 10708–10727. [Google Scholar] [CrossRef]
- Holt, J.M.; Zhang, S.R. Long-term temperature trends in the ionosphere above Millstone Hill. Geophys. Res. Lett. 2008, 35, L05813. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Lei, J.; Dou, X.; Yue, X. Is the long-term variation of the estimated GPS differential code biases associated with ionospheric variability? GPS Solut. 2016, 20, 313–319. [Google Scholar] [CrossRef]
- Qian, L.; Solomon, S.C.; Roble, R.G.; Kane, T.J. Model simulations of global change in the ionosphere. Geophys. Res. Lett. 2008, 35, L07811. [Google Scholar] [CrossRef] [Green Version]
- Elias, A.G.; de Adler, N.O. Earth magnetic field and geomagnetic activity effects on long term trends in the F2 layer at mid-high latitudes. J. Atmos. Sol. Terr. Phys. 2006, 68, 1871–1878. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Marin, D. An interpretation of the foF2 and hmF2 long-term trends in the framework of the geomagnetic control conception. Ann. Geophys. 2001, 19, 733–748. [Google Scholar] [CrossRef] [Green Version]
- Bremer, J. Trends in the ionospheric E and F regions over Europe. Ann. Geophys. 1998, 16, 986–996. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Marin, D. Geomagnetic control of the foF2 long-term trends. Ann. Geophys. 2000, 18, 653–665. [Google Scholar] [CrossRef]
- Zhao, X.R.; Sheng, Z.; Li, J.W.; Yu, H.; Wei, K.J. Determination of the “wave turbopause” using a numerical differentiation method. J. Geophys. Res. Atmos. 2019, 124, 10592–10607. [Google Scholar] [CrossRef]
- He, Y.; Sheng, Z.; He, M. Spectral Analysis of Gravity Waves from Near Space High-Resolution Balloon Data in Northwest China. Atmosphere 2020, 11, 133. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.S.; Chen, Z.; Huang, C.M. A method to identify aperiodic disturbances in the ionosphere. Ann. Geophys. 2014, 32, 563–569. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Wang, J.S.; Deng, X.; Deng, Y.; Huang, C.M.; Li, H.M.; Wu, Z.X. Study on the relationship between the residual 27 day quasiperiodicity and ionospheric Q disturbances. J. Geophys. Res. Space Phys. 2017, 122, 2542–2550. [Google Scholar] [CrossRef]
- Bruce, J.W.; Giblin, P.J. Curves and Singularities: A geometrical Introduction to Singularity Theory; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Chen, Z.; Wang, J.S.; Huang, C.M.; Huang, L.F. A new pair of indices to describe the relationship between ionospheric disturbances and geomagnetic activity. J. Geophys. Res. Space Phys. 2014, 119, 10156–10163. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.S.; Deng, Y.; Huang, C.M. Extraction of the geomagnetic activity effect from TEC data: A comparison between the spectral whitening method and 28 day running median. J. Geophys. Res. Space Phys. 2017, 122, 3632–3639. [Google Scholar] [CrossRef]
- Upadhyay, H.O.; Mahajan, K.K. Atmospheric greenhouse effect and ionospheric trends. Geophys. Res. Lett. 1998, 25, 3375–3378. [Google Scholar] [CrossRef]
- Zhang, S.R.; Holt, J.M. Long-term ionospheric cooling: Dependency on local time, season, solar activity, and geomagnetic activity. J. Geophys. Res. 2013, 118, 3719–3730. [Google Scholar] [CrossRef] [Green Version]
- Elias, A.G.; de Haro Barbas, B.F.; Shibasaki, K.; Souza, J.R. Effect of solar cycle 23 in foF2 trend estimation. Earth Planets Space 2014, 66. [Google Scholar] [CrossRef] [Green Version]
- Hathaway, D.H. The Solar Cycle. Living Rev. Sol. Phys. 2015, 12, 4. [Google Scholar] [CrossRef]
- Yue, X.; Wan, W.; Liu, L.; Ning, B.; Zhao, B. Applying artificial neural network to derive long-term foF2 trends in the Asia/Pacific sector from ionosonde observations. J. Geophys. Res. 2006, 111, 303. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.G.; Cliver, E.W.; Cane, H.V. Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high-speed streams, and slow solar wind. J. Geophys. Res. 2000, 105, 203–213. [Google Scholar] [CrossRef]
- Gnevyshev, M.N. On the 11-years cycle of solar activity. Sol. Phys. 1967, 1, 107–120. [Google Scholar] [CrossRef]
- Gnevyshev, M.N. Essential features of the 11-year solar cycle. Sol. Phys. 1977, 51, 175–183. [Google Scholar] [CrossRef]
- Feminella, F.; Storini, M. Large scale dynamical phenomena during solar activity cycles. Astron. Astrophys. 1997, 322, 311–319. [Google Scholar]
- Richardson, I.G. Geomagnetic activity during the rising phase of solar cycle 24. J. Space Weather Space Clim. 2013, 3, A08. [Google Scholar] [CrossRef] [Green Version]
- Legrand, J.P.; Simon, P.A. Ten cycles of solar and geomagnetic activity. Sol. Phys. 1981, 70, 173–195. [Google Scholar] [CrossRef]
Number | Station | Period | Latitude (° N) | Longitude (° E) |
---|---|---|---|---|
0 | Mawson | 1958–2000 | −67.6 | 62.9 |
1 | Port Stanley | 1957–1990 | −51.7 | −57.8 |
2 | Hobart | 1950–2007 | −42.9 | 147.3 |
3 | Canberra | 1950–2007 | −35.3 | 149.0 |
4 | Mundaring | 1959–2007 | −32.0 | 116.2 |
5 | Townsville | 1951–2007 | −19.6 | 146.9 |
6 | Huancayo | 1957–1990 | −12.1 | −75.2 |
7 | Maui | 1957–1990 | +20.8 | −156.3 |
8 | Chungli | 1959–1990 | +24.9 | 121.4 |
9 | Yamagawa | 1957–1990 | +31.2 | 130.6 |
10 | Kokubunji | 1957–1990 | +35.7 | 139.5 |
11 | Akita | 1957–1990 | +39.7 | 140.1 |
12 | Boulder | 1958–1990 | +40.0 | −105.3 |
13 | Alma Ata | 1957–1990 | +43.2 | 76.9 |
14 | Wakkanai | 1957–1990 | +45.4 | 141.7 |
15 | Dourbes | 1957–1990 | +50.1 | 4.6 |
16 | Irkutsk | 1957–1992 | +52.5 | 104.0 |
17 | Juliusruh-Ruegen | 1957–2012 | +54.6 | 13.4 |
18 | Moscow | 1957–1995 | +55.5 | 37.3 |
19 | Gorky | 1958–1990 | +56.1 | 44.3 |
20 | Tomsk | 1957–1994 | +56.5 | 84.9 |
21 | Sverdlovsk | 1957–1995 | +56.4 | 58.6 |
22 | Churchill | 1957–1996 | +58.8 | −94.2 |
23 | Uppsala | 1957–1990 | +59.8 | 17.6 |
24 | Yakutsk | 1957–1991 | +62.0 | 129.6 |
25 | Lycksele | 1957–1990 | +64.7 | 18.8 |
26 | Sodankyla | 1957–1990 | +67.4 | 26.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, J.-S.; Chen, Z.; Xie, L.; Li, F.; Zheng, T. The Contribution of Geomagnetic Activity to Ionospheric foF2 Trends at Different Phases of the Solar Cycle by SWM. Atmosphere 2020, 11, 616. https://doi.org/10.3390/atmos11060616
Li H, Wang J-S, Chen Z, Xie L, Li F, Zheng T. The Contribution of Geomagnetic Activity to Ionospheric foF2 Trends at Different Phases of the Solar Cycle by SWM. Atmosphere. 2020; 11(6):616. https://doi.org/10.3390/atmos11060616
Chicago/Turabian StyleLi, Haimeng, Jing-Song Wang, Zhou Chen, Lianqi Xie, Fan Li, and Tongji Zheng. 2020. "The Contribution of Geomagnetic Activity to Ionospheric foF2 Trends at Different Phases of the Solar Cycle by SWM" Atmosphere 11, no. 6: 616. https://doi.org/10.3390/atmos11060616
APA StyleLi, H., Wang, J. -S., Chen, Z., Xie, L., Li, F., & Zheng, T. (2020). The Contribution of Geomagnetic Activity to Ionospheric foF2 Trends at Different Phases of the Solar Cycle by SWM. Atmosphere, 11(6), 616. https://doi.org/10.3390/atmos11060616