A Lagrangian Advection Scheme for Solving Cloud Droplet Diffusion Growth
Abstract
:1. Introduction
2. Methods
3. Experiments
3.1. Numerical Tests in a Parcel Cloud Model
3.2. Numerical Tests Based on the 1.5D Model
3.2.1. Model Description
3.2.2. Condensation Growth in the Eulerian Framework
3.2.3. Condensation Growth in the Lagrangian Framework
3.2.4. Simulations of a Deep Cumulus Cloud in Cooperative Convective Precipitation Experiment (CCOPE) Campaign
4. Results and Discussion
4.1. Parcel Cloud Model
4.2. One-and-Half Dimensional Cloud Model
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Leighton, H.; Yau, M.K.; Ariya, P. Numerical evidence for cloud droplet nucleation at the cloud-environment interface. Atmos. Chem. Phys. Discuss. 2012, 12, 12155–12164. [Google Scholar] [CrossRef] [Green Version]
- Khain, A.; Beheng, K.D.; Heymsfield, A.; Korolev, A.; Krichak, S.O.; Levin, Z.; Pinsky, M.; Phillips, V.; Prabhakaran, T.; Teller, A.; et al. Representation of microphysical processes in cloud-resolving models: Spectral (bin) microphysics versus bulk parameterization. Rev. Geophys. 2015, 53, 247–322. [Google Scholar] [CrossRef]
- Khain, A.P. Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett. 2009, 4, 15004. [Google Scholar] [CrossRef]
- Tao, W.-K.; Chen, J.; Li, Z.; Wang, C.; Zhang, C. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012, 50, 50. [Google Scholar] [CrossRef] [Green Version]
- Kessler, E. On the continuity and distribution of water substance in atmospheric circulations. Atmos. Res. 1995, 38, 109–145. [Google Scholar] [CrossRef]
- Clark, T.L. Numerical Modeling of the Dynamics and Microphysics of Warm Cumulus Convection. J. Atmos. Sci. 1973, 30, 857–878. [Google Scholar] [CrossRef]
- Khain, A.; Pokrovsky, A. Simulation of Effects of Atmospheric Aerosols on Deep Turbulent Convective Clouds Using a Spectral Microphysics Mixed-Phase Cumulus Cloud Model. Part II: Sensitivity Study. J. Atmos. Sci. 2004, 61, 2983–3001. [Google Scholar] [CrossRef]
- Thompson, G.; Rasmussen, R.M.; Manning, K. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis. Mon. Weather Rev. 2004, 132, 519–542. [Google Scholar] [CrossRef] [Green Version]
- Saleeby, S.M.; Cotton, W.R. A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module Descriptions and Supercell Test Simulations. J. Appl. Meteorol. 2004, 43, 182–195. [Google Scholar] [CrossRef] [Green Version]
- Milbrandt, J.A.; Yau, M.K. A Multimoment Bulk Microphysics Parameterization. Part III: Control Simulation of a Hailstorm. J. Atmos. Sci. 2006, 63, 3114–3136. [Google Scholar] [CrossRef]
- Loftus, A.; Cotton, W. Examination of CCN impacts on hail in a simulated supercell storm with triple-moment hail bulk microphysics. Atmos. Res. 2014, 147, 183–204. [Google Scholar] [CrossRef]
- Pruppacher, P.S.; Klett, J.D. Microphysics of Clouds and Precipitation; Kluwer Academic: Dordrecht, The Nederlands, 1997; p. 954. [Google Scholar]
- Segal, Y.; Khain, A.; Pinsky, M.; Rosenfeld, D. Effects of hygroscopic seeding on raindrop formation as seen from simulations using a 2000-bin spectral cloud parcel model. Atmos. Res. 2004, 71, 3–34. [Google Scholar] [CrossRef]
- Stevens, B.; Walko, R.L.; Cotton, W.R.; Feingold, G. The Spurious Production of Cloud-Edge Supersaturations by Eulerian Models. Mon. Weather Rev. 1996, 124, 1034–1041. [Google Scholar] [CrossRef] [Green Version]
- Naumann, A.K.; SeifertiD, A. A Lagrangian drop model to study warm rain microphysical processes in shallow cumulus. J. Adv. Model. Earth Syst. 2015, 7, 1136–1154. [Google Scholar] [CrossRef]
- Andrejczuk, M.; Reisner, J.M.; Henson, B.; Dubey, M.K.; Jeffery, C.A. The potential impacts of pollution on a nondrizzling stratus deck: Does aerosol number matter more than type? J. Geophys. Res. 2008, 113, D19204. [Google Scholar] [CrossRef]
- Shima, S.; Kusano, K.; Kawano, A.; Sugiyama, T.; Kawahara, S. The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Q. J. R. Meteorol. Soc. 2009, 135, 1307–1320. [Google Scholar] [CrossRef] [Green Version]
- Riechelmann, T.; Noh, Y.; Raasch, S. A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision. New J. Phys. 2012, 14, 65008. [Google Scholar] [CrossRef]
- Li, X.-Y.; Brandenburg, A.; Haugen, N.E.; Svensson, G. Eulerian and L agrangian approaches to multidimensional condensation and collection. J. Adv. Model. Earth Syst. 2017, 9, 1116–1137. [Google Scholar] [CrossRef] [Green Version]
- Onishi, R.; Matsuda, K.; Takahashi, K. Lagrangian Tracking Simulation of Droplet Growth in Turbulence—Turbulence Enhancement of Autoconversion Rate. J. Atmos. Sci. 2015, 72, 2591–2607. [Google Scholar] [CrossRef]
- Saito, I.; Gotoh, T. Turbulence and cloud droplets in cumulus clouds. New J. Phys. 2018, 20, 23001. [Google Scholar] [CrossRef]
- Chen, S.; Yau, M.-K.; Bartello, P.; Xue, L. Bridging the condensation—Collision size gap: A direct numerical simulation of continuous droplet growth in turbulent clouds. Atmos. Chem. Phys. Discuss. 2018, 18, 7251–7262. [Google Scholar] [CrossRef] [Green Version]
- Kunishima, Y.; Onishi, R. Direct Lagrangian tracking simulation of droplet growth in vertically developing cloud. Atmos. Chem. Phys. Discuss. 2018, 18, 16619–16630. [Google Scholar] [CrossRef] [Green Version]
- Pinsky, M.B.; Khain, A. Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds. Q. J. R. Meteorol. Soc. 2002, 128, 501–533. [Google Scholar] [CrossRef]
- Dong, L.; Wang, B.; Liu, L. A Lagrangian advection scheme with shape matrix (LASM) for solving advection problems. Geosci. Model Dev. 2014, 7, 2951–2968. [Google Scholar] [CrossRef]
- Rogers, R.R.; Mason, B.J.; Sartor, J.D. A Short Course in Cloud Physics and Clouds, Rain, and Rainmaking, 2nd Edition. Phys. Today 1976, 29, 52. [Google Scholar] [CrossRef]
- Khain, A.; Ovtchinnikov, M.; Pinsky, M.; Pokrovsky, A.; Krugliak, H. Notes on the state-of-the-art numerical modeling of cloud microphysics. Atmos. Res. 2000, 55, 159–224. [Google Scholar] [CrossRef]
- Schär, C.; Smolarkiewicz, P.K. A Synchronous and Iterative Flux-Correction Formalism for Coupled Transport Equations. J. Comput. Phys. 1996, 128, 101–120. [Google Scholar] [CrossRef]
- Smolarkiewicz, P.K.; Grabowski, W.W. The multidimentional positive definite advection transport algorithm: Nonoscillatory option. J. Comput. Phys. 1990, 86, 355–375. [Google Scholar] [CrossRef]
- Sun, J.; Ariya, P.A.; Leighton, H.G.; Yau, M.K. Modeling Study of Ice Formation in Warm-Based Precipitating Shallow Cumulus Clouds. J. Atmos. Sci. 2012, 69, 3315–3335. [Google Scholar] [CrossRef] [Green Version]
- Leroy, D.; Monier, M.; Wobrock, W.; Flossmann, A. A numerical study of the effects of the aerosol particle spectrum on the development of the ice phase and precipitation formation. Atmos. Res. 2006, 80, 15–45. [Google Scholar] [CrossRef]
- Sun, J. Ice Initiation and Ice Multiplication Processes in a Warm-Based Precipitating Cumulus Cloud Model. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 2008. [Google Scholar]
- Dye, J.E.; Jones, J.J.; Winn, W.P.; Cerni, T.A.; Gardiner, B.; Lamb, D.; Pitter, R.L.; Hallett, J.; Saunders, C.P.R. Early electrification and precipitation development in a small, isolated Montana cumulonimbus. J. Geophys. Res. 1986, 91, 1231. [Google Scholar] [CrossRef]
- Masataka, M. Numerical Modeling of Dynamical and Microphysical Evolution of an Isolated Convective Cloud—The 19 July 1981 CCOPE Cloud. J. Meteorol. Soc. Jpn. 1990, 68, 107–128. [Google Scholar]
- Beard, K.V.; Ochs, H.T. Warm-rain initiation: An overview of microphysical mechanisms. J. Appl. Meteor. 1993, 32, 608–625. [Google Scholar] [CrossRef] [Green Version]
- Segal, Y.; Pinsky, M.; Khain, A.; Erlick, C. Thermodynamic factors influencing bimodal spectrum formation in cumulus clouds. Atmos. Res. 2003, 66, 43–64. [Google Scholar] [CrossRef]
- Segal, Y.; Pinsky, M.; Khain, A. The role of competition effect in the raindrop formation. Atmos. Res. 2007, 83, 106–118. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, L.; Sun, J.; Lei, H.; Dong, L.; Hu, W. A Lagrangian Advection Scheme for Solving Cloud Droplet Diffusion Growth. Atmosphere 2020, 11, 632. https://doi.org/10.3390/atmos11060632
Wei L, Sun J, Lei H, Dong L, Hu W. A Lagrangian Advection Scheme for Solving Cloud Droplet Diffusion Growth. Atmosphere. 2020; 11(6):632. https://doi.org/10.3390/atmos11060632
Chicago/Turabian StyleWei, Lei, Jiming Sun, Hengchi Lei, Li Dong, and Wenhao Hu. 2020. "A Lagrangian Advection Scheme for Solving Cloud Droplet Diffusion Growth" Atmosphere 11, no. 6: 632. https://doi.org/10.3390/atmos11060632
APA StyleWei, L., Sun, J., Lei, H., Dong, L., & Hu, W. (2020). A Lagrangian Advection Scheme for Solving Cloud Droplet Diffusion Growth. Atmosphere, 11(6), 632. https://doi.org/10.3390/atmos11060632