Large Variations in N2O Fluxes from Bioenergy Crops According to Management Practices and Crop Type
Abstract
:1. Introduction
2. Experiments
2.1. Site and Experimental Design
2.2. N2O Fluxes Measurement
2.3. Soil Measurements
2.4. Data Analysis
3. Results
3.1. Spatial and Temporal Variability
3.2. Cumulative N2O Emissions Affected by Management and Crop Types
3.3. Dynamics of N2O Emissions
3.4. Factors Influencing Daily N2O Emissions
4. Discussion
4.1. Effect of Management Practices on N2O Emissions under C4 Perennial Crops
4.2. Effect of Crop Type on N2O Emissions
4.3. Temporal Patterns of N2O Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syakila, A.; Kroeze, C. The global nitrous oxide budget revisited. Greenh. Gas Meas. Manag. 2011, 1, 17–26. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremner, J.M. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosyst. 1997, 49, 7–16. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef]
- Stehfest, E.; Bouwman, L. N2O and NO emission from agricultural fields and soils under natural vegetation: Summarizing available measurement data and modeling of global annual emissions. Nutr. Cycl. Agroecosyst. 2006, 74, 207–228. [Google Scholar] [CrossRef]
- Shcherbak, I.; Millar, N.; Robertson, G.P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. USA 2014, 111, 9199–9204. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for Policymakers. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlömer, S., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2011; pp. 1–24. [Google Scholar]
- Crutzen, P.J.; Mosier, A.R.; Smith, K.A.; Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 2008, 8, 389–395. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.A.; Searchinger, T.D. Crop-based biofuels and associated environmental concerns. Glob. Chang. Biol. Bioenergy 2012, 4, 479–484. [Google Scholar] [CrossRef]
- Somerville, C.; Youngs, H.; Taylor, C.; Davis, S.C.; Long, S.P. Feedstocks for lignocellulosic biofuels. Science 2010, 329, 790–792. [Google Scholar] [CrossRef] [Green Version]
- Don, A.; Osborne, B.; Hastings, A.; Skiba, U.; Carter, M.S.; Drewer, J.; Flessa, H.; Freibauer, A.; Hyvonen, N.; Jones, M.B.; et al. Land-use change to bioenergy production in Europe: Implications for the greenhouse gas balance and soil carbon. Glob. Chang. Biol. Bioenergy 2012, 4, 372–391. [Google Scholar] [CrossRef] [Green Version]
- Gabrielle, B.; Bamière, L.; Caldes, N.; De Cara, S.; Decocq, G.; Ferchaud, F.; Loyce, C.; Pelzer, E.; Perez, Y.; Wohlfahrt, J.; et al. Paving the way for sustainable bioenergy in Europe: Technological options and research avenues for large-scale biomass feedstock supply. Renew. Sustain. Energy Rev. 2014, 33, 11–25. [Google Scholar] [CrossRef] [Green Version]
- Cadoux, S.; Riche, A.B.; Yates, N.E.; Machet, J.-M. Nutrient requirements of Miscanthus × giganteus: Conclusions from a review of published studies. Biomass Bioenergy 2012, 38, 14–22. [Google Scholar] [CrossRef]
- Monti, A.; Barbanti, L.; Zatta, A.; Zegada-Lizarazu, W. The contribution of switchgrass in reducing GHG emissions. Glob. Chang. Biol. Bioenergy 2012, 4, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Cadoux, S.; Ferchaud, F.; Demay, C.; Boizard, H.; Machet, J.M.; Fourdinier, E.; Preudhomme, M.; Chabbert, B.; Gosse, G.; Mary, B. Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops. Glob. Chang. Biol. Bioenergy 2014, 6, 425–438. [Google Scholar] [CrossRef]
- Strullu, L.; Cadoux, S.; Preudhomme, M.; Jeuffroy, M.H.; Beaudoin, N. Biomass production and nitrogen accumulation and remobilisation by Miscanthus × giganteus as influenced by nitrogen stocks in belowground organs. Field Crop. Res. 2011, 121, 381–391. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Barbour, N.W. Nitrous Oxide Emission and Soil Carbon Sequestration from Herbaceous Perennial Biofuel Feedstocks. Soil Sci. Soc. Am. J. 2016, 80, 1057–1070. [Google Scholar] [CrossRef]
- Peyrard, C.; Ferchaud, F.; Mary, B.; Gréhan, E.; Léonard, J. Management Practices of Miscanthus × giganteus Strongly Influence Soil Properties and N2O Emissions Over the Long Term. BioEnergy Res. 2017, 10, 208–224. [Google Scholar] [CrossRef]
- Drewer, J.; Finch, J.W.; Lloyd, C.R.; Baggs, E.M.; Skiba, U. How do soil emissions of N2O, CH4 and CO2 from perennial bioenergy crops differ from arable annual crops? Glob. Chang. Biol. Bioenergy 2012, 4, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Gauder, M.; Butterbach-Bahl, K.; Graeff-Hönninger, S.; Claupein, W.; Wiegel, R. Soil-derived trace gas fluxes from different energy crops–results from a field experiment in Southwest Germany. GCB Bioenergy 2012, 4, 289–301. [Google Scholar] [CrossRef]
- Smith, C.M.; David, M.B.; Mitchell, C.A.; Masters, M.D.; Anderson-Teixeira, K.J.; Bernacchi, C.J.; DeLucia, E.H. Reduced nitrogen losses after conversion of row crop agriculture to perennial biofuel crops. J. Environ. Qual. 2013, 42, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Oates, L.G.; Duncan, D.S.; Gelfand, I.; Millar, N.; Robertson, G.P.; Jackson, R.D. Nitrous oxide emissions during establishment of eight alternative cellulosic bioenergy cropping systems in the North Central United States. Glob. Chang. Biol. Bioenergy 2016, 8, 539–549. [Google Scholar] [CrossRef]
- Davis, M.P.; David, M.B.; Voigt, T.B.; Mitchell, C.A. Effect of nitrogen addition on Miscanthus × giganteus yield, nitrogen losses, and soil organic matter across five sites. Glob. Chang. Biol. Bioenergy 2015, 7, 1222–1231. [Google Scholar] [CrossRef] [Green Version]
- Roth, B.; Finnan, J.M.; Jones, M.B.; Burke, J.I.; Williams, M.L. Are the benefits of yield responses to nitrogen fertilizer application in the bioenergy crop Miscanthus × giganteus offset by increased soil emissions of nitrous oxide? Glob. Chang. Biol. Bioenergy 2015, 7, 145–152. [Google Scholar] [CrossRef]
- Wile, A.; Burton, D.L.; Sharifi, M.; Lynch, D.; Main, M.; Papadopoulos, Y.A. Effect of nitrogen fertilizer application rate on yield, methane and nitrous oxide emissions from switchgrass (Panicum virgatum L.) and reed canarygrass (Phalaris arundinacea L.). Can. J. Soil Sci. 2014, 94, 129–137. [Google Scholar] [CrossRef]
- Ruan, L.L.; Bhardwaj, A.K.; Hamilton, S.K.; Robertson, G.P. Nitrogen fertilization challenges the climate benefit of cellulosic biofuels. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Nikiema, P.; Rothstein, D.E.; Min, D.-H.; Kapp, C.J. Nitrogen fertilization of switchgrass increases biomass yield and improves net greenhouse gas balance in northern Michigan, USA. Biomass Bioenergy 2011, 35, 4356–4367. [Google Scholar] [CrossRef]
- Schmer, M.R.; Liebig, M.A.; Hendrickson, J.R.; Tanaka, D.L.; Phillips, R.L. Growing season greenhouse gas flux from switchgrass in the northern great plains. Biomass Bioenergy 2012, 45, 315–319. [Google Scholar] [CrossRef]
- Duran, B.E.L.; Duncan, D.S.; Oates, L.G.; Kucharik, C.J.; Jackson, R.D. Nitrogen Fertilization Effects on Productivity and Nitrogen Loss in Three Grass-Based Perennial Bioenergy Cropping Systems. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Jorgensen, R.N.; Jorgensen, B.J.; Nielsen, N.E.; Maag, M.; Lind, A.M. N2O emission from energy crop fields of Miscanthus “Giganteus” and winter rye. Atmos. Environ. 1997, 31, 2899–2904. [Google Scholar] [CrossRef]
- McGowan, A.R.; Min, D.H.; Williams, J.R.; Rice, C.W. Impact of Nitrogen Application Rate on Switchgrass Yield, Production Costs, and Nitrous Oxide Emissions. J. Environ. Qual. 2018, 47, 228–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferchaud, F.; Vitte, G.; Bornet, F.; Strullu, L.; Mary, B. Soil water uptake and root distribution of different perennial and annual bioenergy crops. Plant Soil 2015, 388, 307–322. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2006; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006; p. 145. [Google Scholar]
- Ferchaud, F.; Mary, B. Drainage and Nitrate Leaching Assessed During 7 Years Under Perennial and Annual Bioenergy Crops. BioEnergy Res. 2016, 9, 656–670. [Google Scholar] [CrossRef]
- Bessou, C.; Mary, B.; Leonard, J.; Roussel, M.; Grehan, E.; Gabrielle, B. Modelling soil compaction impacts on nitrous oxide emissions in arable fields. Eur. J. Soil Sci. 2010, 61, 348–363. [Google Scholar] [CrossRef]
- Smith, K.A.; Dobbie, K.E. The impact of sampling frequency and sampling times on chamber-based measurements of N2O emissions from fertilized soils. Glob. Chang. Biol. 2001, 7, 933–945. [Google Scholar] [CrossRef]
- Parkin, T.B. Effect of sampling frequency on estimates of cumulative nitrous oxide emissions. J. Environ. Qual. 2008, 37, 1390–1395. [Google Scholar] [CrossRef] [Green Version]
- Vermue, A.; Philippot, L.; Munier-Jolain, N.; Henault, C.; Nicolardot, B. Influence of integrated weed management system on N-cycling microbial communities and N2O emissions. Plant Soil 2013, 373, 501–514. [Google Scholar] [CrossRef]
- Lognoul, M.; Theodorakopoulos, N.; Hiel, M.P.; Regaert, D.; Broux, F.; Heinesch, B.; Bodson, B.; Vandenbol, M.; Aubinet, M. Impact of tillage on greenhouse gas emissions by an agricultural crop and dynamics of N2O fluxes: Insights from automated closed chamber measurements. Soil Tillage Res. 2017, 167, 80–89. [Google Scholar] [CrossRef]
- Rudiger, C.; Western, A.W.; Walker, J.P.; Smith, A.B.; Kalma, J.D.; Willgoose, G.R. Towards a general equation for frequency domain reflectometers. J. Hydrol. 2010, 383, 319–329. [Google Scholar] [CrossRef]
- Ferchaud, F.; Vitte, G.; Mary, B. Changes in soil carbon stocks under perennial and annual bioenergy crops. Glob. Chang. Biol. Bioenergy 2016, 8, 290–306. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Lenth, R.V. lsmeans: Least-Squares Means. 2014. Available online: http://CRAN.R-project.org/package=lsmeans (accessed on 28 April 2020).
- Therneau, T.; Atkinson, B.; Ripley, B. rpart: Recursive Partitioning and Regression Trees. 2016. Available online: https://CRAN.R-project.org/package=rpart (accessed on 28 April 2020).
- Clemens, J.; Schillinger, M.P.; Goldbach, H.; Huwe, B. Spatial variability of N2O emissions and soil parameters of an arable silt loam—A field study. Biol. Fertil. Soils 1999, 28, 403–406. [Google Scholar] [CrossRef]
- Röver, M.; Heinemeyer, O.; Munch, J.C.; Kaiser, E.-A. Spatial heterogeneity within the plough layer: High variability of N2O emission rates. Soil Biol. Biochem. 1999, 31, 167–173. [Google Scholar] [CrossRef]
- Jahangir, M.M.R.; Roobroeck, D.; Van Cleemput, O.; Boeckx, P. Spatial variability and biophysicochemical controls on N2O emissions from differently tilled arable soils. Biol. Fertil. Soils 2011, 47, 753–766. [Google Scholar] [CrossRef]
- Cowan, N.J.; Norman, P.; Famulari, D.; Levy, P.E.; Reay, D.S.; Skiba, U.M. Spatial variability and hotspots of soil N2O fluxes from intensively grazed grassland. Biogeosciences 2015, 12, 1585–1596. [Google Scholar] [CrossRef] [Green Version]
- Behnke, G.; David, M.; Voigt, T. Greenhouse Gas Emissions, Nitrate Leaching, and Biomass Yields from Production of Miscanthus × giganteus in Illinois, USA. BioEnergy Res. 2012, 5, 801–813. [Google Scholar] [CrossRef]
- Amougou, N.; Bertrand, I.; Cadoux, S.; Recous, S. Miscanthus × giganteus leaf senescence, decomposition and C and N inputs to soil. Glob. Chang. Biol. Bioenergy 2012, 4, 698–707. [Google Scholar] [CrossRef]
- Domeignoz-Hort, L.; Spor, A.; Bru, D.; Breuil, M.-C.; Bizouard, F.; Leonard, J.; Philippot, L. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef]
- Ferchaud, F.; Vitte, G.; Machet, J.-M.; Beaudoin, N.; Catterou, M.; Mary, B. The fate of cumulative applications of 15N-labelled fertiliser in perennial and annual bioenergy crops. Agric. Ecosyst. Environ. 2016, 223, 76–86. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Glob. Biogeochem. Cycles 2002, 16, 6-1–6-13. [Google Scholar] [CrossRef]
- Abalos, D.; Brown, S.E.; Vanderzaag, A.C.; Gordon, R.J.; Dunfield, K.E.; Wagner-Riddle, C. Micrometeorological measurements over 3 years reveal differences in N2O emissions between annual and perennial crops. Glob. Chang. Biol. 2016, 22, 1244–1255. [Google Scholar] [CrossRef]
- Henault, C.; Grossel, A.; Mary, B.; Roussel, M.; Leonard, J. Nitrous Oxide Emission by Agricultural Soils: A Review of Spatial and Temporal Variability for Mitigation. Pedosphere 2012, 22, 426–433. [Google Scholar] [CrossRef]
- Dobbie, K.E.; McTaggart, I.P.; Smith, K.A. Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors. J. Geophys. Res. Atmos. 1999, 104, 26891–26899. [Google Scholar] [CrossRef]
- Smith, K.A.; Thomson, P.E.; Clayton, H.; McTaggart, I.P.; Conen, F. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils. Atmos. Environ. 1998, 32, 3301–3309. [Google Scholar] [CrossRef]
- Maag, M.; Vinther, F.P. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Appl. Soil Ecol. 1996, 4, 5–14. [Google Scholar] [CrossRef]
- Chapuis-Lardy, L.; Wrage, N.; Metay, A.; Chotte, J.-L.; Bernoux, M. Soils, a sink for N2O? A review. Glob. Chang. Biol. 2007, 13, 1–17. [Google Scholar] [CrossRef]
- Bell, M.J.; Cloy, J.M.; Topp, C.F.E.; Ball, B.C.; Bagnall, A.; Rees, R.M.; Chadwick, D.R. Quantifying N2O emissions from intensive grassland production: The role of synthetic fertilizer type, application rate, timing and nitrification inhibitors. J. Agric. Sci. 2016, 154, 812–827. [Google Scholar] [CrossRef] [Green Version]
- Senapati, N.; Chabbi, A.; Giostri, A.F.; Yeluripati, J.B.; Smith, P. Modelling nitrous oxide emissions from mown-grass and grain-cropping systems: Testing and sensitivity analysis of DailyDayCent using high frequency measurements. Sci. Total Environ. 2016, 572, 955–977. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.M.F.; Weyers, S.L.; Archer, D.W.; Barbour, N.W. Nitrous Oxide, Methane Emission, and Yield-Scaled Emission from Organically and Conventionally Managed Systems. Soil Sci. Soc. Am. J. 2012, 76, 1347–1357. [Google Scholar] [CrossRef]
- Westphal, M.; Tenuta, M.; Entz, M.H. Nitrous oxide emissions with organic crop production depends on fall soil moisture. Agric. Ecosyst. Environ. 2018, 254, 41–49. [Google Scholar] [CrossRef]
Rotation | N Rate | Crop and Fertilizer-N Rate (kg ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | ||
Mis E | Mis n.h. | Mis E | Mis E | Mis E | Mis E | Mis E | Mis E | Mis E | Mis E | |
N+ | 0 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | |
Mis L | Mis n.h. | Mis L | Mis L | Mis L | Mis L | Mis L | Mis L | Mis L | Mis L | |
N+ | 0 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | |
N- | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Swi E | Swi n.h. | Swi E | Swi E | Swi E | Swi E | Swi E | Swi E | Swi E | Swi E | |
N+ | 0 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | |
Swi L | Swi n.h. | Swi L | Swi L | Swi L | Swi L | Swi L | Swi L | Swi L | Swi L | |
N+ | 0 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | |
Fes-Alf | CC/Fes | Fes | Fes | Alf | Alf | Fes | Fes | Fes | Alf | |
N− | 0 | 120 | 80 | 0 | 0 | 0 | 120 | 120 | 0 | |
Alf-Fes | Alf | Alf | Alf | Fes | Fes | Alf | Alf | Alf | Fes | |
N− | 0 | 0 | 0 | 40 | 120 | 0 | 0 | 0 | 0 | |
Sor-Tri | CC | Sor | Tri/CC | Sor | Tri/CC | Sor | Tri/CC | Sor | Tri/CC | |
N+ | 0 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | |
Tri-Sor | Sor | Tri/CC | Sor | Tri/CC | Sor | Tri/CC | Sor | Tri/CC | Maize * | |
N+ | 0 | 120 | 120 | 120 | 120 | 120 | 120 | 120 | 120 |
Treatment | Period | Start | End | Duration | Plot 1 | Plot 2 | Plots 1 + 2 | p-Value 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD 1 | CV 1 | Mean | SD 1 | CV 1 | Mean | SD 2 | CV 2 | ||||||
(days) | (g N ha−1) | (g N ha−1) | (g N ha−1) | |||||||||||
Mis L N+ | 3 | 18/05/2010 | 24/02/2011 | 283 | 757 | (63) | 8% | 1517 | (789) | 52% | 1137 | (651) | 57% | 0.24 |
Mis E N+ | 4 | 05/03/2011 | 04/09/2011 | 184 | 246 | (73) | 29% | 102 | (137) | 134% | 174 | (126) | 72% | 0.21 |
Mis L N+ | 4 | 05/03/2011 | 04/09/2011 | 184 | 814 | (75) | 9% | 1354 | (680) | 50% | 1084 | (524) | 48% | 0.30 |
Swi E N+ | 6 | 13/04/2013 | 06/03/2014 | 328 | 1610 | (230) | 14% | 1733 | (111) | 6% | 1671 | (175) | 10% | 0.47 |
Swi L N+ | 6 | 13/04/2013 | 06/03/2014 | 328 | 3294 | (916) | 28% | 2866 | (918) | 32% | 3080 | (853) | 28% | 0.60 |
All | 1307 | 1315 | (284) | 22% | 1543 | (514) | 33% | 1429 | (466) | 33% |
Treatment | Fertilizer Rate | Period | Start | End | Duration | Rainfall | Mean Soil Temperature | Mean WFPS | Percentage of Days with WFPS > 60% | N2O Emissions | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | CV | |||||||||||
(kg N ha−1) | (days) | (mm) | (°C) | (%) | (%) | (g N ha−1) | |||||||
Mis L N+ | 120 | 1 | 23/04/2008 | 05/03/2009 | 317 | 632 | 10.8 | 72 | 90 | 2145 | (551) | 26% | a |
Mis L N− | 0 | 23/04/2008 | 05/03/2009 | 317 | 632 | 10.8 | 72 | 90 | 277 | (32) | 12% | b | |
Mis L N+ | 120 | 2 | 06/03/2009 | 04/03/2010 | 364 | 604 | 10.6 | 67 | 63 | 1344 | (619) | 46% | a |
Mis L N− | 0 | 06/03/2009 | 04/03/2010 | 364 | 604 | 10.7 | 70 | 70 | −157 | (35) | 22% | c | |
Fes-Alf N− | 0 | 22/04/2009 | 04/03/2010 | 317 | 533 | 11.9 | 54 | 56 | 370 | (46) | 12% | b | |
Alf-Fes N− | 40 | 22/04/2009 | 04/03/2010 | 317 | 533 | 12.0 | 53 | 55 | 1339 | (346) | 26% | a | |
Mis E N+ | 120 | 3 | 18/05/2010 | 03/03/2011 | 290 | 583 | −36 | (28) | 78% | c | |||
Mis L N+ | 120 | 05/03/2010 | 03/03/2011 | 364 | 650 | 10.2 | 68 | 63 | 1364 | (658) | 48% | a | |
Mis L N− | 0 | 05/03/2010 | 03/03/2011 | 364 | 650 | 10.2 | 70 | 66 | 361 | (70) | 19% | b | |
Fes-Alf N− | 0 | 05/03/2010 | 04/03/2011 | 365 | 650 | 10.5 | 60 | 53 | 246 | (42) | 17% | b | |
Alf-Fes N− | 120 | 05/03/2010 | 04/03/2011 | 365 | 650 | 10.7 | 57 | 49 | 390 | (242) | 62% | b | |
Mis E N+ | 120 | 4 | 04/03/2011 | 18/10/2011 | 229 | 341 | 14.5 | 53 | 24 | 138 | (133) | 96% | b |
Mis L N+ | 120 | 04/03/2011 | 18/10/2011 | 229 | 341 | 13.8 | 61 | 53 | 1040 | (523) | 50% | a | |
Fes-Alf N− | 0 | 05/03/2011 | 04/09/2011 | 184 | 271 | 14.7 | 61 | 63 | 987 | (108) | 11% | a | |
Alf-Fes N− | 0 | 05/03/2011 | 04/09/2011 | 184 | 271 | 15.1 | 71 | 100 | 740 | (86) | 12% | a | |
Swi E N+ | 120 | 5 | 23/03/2012 | 06/03/2013 | 349 | 689 | 10.4 | 72 | 79 | 1862 | (532) | 29% | a |
Swi L N+ | 120 | 23/03/2012 | 06/03/2013 | 349 | 689 | 10.3 | 73 | 80 | 2663 | (766) | 29% | a | |
Sor-Tri N+ | 120 | 06/03/2012 | 05/03/2013 | 365 | 698 | 10.5 | 65 | 63 | 2059 | (348) | 17% | a | |
Tri-Sor N+ | 120 | 06/03/2012 | 05/03/2013 | 365 | 698 | 11.1 | 63 | 74 | 2319 | (1190) | 51% | a | |
Swi E N+ | 120 | 6 | 07/03/2013 | 12/03/2014 | 371 | 808 | 10.5 | 73 | 88 | 1702 | (177) | 10% | b |
Swi L N+ | 120 | 07/03/2013 | 12/03/2014 | 371 | 808 | 10.7 | 75 | 88 | 3362 | (904) | 27% | a | |
Sor-Tri N+ | 120 | 06/03/2013 | 05/03/2014 | 365 | 809 | 11.0 | 72 | 88 | 1325 | (474) | 36% | b | |
Tri-Sor N+ | 120 | 06/03/2013 | 05/03/2014 | 365 | 809 | 10.6 | 60 | 54 | 1281 | (201) | 16% | b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferchaud, F.; Peyrard, C.; Léonard, J.; Gréhan, E.; Mary, B. Large Variations in N2O Fluxes from Bioenergy Crops According to Management Practices and Crop Type. Atmosphere 2020, 11, 675. https://doi.org/10.3390/atmos11060675
Ferchaud F, Peyrard C, Léonard J, Gréhan E, Mary B. Large Variations in N2O Fluxes from Bioenergy Crops According to Management Practices and Crop Type. Atmosphere. 2020; 11(6):675. https://doi.org/10.3390/atmos11060675
Chicago/Turabian StyleFerchaud, Fabien, Céline Peyrard, Joël Léonard, Eric Gréhan, and Bruno Mary. 2020. "Large Variations in N2O Fluxes from Bioenergy Crops According to Management Practices and Crop Type" Atmosphere 11, no. 6: 675. https://doi.org/10.3390/atmos11060675
APA StyleFerchaud, F., Peyrard, C., Léonard, J., Gréhan, E., & Mary, B. (2020). Large Variations in N2O Fluxes from Bioenergy Crops According to Management Practices and Crop Type. Atmosphere, 11(6), 675. https://doi.org/10.3390/atmos11060675