An Index for Depicting the Long-Term Variability of Mesoscale Eddy Activity over the Kuroshio Extension Region
Abstract
:1. Introduction
2. Data and Methods
3. The KE Eddy Activity Index
3.1. Definition
3.2. Advantage of the New EAI
4. Relationship with Oceanic Rossby Waves
5. Impacts on the Air–Sea Heat Flux and Near-Surface Baroclinicity
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stammer, D. On eddy characteristics, eddy transports, and mean flow properties. J. Phys. Oceanogr. 1998, 45, 1356–1375. [Google Scholar] [CrossRef]
- Gill, A.E.; Green, J.S.A.; Simmons, A.J. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. J. Mar. Res. 1974, 21, 499–528. [Google Scholar] [CrossRef]
- Sasai, Y.; Richards, K.J.; Ishida, A.; Sasaki, H. Effects of cyclonic mesoscale eddies on the marine ecosystem in the Kuroshio Extension region using an eddy-resolving coupled physical-biological model. Ocean Dyn. 2010, 60, 693–704. [Google Scholar] [CrossRef]
- Chen, G.; Gan, J.; Xie, Q.; Chu, X.; Wang, D.; Hou, Y. Eddy heat and salt transports in the South China Sea and their seasonal modulations. J. Geophys. Res. 2012, 117, C05021. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global heat and salt transports by eddy movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Chen, S. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep Sea Res. Part II 2010, 57, 1098–1110. [Google Scholar] [CrossRef]
- Delman, A.S.; Mcclean, J.L.; Sprintall, J.; Talley, L.D.; Yulaeva, E.; Jayne, S.R. Effects of eddy vorticity forcing on the mean state of the kuroshio extension. J. Phys. Oceanogr. 2015, 45, 1356–1375. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S. Decadal variability in the formation of the North Pacific Subtropical Mode Water: Oceanic versus atmospheric control. J. Phys. Oceanogr. 2006, 36, 1365–1380. [Google Scholar] [CrossRef]
- Oka, E.; Qiu, B. Progress of North Pacific mode water research in the past decade. J. Oceanogr. 2012, 68, 5–20. [Google Scholar] [CrossRef]
- Putrasahan, D.A.; Miller, A.J.; Seo, H. Isolating mesoscale coupled ocean–atmosphere interactions in the kuroshio extension region. Dynam. Atmos. Oceans 2013, 63, 60–78. [Google Scholar] [CrossRef]
- Ma, J.; Xu, H.; Dong, C.; Lin, P.; Liu, Y. Atmospheric responses to oceanic eddies in the Kuroshio Extension region. J. Geophys. Res. Atmos. 2015, 120, 6313–6330. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Q.; Jia, Y. Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region. J. Oceanogr. 2016, 73, 295–307. [Google Scholar] [CrossRef]
- Sugimoto, S.; Aono, K.; Fukui, S. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio–Oyashio Confluence region. Sci. Rep. 2017, 7, 11871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Chang, P.; Saravanan, R.; Montuoro, R.; Hsieh, J.S.; Wu, D.; Lin, X.; Wu, L.; Jing, Z. Distant influence of Kuroshio eddies on North Pacific weather patterns? Sci. Rep. 2015, 5, 17785. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Chang, P.; Saravanan, R.; Montuoro, R.; Nakamura, H.; Wu, D.; Lin, X.; Wu, L. Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track. J. Clim. 2017, 30, 1861–1880. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, H.; Li, C.; Lin, P. Impacts of mesoscale sea surface temperature anomalies on the meridional shift of North Pacific storm track. Int. J. Climatol. 2019, 39, 5124–5139. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Chen, S. Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr. 2005, 35, 2090–2103. [Google Scholar] [CrossRef]
- Itoh, S.; Yasuda, I. Characteristics of mesoscale eddies in the Kuroshio–Oyashio Extension region detected from the distribution of the sea surface height anomaly. J. Phys. Oceanogr. 2010, 40, 1018–1034. [Google Scholar] [CrossRef]
- Sugimoto, S.; Hanawa, K. Roles of SST anomalies on the wintertime turbulent heat fluxes in the Kuroshio–Oyashio Confluence Region: Influences of warm eddies detached from the Kuroshio Extension. J. Clim. 2011, 24, 6551–6561. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Yu, L.; Jin, X.; Weller, R.A. Multidecade Global Flux Datasets from the Objectively Analyzed Air–Sea Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. 2008. Available online: http://oaflux.whoi.edu/pdfs/OAFlux_TechReport_3rd_release.pdf (accessed on 2 June 2020).
- Ducet, N.; Le Traon, P.Y.; Reverdin, G. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res. 2000, 105, 19477–19498. [Google Scholar] [CrossRef]
- Carton, J.A.; Giese, B. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev. 2008, 136, 2999–3017. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Ding, R.Q.; Li, J.P.; Tseng, Y.H. The impact of South Pacific extratropical forcing on ENSO and comparisons with the North Pacific. Clim. Dyn. 2015, 44, 2017–2034. [Google Scholar] [CrossRef]
- Seo, Y.; Sugimoto, S.; Hanawa, K. Long-term variations of the Kuroshio Extension path in winter: Meridional movement and path state change. J. Clim. 2014, 27, 5929–5940. [Google Scholar] [CrossRef]
- Qiu, B.; Chen, S.M.; Schneider, N.; Taguchi, B. A coupled decadal prediction of the dynamic state of the Kuroshio Extension system. J. Clim. 2014, 27, 1751–1764. [Google Scholar] [CrossRef] [Green Version]
- Qiu, B.; Schneider, N.; Chen, S. Coupled decadal variability in the North Pacific: An observationally constrained idealized model. J. Clim. 2007, 20, 3602–3620. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Zhang, L.; Zhang, Y.; Deng, B. Interdecadal change of winter SST variability in the Kuroshio Extension region and its linkage with Aleutian atmospheric low pressure system. Acta Oceanol. Sin. 2016, 35, 24–37. [Google Scholar] [CrossRef]
- Nonaka, M.; Nakamura, H.; Tanimoto, Y.; Kagimoto, T.; Sasaki, H. Decadal variability in the Kuroshio–Oyashio Extension simulated in an eddy-resolving OGCM. J. Clim. 2006, 19, 1970–1989. [Google Scholar] [CrossRef] [Green Version]
- Ceballos, L.I.; Di Lorenzo, E.; Hoyos, C.D.; Schneider, N.; Taguchi, B. North Pacific Gyre Oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J. Clim. 2009, 22, 5163–5174. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y.N.; Schneider, N. Decadal shifts of the Kuroshio Extension jet: Application of thin-jet theory. J. Phys. Oceanogr. 2011, 41, 979–993. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, X.; Qiu, B.; Chen, S. On the decadal variability of the eddy kinetic energy in the Kuroshio Extension. J. Phys. Oceanogr. 2017, 47, 1169–1187. [Google Scholar] [CrossRef]
- Sugimoto, S.; Hanawa, K. Relationship between the path of the Kuroshio in the south of Japan and the path of the Kuroshio Extension in the east. J. Oceanogr. 2012, 68, 219–225. [Google Scholar] [CrossRef]
- Fu, L.; Qiu, B. Low-frequency variability of the North Pacific Ocean: The roles of boundary-driven and wind-driven baroclinic Rossby waves. J. Geophys. Res. 2002, 107, 13–1–13–10. [Google Scholar] [CrossRef]
- Pierini, S. A Kuroshio Extension System model study: Decadal chaotic self-sustained oscillations. J. Phys. Oceanogr. 2006, 36, 1605–1625. [Google Scholar] [CrossRef]
- Pierini, S.; Dijkstra, H.A.; Riccio, A. A nonlinear theory of the Kuroshio Extension bimodality. J. Phys. Oceanogr. 2009, 39, 2212–2229. [Google Scholar] [CrossRef]
- Qiu, B. Interannual variability of the Kuroshio Extension and its impact on the wintertime SST field. J. Phys. Oceanogr. 2000, 30, 1486–1502. [Google Scholar] [CrossRef]
- Révelard, A.; Frankignoul, C.; Sennéchael, N.; Kwon, Y.O.; Qiu, B. Influence of the decadal variability of the Kuroshio Extension on the atmospheric circulation in the cold season. J. Clim. 2016, 29, 2123–2144. [Google Scholar] [CrossRef]
- Frankignoul, C.; Czaja, A.; L’Heveder, B. Air-sea feedback in the North Atlantic and surface boundary conditions for ocean models. J. Clim. 1998, 11, 2310–2324. [Google Scholar] [CrossRef] [Green Version]
- Sampe, T.; Nakamura, H.; Goto, A.; Ohfuchi, W. Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Clim. 2010, 23, 1793–6128. [Google Scholar] [CrossRef]
- Masunaga, R.; Nakamura, H.; Miyasaka, T.; Nishii, K.; Qiu, B. Interannual modulations of oceanic imprints on the wintertime atmospheric boundary layer under the changing dynamical regimes of the Kuroshio Extension. J. Clim. 2016, 29, 3273–3296. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Sampe, T.; Goto, A.; Ohfuchi, W.; Xie, S.-P. On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett. 2008, 35, L15709. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Yamane, S. Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part I: North Atlantic basin. J. Clim. 2009, 22, 880–904. [Google Scholar] [CrossRef]
- Nakamura, M.; Yamane, S. Dominant anomaly patterns in the near-surface baroclinicity and accompanying anomalies in the atmosphere and oceans. Part II: North Pacific basin. J. Clim. 2010, 23, 6445–6467. [Google Scholar] [CrossRef]
- Nakamura, M.; Miyama, T. Impacts of the Oyashio temperature front on the regional climate. J. Clim. 2014, 27, 7861–7873. [Google Scholar] [CrossRef]
- Fang, J.; Yang, X. Structure and dynamics of decadal anomalies in the wintertime midlatitude North Pacific ocean–atmosphere system. Clim. Dyn. 2016, 47, 1989–2007. [Google Scholar] [CrossRef] [Green Version]
- Chan, D.; Zhang, Y.; Wu, Q.; Dai, X. Quantifying the dynamics of the interannual variabilities of the wintertime East Asian Jet Core. Clim. Dyn. 2020, 54, 2447–2463. [Google Scholar] [CrossRef] [Green Version]
- Kuang, X.; Zhang, Y. Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle-lower reaches of Yangtze River. Plateau Meteorol. 2006, 25, 382–389. [Google Scholar]
- Yang, L.; Wu, B. Interdecadal variations of the East Asian winter surface air temperature and possible causes. Chin. Sci. Bull. 2013, 58, 3969–3977. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Lin, A.; Gu, D.; Li, C.; Zheng, B.; Zhou, T. Interannual variability of Eastern China Summer Rainfall: The origins of the meridional triple and dipole modes. Clim. Dyn. 2017, 48, 683–696. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Zhang, L.; Zhong, Q. Contrasting relationship between the Kuroshio Extension and the East Asian summer monsoon before and after the late 1980s. Clim. Dyn. 2019, 52, 929–950. [Google Scholar] [CrossRef]
EAI | Jet Strength | Jet Pathlength | Jet Position | SSH | |
---|---|---|---|---|---|
EKE | 0.57 */0.83 * | –0.31 */–0.63 * | 0.32 */0.60 * | –0.01/–0.27 | –0.38 */–0.54 * |
EAI | - | –0.53 */–0.63 * | 0.40 */0.68 * | –0.20/–0.41 * | –0.42 */–0.60 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, P.; Zhang, C.; Zhang, L.; Chen, X.; Zhong, Q.; Yang, M.; Li, X. An Index for Depicting the Long-Term Variability of Mesoscale Eddy Activity over the Kuroshio Extension Region. Atmosphere 2020, 11, 792. https://doi.org/10.3390/atmos11080792
Yu P, Zhang C, Zhang L, Chen X, Zhong Q, Yang M, Li X. An Index for Depicting the Long-Term Variability of Mesoscale Eddy Activity over the Kuroshio Extension Region. Atmosphere. 2020; 11(8):792. https://doi.org/10.3390/atmos11080792
Chicago/Turabian StyleYu, Peilong, Chao Zhang, Lifeng Zhang, Xiong Chen, Quanjia Zhong, Minghao Yang, and Xin Li. 2020. "An Index for Depicting the Long-Term Variability of Mesoscale Eddy Activity over the Kuroshio Extension Region" Atmosphere 11, no. 8: 792. https://doi.org/10.3390/atmos11080792
APA StyleYu, P., Zhang, C., Zhang, L., Chen, X., Zhong, Q., Yang, M., & Li, X. (2020). An Index for Depicting the Long-Term Variability of Mesoscale Eddy Activity over the Kuroshio Extension Region. Atmosphere, 11(8), 792. https://doi.org/10.3390/atmos11080792