Spatio-Temporal Variations of Water Vapor Budget over the Tibetan Plateau in Summer and Its Relationship with the Indo-Pacific Warm Pool
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
3. Results
3.1. TP Water Vapor Transport and Precipitation
3.1.1. Spatiotemporal Variations of Water Vapor Transport and Budget
3.1.2. Spatiotemporal Variations of the Precipitable Water and Precipitation
3.2. IPWP SST and Slhf Changes
3.3. The Relationship Between the TP and the IPWP
4. Conclusions and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boos, W.R.; Kuang, Z.M. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 2010, 463, 218–222. [Google Scholar] [CrossRef]
- Kang, S.C.; Xu, Y.W.; You, Q.L.; Flugel, W.A.; Pepin, N.; Yao, T.D. Review of climate and cryospheric change in the Tibetan Plateau. Env. Res. Lett. 2010, 5, 8. [Google Scholar] [CrossRef]
- Hao, D.L.; Wen, J.G.; Xiao, Q.; Wu, S.B.; Lin, X.W.; Dou, B.C.; You, D.Q.; Tang, Y. Simulation and Analysis of the Topographic Effects on Snow-Free Albedo over Rugged Terrain. Remote Sens. 2018, 10, 278. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.G.; Tang, W.J.; Chen, Y.Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Ge, J.; You, Q.L.; Zhang, Y.Q. Effect of Tibetan Plateau heating on summer extreme precipitation in eastern China. Atmos. Res. 2019, 218, 364–371. [Google Scholar] [CrossRef]
- Xu, X.D.; Dong, L.L.; Zhao, Y.; Wang, Y.J. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation. Chin. Sci. Bull. Chin. 2019, 64, 2830–2841. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Gao, J.; Zhao, Y.; Zhang, L.; Zhang, W. Water Vapor Transport Processes on Asian Water Tower. Bull. Chin. Acad. Sci. 2019, 34, 1210–1219. [Google Scholar]
- Zou, F.; Tenzer, R.; Jin, S.G. Water Storage Variations in Tibet from GRACE, ICESat, and Hydrological Data. Remote Sens. 2019, 11, 1103. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.Y.; Zhao, P.; Chen, J.M. The Interdecadal Change of Summer Water Vapor over the Tibetan Plateau and Associated Mechanisms. J. Clim. 2019, 32, 4103–4119. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Duan, A.M.; Yang, S.; Ullah, K. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 614–630. [Google Scholar] [CrossRef]
- Li, H.Y.; Mao, D.H.; Li, X.Y.; Wang, Z.M.; Wang, C.Z. Monitoring 40-Year Lake Area Changes of the Qaidam Basin, Tibetan Plateau, Using Landsat Time Series. Remote Sens. 2019, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- You, Q.L.; Liu, J.J.; Pepin, N. Changes of summer cloud water content in China from ERA-Interim reanalysis. Glob. Planet. Chang. 2019, 175, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Yao, T.D.; Xie, H.J.; Kang, S.C.; Lei, Y.B. Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophys. Res. Lett. 2013, 40, 2125–2130. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, X.D.; Zhao, T.L.; Yang, X.J. Effects of the Tibetan Plateau and its second staircase terrain on rainstorms over North China: From the perspective of water vapour transport. Int. J. Clim. 2019, 39, 3121–3133. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.H.; Lin, Y.L.; Wright, J.S.; Xie, Y.Y.; Xu, F.H.; Xu, W.Q.; Wang, Y. Indian Monsoon Low-Pressure Systems Feed Up-and-Over Moisture Transport to the Southwestern Tibetan Plateau. J. Geophys. Res.-Atmos. 2017, 122, 12140–12151. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Lu, M.Q.; Chen, H.N.; Pan, M.X.; Hong, Y. Atmospheric moisture transport versus precipitation across the Tibetan Plateau: A mini-review and current challenges. Atmos. Res. 2018, 209, 50–58. [Google Scholar] [CrossRef]
- Kong, F.P.; Dong, Q.; Xiang, K.S.; Yin, Z.; Li, Y.Y.; Liu, J.Y. Spatiotemporal Variability of Remote Sensing Ocean Net Primary Production and Major Forcing Factors in the Tropical Eastern Indian and Western Pacific Ocean. Remote Sens. 2019, 11, 391. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.M.; Lu, M.M.; Yang, H.J.; Duan, A.M.; He, B.; Yang, S.; Wu, G.X. Land-atmosphere-ocean coupling associated with the Tibetan Plateau and its climate impacts. Natl. Sci. Rev. 2020, 7, 534–552. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.H.; Lin, Y.L.; Wright, J.S.; Ming, Y.; Xie, Y.Y.; Wang, B.; Luo, Y.; Huang, W.Y.; Huang, J.B.; Wang, L.; et al. Summer rainfall over the southwestern Tibetan Plateau controlled by deep convection over the Indian subcontinent. Nat. Commun. 2016, 7, 9. [Google Scholar] [CrossRef]
- Chen, B.; Xu, X.D.; Yang, S.; Zhang, W. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau. Theor. Appl. Clim. 2012, 110, 423–435. [Google Scholar] [CrossRef]
- Zhang, F.L.; Li, G.P.; Yue, J. The Moisture Sources and Transport Processes for a Sudden Rainstorm Associated with Double Low-Level Jets in the Northeast Sichuan Basin of China. Atmosphere 2019, 10, 160. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.L.; Zhang, R.H.; Qian, W.M.; Luo, Z.Z.; Hu, X. Intercomparison of Deep Convection over the Tibetan Plateau-Asian Monsoon Region and Subtropical North America in Boreal Summer Using CloudSat/CALIPSO Data. J. Clim. 2011, 24, 2164–2177. [Google Scholar] [CrossRef] [Green Version]
- Curio, J.; Maussion, F.; Scherer, D. A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau. Earth Syst. Dynam. 2015, 6, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Tang, Q.H.; Chen, D.L.; van der Ent, R.J.; Liu, X.C.; Li, W.H.; Haile, G.G. Moisture Source Changes Contributed to Different Precipitation Changes over the Northern and Southern Tibetan Plateau. J. Hydrometeorol. 2019, 20, 217–229. [Google Scholar] [CrossRef]
- Pan, C.; Zhu, B.; Gao, J.H.; Kang, H.Q.; Zhu, T. Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport. Clim. Dyn. 2019, 52, 181–196. [Google Scholar] [CrossRef]
- Meng, F.C.; Su, F.G.; Li, Y.; Tong, K. Changes in Terrestrial Water Storage During 2003-2014 and Possible Causes in Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 2909–2931. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, T.; Lu, C.; Shi, X. Characteristics of the water cycle in the atmosphere over the Tibetan Plateau. Acta Meteorol. Sin. 2014, 72, 1079–1095. [Google Scholar]
- Chen, B.; Zhang, W.; Yang, S.; Xu, X.D. Identifying and contrasting the sources of the water vapor reaching the subregions of the Tibetan Plateau during the wet season. Clim. Dyn. 2019, 53, 6891–6907. [Google Scholar] [CrossRef]
- Zou, M.; Qiao, S.; Wu, Y.; Feng, G. Effects of Anomalous Water Vapor Transport from Tropical Indian Ocean-Western Pacific on Summer Rainfall in Eastern China. Chin. J. Atmos. Sci. 2017, 41, 988–998. [Google Scholar]
- Xie, X.; You, Q.; Bao, Y.; Meng, X. The Connection Between the Precipitation and Water Vapor Transport over Qinghai-Tibetan Plateau in Summer Based on the Multiple Datasets. Plateau Meteorol. 2018, 37, 78–92. [Google Scholar]
- Feng, L.; Zhou, T.J. Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res. Atmos. 2012, 117, 16. [Google Scholar] [CrossRef] [Green Version]
- Lu, N.; Trenberth, K.E.; Qin, J.; Yang, K.; Yao, L. Detecting Long-Term Trends in Precipitable Water over the Tibetan Plateau by Synthesis of Station and MODIS Observations. J. Clim. 2015, 28, 1707–1722. [Google Scholar] [CrossRef] [Green Version]
- Li, X.D.; Long, D.; Huang, Q.; Han, P.F.; Zhao, F.Y.; Wada, Y. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth Syst. Sci. Data 2019, 11, 1603–1627. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.Q.; Yao, T.D.; Shum, C.K.; Yi, S.; Yang, K.; Xie, H.J.; Feng, W.; Bolch, T.; Wang, L.; Behrangi, A.; et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Chen, D.; Gao, S.; Chen, J. Impact of the indo-pacific warm pool sst anomaly on arctic sea ice variation. Chin. J. Polar Res. 2016, 28, 49–57. [Google Scholar]
- Lin, C.Y.; Ho, C.R.; Lee, Y.H.; Kuo, N.J.; Liang, S.J. Thermal variability of the Indo-Pacific warm pool. Glob. Planet. Chang. 2013, 100, 234–244. [Google Scholar] [CrossRef]
- Visser, K.; Thunell, R.; Stott, L. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 2003, 421, 152–155. [Google Scholar] [CrossRef]
- DongXiao, Q.I.U.; Fei, H.; YuXing, Y. Interdecadal Variability of the Indo-Pacific Warm Pool. J. Ocean Univ. China 2007, 37, 525–532. [Google Scholar]
- Chu, C.J.; Yang, X.Q.; Sun, X.G.; Yang, D.J.; Jiang, Y.Q.; Feng, T.; Liang, J. Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes. Clim. Dyn. 2018, 50, 3031–3048. [Google Scholar] [CrossRef]
- Wang, Z.B.; Wu, R.G.; Chen, S.F.; Huang, G.; Liu, G.; Zhu, L.H. Influence of Western Tibetan Plateau Summer Snow Cover on East Asian Summer Rainfall. J. Geophys. Res. Atmos. 2018, 123, 2371–2386. [Google Scholar] [CrossRef]
- Hao, D.L.; Wen, J.G.; Xiao, Q.; Lin, X.W.; You, D.Q.; Tang, Y.; Liu, Q.; Zhang, S.S. Sensitivity of Coarse-Scale Snow-Free Land Surface Shortwave Albedo to Topography. J. Geophys. Res. Atmos. 2019, 124, 9028–9045. [Google Scholar] [CrossRef]
- Wang, Z.S.; Huang, M.; Wang, R.; Wang, S.Q.; Liu, X.D.; Xie, X.N.; Liu, Z.J.; Gong, H.; Hao, M. Global NDVI Patterns in Response to Atmospheric Water Vapor Anomalies over the Indo-Pacific Warm Pool during April-June. J. Clim. 2019, 32, 1167–1180. [Google Scholar] [CrossRef]
- Xu, K.P.; Zhong, L.; Ma, Y.N.; Zou, M.J.; Huang, Z.Y. A study on the water vapor transport trend and water vapor source of the Tibetan Plateau. Theor. Appl. Clim. 2020, 140, 1031–1042. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, W.; Chen, B.; Xu, X.D.; Zhao, R.Y. Remote moisture sources for 6-hour summer precipitation over the Southeastern Tibetan Plateau and its effects on precipitation intensity. Atmos. Res. 2020, 236, 14. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, K.; Beljaars, A.; Li, H.D.; Lin, C.G.; Huang, B.; Wang, Y. Dynamical impact of parameterized turbulent orographic form drag on the simulation of winter precipitation over the western Tibetan Plateau. Clim. Dyn. 2019, 53, 707–720. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Wang, D.H.; Zhai, P.M.; Gu, G.J.; He, J.H. Spatial Distributions and Seasonal Variations of Tropospheric Water Vapor Content over the Tibetan Plateau. J. Clim. 2013, 26, 5637–5654. [Google Scholar] [CrossRef]
- Guo, L.; Klingaman, N.P.; Demory, M.E.; Vidale, P.L.; Turner, A.G.; Stephan, C.C. The contributions of local and remote atmospheric moisture fluxes to East Asian precipitation and its variability. Clim. Dyn. 2018, 51, 4139–4156. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Zhou, X.; Li, J.P.; Chen, Q.L.; Zhang, J.K.; Li, Y.; Ding, R.Q.; Xue, J.Q.; Ma, X. Effect of the Indo-Pacific Warm Pool on Lower-Stratospheric Water Vapor and Comparison with the Effect of ENSO. J. Clim. 2018, 31, 929–943. [Google Scholar] [CrossRef]
- Ratna, S.B.; Cherchi, A.; Joseph, P.V.; Behera, S.K.; Abish, B.; Masina, S. Moisture variability over the Indo-Pacific region and its influence on the Indian summer monsoon rainfall. Clim. Dyn. 2016, 46, 949–965. [Google Scholar] [CrossRef]
- Hoell, A.; Funk, C. Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa. Clim. Dyn. 2014, 43, 1645–1660. [Google Scholar] [CrossRef]
- Priya, P.; Mujumdar, M.; Sabin, T.P.; Terray, P.; Krishnan, R. Impacts of Indo-Pacific Sea Surface Temperature Anomalies on the Summer Monsoon Circulation and Heavy Precipitation over Northwest India-Pakistan Region during 2010. J. Clim. 2015, 28, 3714–3730. [Google Scholar] [CrossRef] [Green Version]
- Yin, Z.; Dong, Q.; Kong, F.; Cao, D.; Long, S. Seasonal and Interannual Variability of the Indo-Pacific Warm Pool and its Associated Climate Factors Based on Remote Sensing. Remote Sens. 2020, 12, 1062. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, W.; Berrisford, P.; Horányi, A.; J., M.-S.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C.; et al. Global reanalysis: Goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar]
- He, J.; Yang, K.; Tang, W.J.; Lu, H.; Qin, J.; Chen, Y.Y.; Li, X. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 2020, 7, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kun, Y.; Jie, H.E. China meteorological forcing dataset (1979–2018). Natl. Tibet. Plateau Data Cent. 2018. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Wolter, K.; Timlin, M.S. El Nino/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Clim. 2011, 31, 1074–1087. [Google Scholar] [CrossRef]
- Banacos, P.C.; Schultz, D.M. The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Weather Forecast 2005, 20, 351–366. [Google Scholar] [CrossRef]
- Xiao, W.; Yuanfa, G.; Sixian, C.E.N. Characteristics of the Moist Pool and Its Moisture Transports over Qinghai-Xizang Plateau in Summer Half Year. Acta Geogr. Sin. 2009, 64, 601–608. [Google Scholar]
- Zhang, Q.A.; Xu, C.Y.; Zhang, Z.X.; Chen, Y.D. Changes of atmospheric water vapor budget in the Pearl River basin and possible implications for hydrological cycle. Theor. Appl. Clim. 2010, 102, 185–195. [Google Scholar] [CrossRef]
- Sun, M.; Liu, S.; Yao, X.; Guo, W.; Xu, J. Glacier changes in the Qilian Mountains in the past half century: Based on the revised First and Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 1402–1414. [Google Scholar] [CrossRef] [Green Version]
- Dong, D.H.; Huang, G.; Tao, W.C.; Wu, R.G.; Hu, K.M.; Li, C.F. Interannual variation of precipitation over the Hengduan Mountains during rainy season. Int. J. Clim. 2018, 38, 2112–2125. [Google Scholar] [CrossRef]
- Li, G.; Ren, B.H.; Yang, C.Y.; Zheng, J.Q. Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during 1977-2006. J. Geophys. Res. Atmos. 2011, 116, 9. [Google Scholar] [CrossRef]
- Yang, H.; Xu, G.Y.; Wang, X.F.; Cui, C.G.; Wang, J.Y.; He, D.X. Quantitative Analysis of Water Vapor Transport during Mei-Yu Front Rainstorm Period over the Tibetan Plateau and Yangtze-Huai River Basin. Adv. Meteorol. 2019, 14. [Google Scholar] [CrossRef]
Datasets | Resolution | Timespan | Variables |
---|---|---|---|
ERA5 | 0.25°, monthly | January 1979–December 2018 | u and v, q, sp, tp, slhf |
OI SST V2 | 0.25°, monthly | December 1981–December 2018 | sst |
China Meteorological Forcing Dataset | 0.1°, daily | January 1979–December 2018 | prec |
ASTER GDEM V2 | 30 m | – | dem |
Basins | Climate Indices | Basins | Climate Indices | ||||
---|---|---|---|---|---|---|---|
WPIslhf | Nino3.4 | IOD | WPIslhf | Nino3.4 | IOD | ||
TP | 0.41 * | −0.37 * | −0.08 | Lancang | 0.05 | 0.02 | 0.03 |
AmuDarya | −0.07 | −0.04 | −0.16 | Yangtze | 0.24 | −0.09 | −0.03 |
Indus | 022 | −0.23 | 0.11 | Yellow | 0.25 | −0.18 | 0.00 |
Ganges | 0.49 * | −0.49 * | 0.03 | Hexi Corridor | 0.04 | −0.09 | 0.03 |
Yalung Zangbo | 0.16 | −0.34 * | −0.13 | Tarim | 0.25 | −0.09 | 0.06 |
Irrawaddy | −0.21 | −0.14 | 0.05 | Qaidam | 0.01 | 0.11 | 0.17 |
Nu | 0.10 | −0.05 | −0.09 | Qiangtang | 0.63 * | −0.38 * | −0.12 |
Basins | Climate Indices | Basins | Climate Indices | ||||
---|---|---|---|---|---|---|---|
WPIslhf | Nino3.4 | IOD | WPIslhf | Nino3.4 | IOD | ||
TP | 0.86 * | 0.13 | 0.85 * | Lancang | 0.37 | −0.02 | 0.32 |
AmuDarya | −0.72 * | −0.15 | −0.71 * | Yangtze | 0.88 * | 0.11 | 0.80 * |
Indus | 0.48 * | 0.42 * | 0.70 * | Yellow | 0.83 * | 0.09 | 0.79 * |
Ganges | 0.74 * | 0.23 | 0.90 * | Hexi Corridor | 0.12 | 0.43 * | 0.31 |
Yalung Zangbo | 0.22 | −0.02 | 0.34 | Tarim | 0.44 * | −0.31 | −0.00 |
Irrawaddy | 0.83 * | −0.00 | 0.81 * | Qaidam | −0.51 * | 0.44 * | −0.35 |
Nu | 0.28 | −0.24 | 0.13 | Qiangtang | 0.96 * | 0.08 | 0.89 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, D.; Dong, Q.; Kong, F.; Yin, Z.; Li, Y.; Liu, J. Spatio-Temporal Variations of Water Vapor Budget over the Tibetan Plateau in Summer and Its Relationship with the Indo-Pacific Warm Pool. Atmosphere 2020, 11, 828. https://doi.org/10.3390/atmos11080828
Meng D, Dong Q, Kong F, Yin Z, Li Y, Liu J. Spatio-Temporal Variations of Water Vapor Budget over the Tibetan Plateau in Summer and Its Relationship with the Indo-Pacific Warm Pool. Atmosphere. 2020; 11(8):828. https://doi.org/10.3390/atmos11080828
Chicago/Turabian StyleMeng, Deli, Qing Dong, Fanping Kong, Zi Yin, Yanyan Li, and Jingyi Liu. 2020. "Spatio-Temporal Variations of Water Vapor Budget over the Tibetan Plateau in Summer and Its Relationship with the Indo-Pacific Warm Pool" Atmosphere 11, no. 8: 828. https://doi.org/10.3390/atmos11080828
APA StyleMeng, D., Dong, Q., Kong, F., Yin, Z., Li, Y., & Liu, J. (2020). Spatio-Temporal Variations of Water Vapor Budget over the Tibetan Plateau in Summer and Its Relationship with the Indo-Pacific Warm Pool. Atmosphere, 11(8), 828. https://doi.org/10.3390/atmos11080828