Short-Term Responses of Air Quality to Changes in Emissions under the Representative Concentration Pathway 4.5 Scenario over Brazil
Abstract
:1. Introduction
2. Methodology
2.1. The WRF-Chem Model and Simulation
2.2. Anthropogenic Emission Scenarios
2.3. Evaluation Protocols and Observational Datasets Used for Evaluation
3. Results
3.1. Model Performance Evaluation
3.2. Current Legislation Scenario
3.3. Mitigation Scenario
3.4. Maximum Feasible Reduction Scenario
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Health Statistics 2018: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Ebi, K.L.; McGregor, G. Climate change, tropospheric ozone and particulate matter, and health impacts. Environ. Health Perspect. 2008, 116, 1449–1455. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.N.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [Green Version]
- Madaniyazi, L.; Guo, Y.; Yu, W.; Tong, S. Projecting future air pollution-related mortality under a changing climate: Progress, uncertainties and research needs. Environ. Int. 2015, 75, 21–32. [Google Scholar] [CrossRef]
- Chen, R.; Cai, J.; Meng, X.; Kim, H.; Honda, Y.; Guo, Y.L.; Samoli, E.; Yang, X.; Kan, H. Ozone and daily mortality rate in 21 cities of East Asia: How does season modify the association. Am. J. Epidemiol. 2014, 180, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Wyslouzil, B.E.; Wölk, J. Overview: Homogeneous nucleation from the vapor phase—The experimental science. J. Chem. Phys. 2016, 145, 1–25. [Google Scholar] [CrossRef]
- Jacob, D. Heterogeneous chemistry and tropospheric ozone. Atmos. Environ. 2000, 34, 2131–2159. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Krawchuk, M.A.; De Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Yienger, J.J.; Levy, H. Empirical model of global soil-biogenic NOχemissions. J. Geophys. Res. Space Phys. 1995, 100, 11447. [Google Scholar] [CrossRef]
- Racherla, P.N.; Adams, P.J. Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Huang, H.-C.; Lee, C.-L.; Lai, C.-H.; Fang, M.-D.; Lai, I.-C. Transboundary movement of polycyclic aromatic hydrocarbons (PAHs) in the Kuroshio Sphere of the western Pacific Ocean. Atmos. Environ. 2012, 54, 470–479. [Google Scholar] [CrossRef]
- Liu, J.C.; Mickley, L.J.; Sulprizio, M.P.; Dominici, F.; Yue, X.; Ebisu, K.; Anderson, G.B.; Khan, R.F.A.; Bravo, M.A.; Bell, M.L. Particulate air pollution from wildfires in the Western US under climate change. Clim. Chang. 2016, 138, 655–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pommier, M.; Fagerli, H.; Gauss, M.; Simpson, D.; Sharma, S.; Sinha, V.; Ghude, S.D.; Landgren, O.; Nyiri, A.; Wind, P. Impact of regional climate change and future emission scenarios on surface O3 and PM2.5 over India. Atmos. Chem. Phys. Discuss. 2018, 18, 103–127. [Google Scholar] [CrossRef] [Green Version]
- Wiedinmyer, C.; Tie, X.; Guenther, A.; Neilson, R.; Granier, C. Future Changes in Biogenic Isoprene Emissions: How Might They Affect Regional and Global Atmospheric Chemistry? Earth Interact. 2006, 10, 1–19. [Google Scholar] [CrossRef]
- Derwent, R.; Collins, W.; Johnson, C.E.; Stevenson, D.S. Transient Behaviour of Tropospheric Ozone Precursors in a Global 3-D CTM and Their Indirect Greenhouse Effects. Clim. Chang. 2001, 49, 463–487. [Google Scholar] [CrossRef]
- Bell, M.L.; Goldberg, R.; Hogrefe, C.; Kinney, P.L.; Knowlton, K.; Lynn, B.; Rosenthal, J.; Rosenzweig, C.; Patz, J.A. Climate change, ambient ozone, and health in 50 US cities. Clim. Chang. 2007, 82, 61–76. [Google Scholar] [CrossRef]
- Murazaki, K.; Hess, P.G. How does climate change contribute to surface ozone change over the United States? J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Tong, C.H.M.; Yim, S.H.L.; Rothenberg, D.A.; Wang, C.; Lin, C.-Y.; Chen, Y.D.; Lau, N.C. Projecting the impacts of atmospheric conditions under climate change on air quality over the Pearl River Delta region. Atmos. Environ. 2018, 193, 79–87. [Google Scholar] [CrossRef]
- Zeng, G.; Pyle, J.A.; Young, P.J. Impact of climate change on tropospheric ozone and its global budgets. Atmos. Chem. Phys. Discuss. 2007, 7, 11141–11189. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.C.; Lyra, A.; Mourão, C.; Dereczynski, C.; Pilotto, I.; Gomes, J.; Bustamante, J.; Tavares, P.; Silva, A.; Rodrigues, D.; et al. Assessment of Climate Change over South America under RCP 4.5 and 8.5 Downscaling Scenarios. Am. J. Clim. Chang. 2014, 3, 512–527. [Google Scholar] [CrossRef] [Green Version]
- Lyra, A.; Tavares, P.; Chou, S.C.; Sueiro, G.; Dereczynski, C.; Sondermann, M.; Silva, A.; Marengo, J.; Giarolla, A. Climate change projections over three metropolitan regions in Southeast Brazil using the non-hydrostatic Eta regional climate model at 5-km resolution. Theor. Appl. Clim. 2017, 132, 663–682. [Google Scholar] [CrossRef]
- Marengo, J.A.; Chou, S.C.; Kay, G.; Alves, L.M.; Pesquero, J.F.; Soares, W.R.; Santos, D.C.; Lyra, A.A.; Sueiro, G.; Betts, R.; et al. Development of regional future climate change scenarios in South America using the Eta CPTEC/HadCM3 climate change projections: Climatology and regional analyses for the Amazon, São Francisco and the Paraná River basins. Clim. Dyn. 2011, 38, 1829–1848. [Google Scholar] [CrossRef]
- Kitoh, A.; Kusunoki, S.; Nakaegawa, T. Climate change projections over South America in the late 21st century with the 20 and 60 km mesh Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). J. Geophys. Res. Space Phys. 2011, 116, 116. [Google Scholar] [CrossRef]
- Silva, P.; Bastos, A.; Dacamara, C.C.; Libonati, R. Future Projections of Fire Occurrence in Brazil Using EC-Earth Climate Model. Rev. Bras. Meteorol. 2016, 31, 288–297. [Google Scholar] [CrossRef] [Green Version]
- Bernard, S.M.; Samet, J.M.; Grambsch, A.; Ebi, K.L.; Romieu, I. The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ. Health Perspect. 2001, 109 (Suppl. S2), 199–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swart, R.; Amann, M.; Raes, F.; Tuinstra, W. A Good Climate for Clean Air: Linkages between Climate Change and Air Pollution. An Editorial Essay. Clim. Chang. 2004, 66, 263–269. [Google Scholar] [CrossRef]
- Grell, G.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Schuch, D. EmissV: A preprocessor for WRF-Chem model. J. Atmos. Sci. Res. 2019, 1, 1–5. [Google Scholar] [CrossRef]
- Clough, S.; Shephard, M.; Mlawer, E.; Delamere, J.; Iacono, M.; Cady-Pereira, K.; Boukabara, S.A.; Brown, P. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Jiménez, P.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Amann, M.; Bertok, I.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; Höglund-Isaksson, L.; Klimont, Z.; Nguyen, B.; Posch, M.; Rafaj, P.; et al. Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environ. Model. Softw. 2011, 26, 1489–1501. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, D.O.; Gill, Z.; Liu, J.; Berner, W.; Wang, J.G.; Powers, M.G.; Duda, D.M.B.; Huang, X.-Y. A Description of the Advanced Research WRF Version 4; NCAR Technical Note, NCAR/TN-556+STR; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 2019. [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modelingsystem. Part I: Model implementation and sensitivity. Mon. Weather. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef] [Green Version]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Weather Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Zaveri, R.A.; Peters, L.K. A new lumped structure photochemical mechanism for large-scale applications. J. Geophys. Res. Space Phys. 1999, 104, 30387–30415. [Google Scholar] [CrossRef]
- Barnard, J.C.; Chapman, E.G.; Fast, J.D.; Schmelzer, J.R.; Slusser, J.R.; Shetter, R.E. An evaluation of the FAST-J photolysis algorithm for predicting nitrogen dioxide photolysis rates under clear and cloudy sky conditions. Atmos. Environ. 2004, 38, 3393–3403. [Google Scholar] [CrossRef]
- Wild, O.; Zhu, X.; Prather, M.J. Fast-J: Accurate Simulation of In- and Below-Cloud Photolysis in Tropospheric Chemical Models. J. Atmos. Chem. 2000, 37, 245–282. [Google Scholar] [CrossRef]
- Ackermann, I.J.; Hass, H.; Memmesheimer, M.; Ebel, A.; Binkowski, F.S.; Shankar, U. Modal aerosol dynamics model for Europe. Atmos. Environ. 1998, 32, 2981–2999. [Google Scholar] [CrossRef]
- Schell, B.; Ackermann, I.J.; Hass, H.; Binkowski, F.S.; Ebel, A. Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J. Geophys. Res. Space Phys. 2001, 106, 28275–28293. [Google Scholar] [CrossRef]
- Guenther, A.; Zimmerman, P.R.; Harley, P.; Monson, R.K.; Fall, R. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. J. Geophys. Res. Space Phys. 1993, 98, 12609. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.; Zimmerman, P.; Wildermuth, M. Natural volatile organic compound emission rate estimates for U.S. woodland landscapes. Atmos. Environ. 1994, 28, 1197–1210. [Google Scholar] [CrossRef] [Green Version]
- Kulmala, M.; Laaksonen, A.; Pirjola, L. Parameterizations for sulfuric acid/water nucleation rates. J. Geophys. Res. Space Phys. 1998, 103, 8301–8307. [Google Scholar] [CrossRef] [Green Version]
- Binkowski, F.S.; Shankar, U. The Regional Particulate Matter Model: 1. Model description and preliminary results. J. Geophys. Res. Space Phys. 1995, 100, 26191. [Google Scholar] [CrossRef]
- Binkowski, F.S.; Roselle, S.J. Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. J. Geophys. Res. Space Phys. 2003, 108, 108. [Google Scholar] [CrossRef]
- Andrade, M.D.F.; Ynoue, R.Y.; Freitas, E.D.; Todesco, E.; Vela, A.V.; Ibarra-Espinosa, S.; Martins, L.D.; Martins, J.A.; Carvalho, V.S.B. Air quality forecasting system for Southeastern Brazil. Front. Environ. Sci. 2015, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Vela, A.V.; Andrade, M.F.; Kumar, P.; Ynoue, R.Y.; Muñoz, A.G. Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: A numerical study with the WRF-Chem model. Atmos. Chem. Phys. Discuss. 2016, 16, 777–797. [Google Scholar] [CrossRef] [Green Version]
- Bruyère, C.L.; Monaghan, A.J.; Steinhoff, D.F.; Yates, D. Bias-Corrected CMIP5 CESM Data in WRF/MPAS Intermediate File Format; TN-515+STR; NCAR: Boulder, CO, USA, 2015. [CrossRef]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. Discuss. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, T.; Dominutti, P.; De Carvalho, L.R.F.; Fornaro, A.; Andrade, M.F. Formaldehyde and acetaldehyde measurements in urban atmosphere impacted by the use of ethanol biofuel: Metropolitan Area of Sao Paulo (MASP), 2012–2013. Fuel 2014, 134, 505–513. [Google Scholar] [CrossRef]
- Ccoyllo, O.S.; Ynoue, R.; Martins, L.D.; Astolfo, R.; De Miranda, R.M.; De Freitas, E.D.; Borges, A.S.; Fornaro, A.; Freitas, H.; Moreira, A.; et al. Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil. Environ. Monit. Assess. 2008, 149, 241–249. [Google Scholar] [CrossRef]
- Martins, L.D.; Andrade, M.F.; Freitas, E.D.; Pretto, A.; Gatti, L.V.; Albuquerque, E.; Tomaz, E.; Guardani, M.L.; Martins, M.H.R.B.; Junior, O.M.A. Emission Factors for Gas-Powered Vehicles Traveling Through Road Tunnels in São Paulo, Brazil. Environ. Sci. Technol. 2006, 40, 6722–6729. [Google Scholar] [CrossRef]
- Olivier, J.; Peters, J.; Granier, C.; Petron, G.; Müller, J.F.; Wallens, S. Present and Future Surface Emissions of Atmospheric Compounds, POET Rep. 2, EU Proj. EVK2-1999-00011; ACCENT: The European Network of Excellence on Atmospheric Composition Change: Bologna, Italy, 2003; Volume 11. [Google Scholar]
- Bruyère, C.L.; Done, J.M.; Holland, G.J.; Fredrick, S. Bias corrections of global models for regional climate simulations of high-impact weather. Clim. Dyn. 2013, 43, 1847–1856. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; Aamaas, B.; Amann, M.; Baker, L.H.; Bellouin, N.; Berntsen, T.K.; Boucher, O.; Cherian, R.; Collins, W.J.; Daskalakis, N.; et al. Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys. Discuss. 2015, 15, 10529–10566. [Google Scholar] [CrossRef] [Green Version]
- Klimont, Z.; Cofala, J.; Bertok, I.; Amann, M.; Heyes, C.; Gyarfas, F. Modelling Particulate Emissions in Europe. A Framework to Estimate Reduction Potential and Control Costs; Interim Report No. IR-02-076; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2002. [Google Scholar]
- Klaassen, G.; Amann, M.; Berglund, C.; Cofala, J.; Höglund-Isaksson, L.; Heyes, C.; Mechler, R.; Tohka, A.; Schöpp, W.; Winiwarter, W. The Extension of the RAINS Model to Greenhouse Gases. An Interim Report Describing the State of Work as of April 2004; IIASA IR-04-015; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2004. [Google Scholar]
- Klaassen, G.; Berglund, C.; Wagner, F. The GAINS Model for Greenhouse Gases-Version 1.0: Carbon Dioxide; IIASA Interim Report IR-05-53; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2005. [Google Scholar]
- Jiang, M.; Marr, L.C.; Dunlea, E.J.; Herndon, S.C.; Jayne, J.T.; Kolb, C.E.; Knighton, W.B.; Rogers, T.M.; Zavala, M.; Molina, L.T.; et al. Vehicle fleet emissions of black carbon, polycyclic aromatic hydrocarbons, and other pollutants measured by a mobile laboratory in Mexico City. Atmos. Chem. Phys. Discuss. 2005, 5, 3377–3387. [Google Scholar] [CrossRef] [Green Version]
- IEA. Energy Statistics of Non-OECD Countries 2015; International Energy Agency (IEA/OECD): Paris, France, 2015.
- IEA. Energy Statistics of OECD Countries 2015; International Energy Agency (IEA/OECD): Paris, France, 2015.
- EUROSTAT. Statistics Database. Available online: https://ec.europa.eu/eurostat/data/database (accessed on 27 January 2020).
- Johnson, M.; Edwards, R.D.; Frenk, C.A.; Masera, O. In-field greenhouse gas emissions from cookstoves in rural Mexican households. Atmos. Environ. 2008, 42, 1206–1222. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; Agricultural Development Economics Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; pp. 1–147.
- Houghton, T.; Meira Filho, L.G.; Lim, B.; Tréanton, K.; Mamaty, I.; Bonduki, Y.; Griggs, D.J.; Callander, B.A. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories; Greenhouse Gas Inventory Reference Manual; IPCC/OECD/IEA: Paris, France, 1997; Volume 3. [Google Scholar]
- Turn, S.Q.; Jenkins, B.M.; Chow, J.C.; Pritchett, L.C.; Cahill, T.; Whalen, S.A.; Campbell, D. Elemental characterization of particulate matter emitted from biomass burning: Wind tunnel derived source profiles for herbaceous and wood fuels. J. Geophys. Res. Space Phys. 1997, 102, 3683–3699. [Google Scholar] [CrossRef]
- Hanna, S.R. Confidence limits for air quality model evaluations, as estimated by bootstrap and jackknife resampling methods. Atmos. Environ. 1989, 23, 1385–1398. [Google Scholar] [CrossRef]
- Emery, C.; Liu, Z.; Russell, A.G.; Odman, M.T.; Yarwood, G.; Kumar, N. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 2017, 67, 582–598. [Google Scholar] [CrossRef] [Green Version]
- CETESB (Environmental Agency of the State of São Paulo, Brazil). System of Information of Air Quality. Available online: http://cetesb.sp.gov.br/ar/qualar/ (accessed on 30 January 2019).
Parameterization | Option |
---|---|
Radiation | RRTMG scheme (longwave and shortwave) [31] |
Surface layer | Revised MM5 Monin-Obukhov scheme [32] |
Land surface | Unified Noah land-surface model [33] |
Boundary layer | YSU scheme [34] |
Cumulus clouds | Grell 3D Ensemble scheme [35] |
Cloud microphysics | Morrison 2-moments [36] |
Gas-phase chemistry | CBMZ [37] |
Photolysis | Fast-J photolysis [38,39] |
Aerosol/microphysics model | MADE [40] |
Secondary organic aerosol | SORGAM [41] |
Biogenic emissions | Guenther scheme [42,43] |
Run Index | Meteorology | Anthropogenic Emissions | BVOCs Emissions | Purpose |
---|---|---|---|---|
1 | GFS 2019 | CLE 2020 | Guenther | Evaluation of the model |
2 | RCP4.5 2020 | CLE 2020 | Guenther | Reference scenario |
3 | RCP4.5 2020 | CLE 2030 | Guenther | To study the sensitivity to changes in anthropogenic emissions |
4 | CLE 2040 | Guenther | ||
5 | CLE 2050 | Guenther | ||
6 | MIT 2030 | Guenther | ||
7 | MIT 2040 | Guenther | ||
8 | MIT 2050 | Guenther | ||
9 | MFR 2030 | Guenther | ||
10 | MFR 2050 | Guenther | ||
11 | RCP4.5 2020 | CLE 2020 | MEGAN 2 | To study sensitivity to biogenic emissions |
State * | O3 Mean (%) | O3 Range (%) | PM2.5 Mean (%) | PM2.5 Range (%) |
---|---|---|---|---|
Acre | 0.22 | [0.14, 0.37] | 14 | [10, 26] |
Alagoas | 0.22 | [−0.06, 0.63] | 8 | [0, 14] |
Amapá | 1.00 | [0.64, 1.40] | 13 | [8, 20] |
Bahia | 0.67 | [−1.00, 10.60] | 13 | [−27, 19] |
Ceará | 1.50 | [0.22, 2.70] | 12 | [−22, 18] |
Distrito federal | 0.54 | [0.42, 0.68] | 0 | [−7, 5] |
Espirito Santo | 0.80 | [0.22, 1.50] | 16 | [10, 19] |
Goiás | 1.10 | [0.32, 2.00] | 7.2 | [−17, 18] |
Maranhão | 1.60 | [0.87, 2.80] | 15 | [−5, 19] |
Mato Grosso | 0.76 | [0.31, 1.70] | 10 | [2, 15] |
Mato Grosso do Sul | 1.80 | [1.10, 2.60] | 3 | [−3, 9] |
Minas Gerais | 1.20 | [−0.00, 2.70] | 9 | [−31, 19] |
Pará | 1.00 | [−0.07, 2.30] | 15 | [−17, 20] |
Paraíba | 1.20 | [0.27, 2.00] | 10 | [−4, 16] |
Pernambuco | 0.71 | [−0.17, 1.30] | 11 | [−12, 17] |
Piauí | 1.20 | [0.65, 2.90] | 14 | [5, 18] |
Rio de Janeiro | 0.20 | [−7.50, 2.00] | −17 | [−60, 15] |
Rio Grande do Norte | 1.40 | [−0.07, 2.10] | 10 | [−3, 17] |
Rio Grande do Sul | 1.50 | [−0.09, 2.10] | 9 | [−19, 14] |
Roraima | 0.33 | [0.12, 0.61] | 15 | [12, 22] |
Santa Catarina | 1.70 | [1.20, 2.30] | 11 | [1, 14] |
São Paulo | 1.40 | [−11.00, 2.80] | −13 | [−65, 4] |
Sergipe | 0.23 | [−0.10, 0.68] | 12 | [9, 15] |
Tocantins | 0.92 | [0.75, 1.30] | 13 | [10, 19] |
Paraná | 1.60 | [0.09, 2.30] | 4 | [−22, 12] |
Rondônia | 0.31 | [0.23, 0.44] | 14 | [9, 20] |
Amazonas | 0.34 | [0.08, 1.70] | 14 | [10, 25] |
State * | O3 Mean (%) | O3 Range (%) | PM2.5 Mean (%) | PM2.5 Range (%) |
---|---|---|---|---|
Acre | −0.41 | [−0.78, −0.29] | −29 | [−42, −23] |
Alagoas | −0.016 | [−0.19, 0.22] | −54 | [−62, −48] |
Amapá | −0.24 | [−0.55, −0.02] | −35 | [−47, −25] |
Bahia | −0.10 | [−1.30, 0.61] | −44 | [−57, −35] |
Ceará | −0.053 | [−1.20, 1.10] | −46 | [−66, −41] |
Distrito federal | −1.20 | [−1.20, −1.10] | −63 | [−66, −61] |
Espirito Santo | −0.24 | [−0.61, 0.03] | −52 | [−58, −48] |
Goiás | −0.24 | [−0.61, 0.03] | −52. | [−58, −48] |
Maranhão | −0.67 | [−2.20, 0.37] | −43 | [−60, −32] |
Mato Grosso | −1.40 | [−2.70, −0.44] | −45 | [−64, −22] |
Mato Grosso do Sul | −2.20 | [−2.90, −1.80] | −60 | [−70, −50] |
Minas Gerais | −0.77 | [−2.50, −0.04] | −54 | [−71, −29] |
Pará | −0.77 | [−2.50, −0.04] | −54 | [−71, −29] |
Paraíba | 0.38 | [−0.08, 1.20] | −49 | [−57, −45] |
Pernambuco | 0.039 | [−0.27, 0.46] | −47 | [−60, −39] |
Piauí | −0.37 | [−1.50, 0.24] | −40 | [−54, −34] |
Rio de Janeiro | −2.40 | [−11.00, −0.23] | −67 | [−81, −56] |
Rio Grande do Norte | 0.53 | [−0.11, 1.10] | −49 | [−56, −45] |
Rio Grande do Sul | −2.4 | [−11.00, −0.23] | −67 | [−81, −56] |
Roraima | −0.21 | [−0.44, −0.08] | −30 | [−45, −19] |
Santa Catarina | −2.10 | [−3.07, −1.50] | −51 | [−57, −48] |
São Paulo | −2.30 | [−15.00, −0.76] | −67 | [−82, −55] |
Sergipe | 0.017 | [−0.18, 0.30] | −51 | [−54, −42] |
Tocantins | −0.95 | [−1.50, −0.45] | −41 | [−51, −32] |
Paraná | −2.3 | [−15.00, −0.76] | −67 | [−82, −55] |
Rondônia | −0.64 | [−1.20, −0.31] | −33 | [−45, −23] |
Amazonas | −0.30 | [−1.50, −0.06] | −26 | [−53, −14] |
State * | O3 Mean (%) | O3 Range (%) | PM2.5 Mean (%) | PM2.5 Range (%) |
---|---|---|---|---|
Acre | −0.46 | [−0.80, −0.34] | −46 | [−58, −39] |
Alagoas | −0.29 | [−0.73, 0.04] | −68 | [−75, −63] |
Amapá | −0.90 | [−1.30, −0.66] | −53 | [−65, −39] |
Bahia | −0.43 | [−1.40, −0.09] | −46 | [−69, −34] |
Ceará | −0.95 | [−1.60, 0.81] | −64 | [−83, −51] |
Distrito federal | −2.00 | [−3.90, −1.00] | −64 | [−80, −59] |
Espirito Santo | −1.60 | [−1.80, −1.50] | −76 | [−78, −74] |
Goiás | −1.30 | [−2.60, −0.41] | −71 | [−74, −67] |
Maranhão | −2.50 | [−4.40, −1.30] | −75 | [−82, −61] |
Mato Grosso | −2.10 | [−2.90, −1.20] | −63 | [−76, −54] |
Mato Grosso do Sul | −2.20 | [−4.10, −0.65] | −64 | [−81, −43] |
Minas Gerais | −4.60 | [−5.80, −3.40] | −79 | [−84, −72] |
Pará | −2.40 | [−5.10, −0.41] | −73 | [−84, −61] |
Paraíba | −1.50 | [−3.20, −0.46] | −55 | [−80, −46] |
Pernambuco | −1.20 | [−1.80, −0.20] | −66 | [−73, −61] |
Piauí | −3.40 | [−5.00, −2.00] | −76 | [−82, −74] |
Rio de Janeiro | −0.88 | [−1.40, 0.09] | −63 | [−76, −56] |
Rio Grande do Norte | −1.80 | [−4.10, −1.00] | −60 | [−72, −56] |
Rio Grande do Sul | −3.10 | [−5.70, −1.20] | −80 | [−90, −72] |
Roraima | −1.50 | [−2.10, 0.04] | −65 | [−73, −61] |
Santa Catarina | −3.20 | [−4.10, −1.80] | −75 | [−82, −67] |
São Paulo | −0.81 | [−1.60, −0.45] | −53 | [−63, −42] |
Sergipe | −0.34 | [−0.64, −0.14] | −48 | [−61, −35] |
Tocantins | −2.80 | [−3.40, −2.30] | −74 | [−76, −73] |
Paraná | −4.30 | [−7.00, −2.60] | −82 | [−91, −75] |
Rondônia | −0.26 | [−0.66, 0.08] | −67 | [−72, −59] |
Amazonas | −2.00 | [−2.80, −1.60] | −61 | [−69, −54] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuch, D.; Andrade, M.d.F.; Zhang, Y.; Dias de Freitas, E.; Bell, M.L. Short-Term Responses of Air Quality to Changes in Emissions under the Representative Concentration Pathway 4.5 Scenario over Brazil. Atmosphere 2020, 11, 799. https://doi.org/10.3390/atmos11080799
Schuch D, Andrade MdF, Zhang Y, Dias de Freitas E, Bell ML. Short-Term Responses of Air Quality to Changes in Emissions under the Representative Concentration Pathway 4.5 Scenario over Brazil. Atmosphere. 2020; 11(8):799. https://doi.org/10.3390/atmos11080799
Chicago/Turabian StyleSchuch, Daniel, Maria de Fatima Andrade, Yang Zhang, Edmilson Dias de Freitas, and Michelle L. Bell. 2020. "Short-Term Responses of Air Quality to Changes in Emissions under the Representative Concentration Pathway 4.5 Scenario over Brazil" Atmosphere 11, no. 8: 799. https://doi.org/10.3390/atmos11080799
APA StyleSchuch, D., Andrade, M. d. F., Zhang, Y., Dias de Freitas, E., & Bell, M. L. (2020). Short-Term Responses of Air Quality to Changes in Emissions under the Representative Concentration Pathway 4.5 Scenario over Brazil. Atmosphere, 11(8), 799. https://doi.org/10.3390/atmos11080799