Accuracy of Mean Radiant Temperature Derived from Active and Passive Radiometry
Abstract
:1. Introduction
2. Methods and Materials
2.1. Effective Solar and Terrestrial Irradiances
- The downward direct irradiance (EI) incident on a plane normal to the radiation’s direction and measured by a pyrheliometer. EI is that part of the solar radiation that is not scattered by atmospheric constituents in its transfer to the earth’s surface. Thus, EI is unidirectional because it originates from the solar disk, i.e., it is anisotropic.
- The downward diffuse (directionally indistinguishable) irradiance (ED) incident on a horizontal plane facing the upper half space and measured by a pyranometer combined with e.g., a shadow disk moved by a sun tracker or a shadow band. The latter requires subsequent correction of the reading, which accounts in particular for sky radiance anisotropy [23,27,28]. ED is that part of the solar radiation that has been subjected to scattering by atmospheric atoms and molecules (Rayleigh) and by aerosol particles and cloud droplets (Mie). Scattering changes the direction of the incident beam, yet leaves its energy and frequency unchanged. ED is multidirectional; frequently it impacts with the same amount of energy from all directions of the sky dome, and is then termed isotropic.
- The surface reflected irradiance (ER) above the lower half space and incident on a horizontal plane facing downward and measured by a pyranometer. ER is predominantly Lambertian equivalent reflected, i.e., it is diffuse. The direct mirror-like reflected proportion of ER remains small and can be regarded as insignificant [29,30]. Thus, ER is usually isotropic with regard to the lower half space. Exceptions to Lambertian reflection include water and ice surfaces.
- The isotropic diffuse downward thermal irradiance of the atmosphere (EA) incident on a horizontal plane facing the upper half space;
- The upward isotropic diffuse irradiance of the lower half space (EE) incident on a horizontal plane facing the lower half space. EE includes the small fraction (≤5%) of ground-reflected EA.
2.2. Klima-Michel-Modell
2.3. Six-Direction Instrument
2.4. Black Globe Thermometer
2.5. Data
2.6. Assessment Methodology and Reference
- Tmrt,r,KMM: Calculation from the temperature of the surrounding surfaces (Equation (1)) in the form for outdoor use [1,12]. fp (Equation (2)) parameterized from diagrams [6]. This parameterization is confirmed by more recent measurements (Figure 1) [11]. In the extended form Tmrt,r,KMM accounts for fcs. Tmrt,r,KMM can be calculated based on standard meteorological radiant measurements.
- Tmrt,r,6-Dir: Calculation from plane radiant temperatures [8] in the form for outdoor use [1,15]. The reference person is slightly simplified by a rectangular solid (Figure 1). The method implicitly accounts for fcs, because measured irradiances incident on vertical planes are used that depend on the azimuth of a plane relative to the azimuth of the solar disk. Variations in the accuracy of the instrument have been observed [45,46,47].
- Tmrt,Tg,BG: Derived based on measured tg, ta and va (passive radiometry). ISO 7726 qualifies Tmrt,Tg,BG to be an approximation due to the difference in shape between a person and a globe. The vertical component in EI will be over-estimated in relation to that received by a standing person. The SW absorptivity significantly differs from that of the outer surface of a clothed person.
3. Results
3.1. Six-Direction Measurements
3.2. Black Globe Thermometer
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Essential Symbols
Symbol | Unit | Description |
Df | - | isotropic diffuse fraction of ED |
dg | m | diameter of the globe’s shell |
ea | hPa | water vapor pressure |
EA | W/m2 | long-wave downward radiant flux density (atmospheric) |
EE | W/m2 | long-wave upward radiant flux density (earth surface) |
ED | W/m2 | short-wave downward diffuse radiant flux density |
EG | W/m2 | short-wave downward global radiant flux density |
EI | W/m2 | short-wave downward direct radiant flux density |
ER | W/m2 | short-wave upward surface reflected radiant flux density |
fa | - | angle factor for isotropic irradiances, horizon unobstructed |
fcs | - | anisotropic circumsolar fraction in ED |
fp | - | projected area factor |
W∙m−2∙K−1 | convective heat transfer coefficient averaged over the globe thermometer’s surface | |
W∙m−2∙K−1 | radiant heat transfer coefficient averaged over the globe thermometer’s surface | |
- | mean Nusselt number of the globe thermometer | |
Sr | W/m2 | radiant energy absorbed by the 6−direction instrument |
ta, Ta | °C, K | ambient temperature |
tg, Tg | °C, K | globe temperature |
tmrt, Tmrt | °C, K | mean radiant temperature |
Tmrt,r,6−Dir | K | Tmrt derived from radiant fluxes measured with the 6−direction instrument |
Tmrt,r,BG | K | simulated Tmrt of a black globe applying measured radiant fluxes and Equation (3) with fp = 0.25 and αsw,Sk = 0.95 |
Tmrt,r,GG | K | simulated Tmrt of a gray globe applying measured radiant fluxes and Equation (3) with fp = 0.25 and αsw,Sk = 0.70 |
Tmrt,r,KMM | K | Tmrt derived from radiant fluxes applying Equation (3) |
Tmrt,Tg,BG | K | Tmrt of a black globe derived applying Equation (8) using measured Tg, Ta, va |
va | m/s | air velocity |
Greek | ||
α2K, α5K | % | error probability in the compliance with the accuracy in Tmrt according to the ISO 7726 comfort (±2 K) or stress (±5 K) class |
αsw,Sk | - | short-wave absorption coefficient of skin/clothing |
γs | degree | solar elevation |
εlw,Sk | - | long-wave emissivity of skin/clothing |
ρs | - | short-wave surface albedo |
σSB | 5.67∙10−8 W∙m−2∙K−4 | Stefan–Boltzmann constant |
References
- Guideline VDI 3787/Part 2. Environmental Meteorology, Methods for the Human Biometeorological Evaluation of Climate and Air Quality for Urban and Regional Planning at Regional Level: Part I: Climate. Kommission Reinhaltung der Luft im VDI und DIN-Normenausschuss KRdL. In VDI/DIN Handbuch Reinhaltung der Luft, Band 1B: Umweltmeteorologie; Beuth: Berlin, Germany, 2008.
- Staiger, H.; Laschewski, G.; Matzarakis, A. Selection of Appropriate Thermal Indices for Applications in Human Biometeorological Studies. Atmosphere 2019, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Parsons, K.C. Environments. In The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort and Performance; Taylor & Francis: New York, NY, USA, 2003; p. 518. ISBN 0-415-23793-9. [Google Scholar]
- Kantor, N.; Unger, J. The most problematic variable in the course of human-biometeorological comfort assessment—The mean radiant temperature. Cent. Eur. J. Geosci. 2011, 3, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Bohnenkamp, H.; Pasquay, W. Untersuchungen zu den Grundlagen des Energie- und Stoffwechsels. III. Mitteilung: Ein neuer Weg zur Bestimmung der für die Wärme-strahlung maßgebenden Oberfläche des Menschen. Die ”mittlere Strahlungstemperatur“. Pflüger’s Archiv 1931, 228, 79–99. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort. In Analysis and Applications in Environmental Engineering; McGraw-Hill Company: Detroit, MI, USA, 1972; p. 244. [Google Scholar]
- Gagge, A.P.; Fobelets, A.P.; Berglund, P.E. A Standard Predictive Index of Human Response to the Thermal Environment. ASHRAE Trans. 1986, 92, 709–731. [Google Scholar]
- ISO. ISO 7726. Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities, 2nd ed.; International Standard ISO 7726:1998 from Technical Committee ISO/TC 159; ISO: Berlin, Germany, 1998. [Google Scholar]
- ASHRAE. ASHRAE Handbook: Fundamentals, 8th ed.; American Society of Heating and Air-Conditioning Engineers: Atlanta, GA, USA, 2001; p. 29. ISBN 1-931862-70-2. [Google Scholar]
- Kubaha, K.; Fiala, D.; Toftum, J.; Taki, A.H. Human projected area factors for detailed direct and diffuse solar radiation analysis. Int. J. Biometeorol. 2004, 49, 113–129. [Google Scholar] [CrossRef]
- Park, S.; Tuller, S.E. Human body area factors for radiation exchange analysis: Standing and walking postures. Int. J. Biometeorol. 2011, 55, 695–709. [Google Scholar] [CrossRef]
- Jendritzky, G.; Menz, G.; Schmidt-Kessen, W.; Schirmer, H. Methode zur Raumbe-Zogenen Bewertung der Thermischen Komponente im Bioklima des Menschen (Fortgeschriebenes Klima-Michel-Modell); Akademie für Raumforschung und Landesplanung: Hannover, Germany, 1990; p. 80. ISBN 3888382076. [Google Scholar]
- Ohmura, A.; Dutton, E.G.; Forgan, B.; Fröhlich, C.; Gilgen, H.; Hegner, H.; Heimo, A.; König-Langlo, G.; McArthur, B.; Müller, G.; et al. Baseline Surface Radiation Network (BRSN/WRCP): New Precision Radiometry for Climate Research. Bull. Am. Meteor. Soc. 1998, 79, 2115–2136. [Google Scholar] [CrossRef] [Green Version]
- WMO. Guide to Meteorological Instruments and Methods of Observation, 2008th ed.; WMO No. 8; updated 2010; World Meteorological Organization: Geneva, Switzerland, 2010; ISBN 978-92-63-10008-5. [Google Scholar]
- Höppe, P. Ein neues Verfahren zur Bestimmung der mittleren Strahlungstemperatur im Freien. Wetter und Leben 1992, 44, 147–151. [Google Scholar]
- Bedford, T.; Warner, C.G. The globe thermometer in studies of heating and ventilation. Epidemiol. Infect. 1934, 34, 458–473. [Google Scholar] [CrossRef] [Green Version]
- Vernon, H.M. The measurement of radiant heat in relation to human comfort. J. Ind. Hyg. 1932, 14, 95–111. [Google Scholar]
- Yaglou, C.P.; Minard, C.D. Control of heat casualties at military training centers. AMA Arch. Ind. Health 1957, 16, 302–316. [Google Scholar] [PubMed]
- ISO. ISO 7243: Hot Environments—Estimation of the Heat Stress on Working Man, Based on the WBGT-Index (Wet Bulb Globe Temperature), 2nd ed.; Reference number ISO 7243; ISO: Geneva, Switzerland, 1989. [Google Scholar]
- Nikolopoulou, M.; Baker, N.; Steemers, K. Improvements to the Globe Thermometer for Outdoor Use. Archit. Sci. Rev. 1999, 42, 27–34. [Google Scholar] [CrossRef]
- Thorsson, S.; Lindberg, F.; Eliasson, I.; Holmer, B. Different methods for estimating the mean radiant temperature in an outdoor urban setting. Int. J. Climatol. 2007, 27, 1983–1993. [Google Scholar] [CrossRef]
- ASHRAE. ASHRAE Handbook, Fundamentals, 4th ed.; American Society of Heating, Refrigerating, and Air-Conditioning Engineers Inc.: Atlanta, GA, USA, 2001; p. 34. [Google Scholar]
- Perez, R.; Ineichen, P.; Seals, R.; Zelenka, A. Making full use of the clearness index for parameterizing hourly insolation conditions. Sol. Energy 1990, 45, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, A.R.; Quintela, D.A. Physical modelling of globe and natural wet bulb temperatures to predict WBGT heat stress index in outdoor environments. Int. J. Biometeorol. 2009, 53, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Gueymard, C.A. Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications. Sol. Energy 2009, 83, 432–444. [Google Scholar] [CrossRef]
- Hodder, S.G.; Parsons, K.C. The effects of solar radiation on thermal comfort. Int. J. Biometeorol. 2007, 51, 233–250. [Google Scholar] [CrossRef]
- Batlles, F.J.; Olmo, F.J.; Alados-Arboledas, L. On shadowband correction methods for diffuse irradiance measurements. Sol. Energy 1995, 54, 105–114. [Google Scholar] [CrossRef]
- Sanchez, G.; Serrano, A.; Cancillo, M.L.; Garcia, J.A. Comparison of shadow-ring correction models for diffuse solar irradiance. J. Geophys. Res. 2012, 117, 8. [Google Scholar] [CrossRef] [Green Version]
- Ineichen, P.; Guisan, O.; Perez, R. Ground-reflected radiation and albedo. Sol. Energy 1990, 44, 207–2014. [Google Scholar] [CrossRef] [Green Version]
- Staiger, H. Die Strahlungskomponente im Thermischen Wirkungskomplex für Operationelle Anwendungen in der Human-Biometeorologie. Ph.D. Thesis, University of Freiburg, Freiburg, Germany, 2014; p. 287. [Google Scholar]
- Reindl, D.T.; Beckman, W.A.; Duffie, J.A. Diffuse fraction correlations. Sol. Energy 1990, 45, 1–7. [Google Scholar] [CrossRef]
- Muneer, T.; Gueymard, C.; Kambezidis, H. Solar Radiation and Daylight Models, 2nd ed.; Butterworth-Heinemann: Oxsford, UK, 2004; p. 345. ISBN 0 7506 5974 2. [Google Scholar]
- VDI 3786/Part 5: Environmental meteorology: Meteorological measurements: Radiation. Kommission Reinhaltung der Luft im VDI und DIN-Normenausschuss KRdL. In VDI/DIN Handbuch Reinhaltung der Luft, Band 1B: Umweltmeteorologie; Beuth: Berlin, Germany, 2015.
- Liljegren, J.C.; Carhart, R.A.; Lawday, P.; Tschopp, S.; Sharp, R. Modeling the wet bulb globe temperature using standard meteorological measurements. J. Occup. Environ. Hyg. 2008, 5, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Graves, K.W. Globe thermometer evaluation. Am. Ind. Hyg. Ass. J. 1974, 35, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Hellon, R.F.; Crockford, G.W. Improvements to the globe thermometer. J. Appl. Physiol. 1959, 14, 649–650. [Google Scholar] [CrossRef]
- Fontana, L. Experimental study on the globe thermometer behaviour in conditions of asymmetry of the radiant temperature. Appl. Therm. Eng. 2010, 30, 732–740. [Google Scholar] [CrossRef] [Green Version]
- Berglund, L.G. Radiation Measurement for Thermal Comfort Assessment in the Built Environment. In Thermal—Analysis-Human Comfort—Indoor Environments. In Proceedings of the Symposium Held at the National Bureau of Standards, Gaithersburg, MA, USA, 11 February 1977; National Bureau of Standards: Gaithersburg, MA, USA, 1977; pp. 117–130. [Google Scholar]
- Kuehn, L.A.; Stubbs, R.A.; Weaver, R.S. Theory of the globe thermometer. J. Appl. Physiol. 1970, 29, 750–757. [Google Scholar] [CrossRef]
- Stolwijk, J.A.J.; Hardy, J.D.D. Temperature regulation in man—A theoretical study. Pflügers Archiv 1966, 291, 129–162. [Google Scholar] [CrossRef]
- Gueymard, C.A.; Myers, D.R. Evaluation of conventional and high-performance routine solar radiation measurements for improved solar resource, climatological trends, and radiative modeling. Sol. Energy 2009, 83, 171–185. [Google Scholar] [CrossRef]
- Dehne, K.; Bergholter, U.; Kasten, F. IEA Comparison of Longwave Radiometers; Report No. IEA-SHCP-9F-3; Deutscher Wetterdienst: Hamburg, Germany, 1993; p. 70. [Google Scholar]
- Technische Normen, Gütevorschriften, Lieferungsbedingungen DDR (TGL) 32603/2: Arbeitshygiene, Mikroklima in Arbeitsräumen, Meßmethode; BBSR: Berlin, Germany, 1975.
- Töpfer, M.; Garbatzok, M.; Bendisch, F. Bioklimaprogramm—Datenerfassungsprogramm; Forschungsinstitut für Bioklimatologie, Meteorologischer Dienst der DDR: Berlin, Germany, 1983. [Google Scholar]
- Kantor, N.; Lin, T.-P.; Matzarakis, A. Daytime relapse of the mean radiant temperature based on the six-directional method under unobstructed solar radiation. Int. J. Biometeorol. 2014, 58, 1615–1625. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Lin, T.-P.; Matzarakis, A. Comparison of mean radiant temperature from field experiment and modelling: A case study in Freiburg, Germany. Theor. Appl. Climatol. 2014, 118, 535–551. [Google Scholar] [CrossRef]
- Holmer, B.; Lindberg, F.; Rayner, D.; Thorsson, S. How to transform the standing man from a box to a cylinder—A modified methodology to calculate mean radiant temperature in field studies and models. In Proceedings of the 9th International Conference on Urban Climate (ICUC9), Toulouse, France, 20–24 July 2015; p. 6. [Google Scholar]
- WMO. Manual on Codes—International Codes—Volume I.1-Part A—Alphanumeric Codes; WMO-No. 306; World Meteorological Organization: Geneva, Switzerland, 2009; ISBN 978-92-63-10306-2. [Google Scholar]
- Buonanno, G.; Frattolillo, A.; Vanoli, L. Direct and indirect measurement of WBGT index in transversal flow. Measurement 2001, 29, 127–135. [Google Scholar] [CrossRef]
- Bernard, T.E.; Barrow, C.A. Empirical approach to outdoor WBGT from meteorological data and performance of two different instrument designs. Ind. Health 2013, 51, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, C.D.; Gorton, R.L. A method of calculation of WBGT from environmental factors. ASHRAE Trans. 1976, 82, 279–292. [Google Scholar]
- Azer, N.Z.; Hsu, S. OSHA heat stress standards and the WBGT index. ASHRAE Trans. 1977, 83, 30–40. [Google Scholar]
- Hunter, C.H.; Minyard, C.O. Estimating Wet Bulb Globe Temperature Using Standard Meteorological Measurements; WSRCMS-99-00757; Department of Energy (DOE), Office of Scientific and Technical Information (OSTI), Westinghouse Savannah River Company: Aiken, SC, USA, 1999. [Google Scholar]
- Turco, S.H.N.; da Silva, T.G.F.; de Oliveira, G.M.; Leitao, M.M.V.B.R.; de Moura, M.S.B.; Pinheiro, C.; da Silva Padilha, C.V. Estimating black globe temperature based on meteorological data. In Proceedings of the Livestock Environment VIII, Iguassa Falls, Brazil, 31 August–4 September 2008; p. 6. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y. Suitability of acrylic and copper globe thermometers for diurnal outdoor settings. Build. Environ. 2015, 98, 279–294. [Google Scholar] [CrossRef]
- Bond, T.E.; Kelly, C.F. The globe thermometer in agricultural research. Agric. Eng. 1955, 36, 251–255. [Google Scholar]
- Büttner, K. Physikalische Bioklimatologie—Probleme und Methoden; Akademische Verlagsgesellschaft m.b.H.: Leipzig, Germany, 1938; p. 153. [Google Scholar]
- Kee, R.J.; Landram, C.S.; Miles, J.C. Natural convection of a heat-generating fluid within closed vertical cylinders and spheres. J. Heat Transfer. 1976, 98, 55–61. [Google Scholar] [CrossRef]
- Hey, E.N. Small globe thermometers. J. Phys. E Sci. Instrum. 1968, 1, 955–957. [Google Scholar] [CrossRef]
- Hatch, T.F. Design requirements and limitations of a single-reading heat stress meter. Am. Ind. Hyg. Assoc. J. 1973, 34, 66–72. [Google Scholar] [CrossRef]
- Fountain, M. Instrumentation for thermal comfort measurements: The globe thermometer; Internal study, Centre for the Built Environment, Series Indoor Quality (IEQ), University of California: Berkeley, CA, USA, 1987; Available online: http://escholarship.org/uc/item/1qx8c7sm (accessed on 24 July 2020).
- Juang, Y.-J.; Lin, Y.-C. The Effect of Thermal Factors on the Measurement of Wet Bulb Globe Temperature. J. Occup. Saf. Health 2007, 15, 191–203. [Google Scholar] [CrossRef]
- Vincent, D.F. Improvements in the globe thermometer. J. Hyg. Camb. 1939, 39, 238–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphreys, M.A. The optimum diameter for a globe thermometer for use indoors. Ann. Occup. Hyg. 1977, 20, 135–140. [Google Scholar] [CrossRef] [PubMed]
- De Dear, R. Ping-pong globe thermometers for mean radiant temperatures. Heat. Vent. Eng. 1988, 60, 10–11. [Google Scholar]
- Epstein, Y.; Moran, D.S. Thermal comfort and the heat stress indices. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [Green Version]
- Lemke, B.; Kjellstrom, T. Calculating workplace WBGT from meteorological data: A tool for climate change assessment. Ind. Health 2012, 50, 267–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ambrosio Alfano, F.R.; Malchaire, J.; Palella, B.I.; Riccio, G. WBGT Index revisited after 60 years of use. Ann. Occup. Hyg. 2014, 58, 955–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardcastle, S.; Butler, K. A comparison of globe, wet and dry temperature and humidity measuring devices available for heat stress assessment. In Proceedings of the 12th US/North American Mine Ventilation Symposium, Reno, NV, USA, 9–11 June 2008; pp. 181–190, ISBN 978-0-615-20009-5. [Google Scholar]
- Kantor, N.; Kovacs, A.; Lin, T.-P. Looking for simple correction functions between the mean radiant temperature from the “standard black globe” and the “six-directional” techniques in Taiwan. Theor. Appl. Climatol. 2015, 121, 99–111. [Google Scholar] [CrossRef]
- Wilbert, S.; Kleindiek, S.; Nouri, B.; Geuder, N.; Habte, A.; Schwandt, M.; Vignola, F. Uncertainty of rotating shadowband irradiometers and Si-pyranometers including the spectral irradiance error. AIP Conf. Proc. 1734, 1734, 11. [Google Scholar] [CrossRef] [Green Version]
- Vuilleumier, L.; Felix, C.; Vignola, F.; Blanc, P.; Badosa, J.; Kazantzidis, A.; Calpini, B. Performance Evaluation of Radiation Sensors for the Solar Energy Sector. Meteorologische Zeitschrift 2017, 26, 485–505. [Google Scholar] [CrossRef]
- Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0—Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeorol. 2008, 52, 697–713. [Google Scholar] [CrossRef]
- Huttner, S.; Bruse, M. Numerical modeling of the urban climate—A preview on ENVI-MET 4.0. In Proceedings of the Seventh International Conference on Urban Climate (ICUC7), Yokohama, Japan, 29 June—3 July 2009; p. 4. [Google Scholar]
- Matzarakis, A.; Matuschek, O. Sky view factor as a parameter in applied climatology—Rapid estimation by the SkyHelios model. Meteorologische Zeitschrift 2011, 20, 39–45. [Google Scholar] [CrossRef]
- Weihs, P.; Staiger, H.; Tinz, B.; Batchvarova, E.; Rieder, H.; Vuilleumier, L.; Maturille, M.; Jendritzky, G. The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. Int. J. Biometeor. 2012, 56, 537–555. [Google Scholar] [CrossRef] [PubMed]
- Pappenberger, F.; Jendritzky, G.; Staiger, H.; Dutra, E.; Di Giuseppe, F.; Richardson, D.S.; Cloke, H.L. Global forecasting of thermal health hazards: The skill of probabilistic predictions of the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2015, 59, 311–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krähenmann, S.; Walter, A.; Brienen, S.; Imbery, F.; Matzarakis, A. High-resolution grids of hourly meteorological variables for Germany. Theor. Appl. Climatol. 2018, 131, 899–926. [Google Scholar] [CrossRef] [Green Version]
- Rosenfelder, M.; Koppe, C.; Pfafferott, J.; Matzarakis, A. Effects of ventilation behaviour on indoor heat load based on test reference years. Int. J. Biometeorol. 2016, 60, 277–287. [Google Scholar] [CrossRef]
Component | NYA | LER | RWA | PAY | SBO |
---|---|---|---|---|---|
EI | ■ | ■ | ■ | ■ | ■ |
ED | ■ | ■ | ■ | ■ | ■ |
EG | ■ | ■ | ■ | ■ | ■ |
ER | ■ | — | ■ | ■ | — |
EA | ■ | ■ | ■ | ■ | ■ |
EE | ■ | — | ■ | ■ | — |
SYNOP | 06(3)18 | 00(1)23 | 00(1)23 | 00(3)21 | 06+18 |
BG: Tg + ta, va | — | — | ■ | — | — |
6-Dir Instrument | Bias (K) | RMSE (K) | α2K (%) | α5K (%) | |
---|---|---|---|---|---|
fcs = var | facing south | −0.08 | 1.39 | 1.3 | <0.1 |
fcs = var | facing hour angle | −0.97 | 2.09 | 9.8 | <0.1 |
fcs = 0 | facing south | −0.77 | 2.00 | 18.3 | 0.1 |
fcs = var | cylinder | −0.05 | 0.74 | <0.1 | <0.1 |
Data Fraction | Test Value | Reference | Bias (K) | RMSE (K) | a (°C) | b | SE (K) | R2 |
---|---|---|---|---|---|---|---|---|
nighttime | tg | ta | −0.90 | 1.09 | −0.93 | 1.01 | 0.62 | 0.99 |
daytime: cloudy | tg | ta | +2.20 | 3.05 | +1.09 | 1.13 | 1.94 | 0.94 |
daytime: sunny | tg | ta | +7.11 | 7.83 | +4.81 | 1.18 | 2.91 | 0.92 |
Data Fraction | Test Value | Reference | Bias (K) | RMSE (K) | α2K % | α5K % |
---|---|---|---|---|---|---|
total | Tmrt,Tg,BG | Tmrt,r,BG | −1.90 | 4.74 | 47.8 | 7.6 |
total | Tmrt,r,BG | Tmrt,r,KMM | +2.77 | 5.18 | 47.0 | 7.1 |
total | Tmrt,r,GG | Tmrt,r,KMM | 0.00 | 1.27 | <0.1 | <0.1 |
120 < EI ≤ 600 (W/m2) | Tmrt,r,GG | Tmrt,r,KMM | −0.61 | 2.04 | 24.4 | 0.4 |
EI > 600 (W/m2) | Tmrt,r,GG | Tmrt,r,KMM | +0.61 | 3.16 | 45.2 | 6.0 |
total | Tmrt,Tg,BG | Tmrt,r,KMM | +0.86 | 4.85 | 49.5 | 8.8 |
nighttime | Tmrt,Tg,BG | Tmrt,r,KMM | −0.27 | 1.89 | 9.3 | <0.1 |
daytime: cloudy | Tmrt,Tg,BG | Tmrt,r,KMM | +0.83 | 4.14 | 51.6 | 10.5 |
daytime: sunny | Tmrt,Tg,BG | Tmrt,r,KMM | +3.79 | 8.89 | 78.3 | 49.1 |
120 < EI ≤ 600 (W/m2) | Tmrt,Tg,BG | Tmrt,r,KMM | +2.19 | 8.48 | 76.9 | 46.4 |
EI > 600 (W/m2) | Tmrt,Tg,BG | Tmrt,r,KMM | +5.87 | 9.41 | 79.8 | 52.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staiger, H.; Matzarakis, A. Accuracy of Mean Radiant Temperature Derived from Active and Passive Radiometry. Atmosphere 2020, 11, 805. https://doi.org/10.3390/atmos11080805
Staiger H, Matzarakis A. Accuracy of Mean Radiant Temperature Derived from Active and Passive Radiometry. Atmosphere. 2020; 11(8):805. https://doi.org/10.3390/atmos11080805
Chicago/Turabian StyleStaiger, Henning, and Andreas Matzarakis. 2020. "Accuracy of Mean Radiant Temperature Derived from Active and Passive Radiometry" Atmosphere 11, no. 8: 805. https://doi.org/10.3390/atmos11080805
APA StyleStaiger, H., & Matzarakis, A. (2020). Accuracy of Mean Radiant Temperature Derived from Active and Passive Radiometry. Atmosphere, 11(8), 805. https://doi.org/10.3390/atmos11080805