Achieving Carbon Neutrality for A Future Large Greenhouse Gas Emitter in Quebec, Canada: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Case Study
2.2. Methodology
3. Results and Discussion
3.1. GHG Mitigation Solutions Available Worldwide: Outputs from the Literature Review
3.2. Potential Solutions for the Énergie Saguenay Project to Be Carbon Neutral
3.2.1. CO2 Utilization and Waste Heat Recovery
3.2.2. Renewable Natural Gas (RNG)
3.2.3. Afforestation/Reforestation
3.2.4. Offsets
3.2.5. Environmental and Social Implications of the Potential Solutions
3.3. Economic Perspective
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. Paris Agreement; United Nations: New York, NY, USA, 2015. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- UNEP (United Nations Environment Programme). Emissions Gap Report 2018; United Nations Environment Programme: Nairobi, Kenya, 2018. [Google Scholar]
- UNEP. Emissions Gap Report 2019; United Nations Environment Programme: Nairobi, Kenya, 2019. [Google Scholar]
- Stern, P.C.; Sovacool, B.K.; Dietz, T. Towards a science of climate and energy choices. Nat. Clim. Chang. 2016, 6, 547–555. [Google Scholar] [CrossRef]
- Arnette, A.N. Renewable energy and carbon capture and sequestration for a reduced carbon energy plan: An optimization model. Renew. Sustain. Energy Rev. 2017, 70, 254–265. [Google Scholar] [CrossRef]
- IRENA (International Renewable Energy Agency). REmap: Roadmap for A Renewable Energy Future, 2016 ed.; International Renewable Energy Agency: Abu Dhabi, UAE, 2016. [Google Scholar]
- UNEP. The Emissions Gap Report 2017; United Nations Environment Programme: Nairobi, Kenya, 2017. [Google Scholar]
- Styring, P.; de Coninck, H.; Reith, H.; Armstrong, K. Carbon Capture and Utilisation in the Green Economy Using CO2 to Manufacture Fuel, Chemicals and Materials; The Centre for Low Carbon Futures 2011 and CO2Chem Publishing: New York, NY, USA, 2011. [Google Scholar]
- Youinou, G.J. Powering sustainable low-carbon economies: Some facts and figures. Renew. Sustain. Energy Rev. 2016, 53, 1626–1633. [Google Scholar] [CrossRef]
- Mousseau, N.; Villeneuve, C. Pour une approche stratégique pour la transition énergétique et la lutte aux changements climatiques. In Le Québec Économique 8: Le Développement Durable à L’ère des Changements Climatiques; Joanis, M., Sinclair-Desgagné, B., Eds.; Les Presses de l’Université Laval et CIRANO: Montreal, QC, Canada, 2019; pp. 313–340. [Google Scholar]
- United Nations Framework Convention on Climate Change, UNFCCC. Report of the Conference of the Parties on Its Twenty-Fourth Session, Held in Katowice from 2 to 15 December 2018. Part One: Proceedings. Part Two: Action Taken by the Conference of the Parties at its Twenty-Fourth Session; United Nations: New York, NY, USA, 2019; p. 27. [Google Scholar]
- UNEP. Towards A Green Economy: Pathways to Sustainable Development and Poverty Eradication—A Synthesis for Policy Makers; UNEP: Nairobi, Kenya, 2011; p. 45. [Google Scholar]
- RE100. Available online: http://there100.org/ (accessed on 23 August 2019).
- United Nations Global Compact, Science Based Targets Initiative (SBTi) and the We Mean Business Coalition. 87 Major Companies Lead the Way Towards a 1.5 °C Future at UN Climate Action Summit. Available online: https://www.unglobalcompact.org/news/4476-09-21-2019 (accessed on 3 April 2020).
- United Nations Environment Programme Finance Initiative, UNEP. About United Nations Environment Programme Finance Initiative. Available online: https://www.unepfi.org/about/ (accessed on 3 April 2020).
- Höhne, N.; den Elzen, M.; Rogelj, J.; Metz, B.; Fransen, T.; Kuramochi, T.; Olhoff, A.; Alcamo, J.; Winkler, H.; Fu, S.; et al. Emissions: World has four times the work or one-third of the time. Nature 2020, 579, 25–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Science Based Targets. Science Based Targets Initiative. Available online: https://sciencebasedtargets.org/about-the-science-based-targets-initiative/ (accessed on 1 April 2020).
- Bataille, C.; Åhman, M.; Neuhoff, K.; Nilsson, L.J.; Fischedick, M.; Lechtenböhmer, S.; Solano-Rodriquez, B.; Denis-Ryan, A.; Stiebert, S.; Waisman, H.; et al. A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. J. Clean. Prod. 2018, 187, 960–973. [Google Scholar] [CrossRef] [Green Version]
- Rogelj, J.; Huppmann, D.; Krey, V.; Riahi, K.; Clarke, L.; Gidden, M.; Nicholls, Z.; Meinshausen, M. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 2019, 573, 357–363. [Google Scholar] [CrossRef]
- Sump, F.; Yi, S. Different Reasons for Different Responses: A Review of Incumbents’ Adaptation in Carbon-Intensive Industries. Organ. Environ. 2020. [Google Scholar] [CrossRef]
- Falter, W.; Langer, A.; Wesche, F.; Weze, S. Decarbonization strategies in converging chemical and energy markets. J. Bus. Chem. 2020, 17, 20–40. [Google Scholar] [CrossRef]
- Pilpola, S.; Arabzadeh, V.; Mikkola, J.; Lund, P.D. Analyzing National and Local Pathways to Carbon-Neutrality from Technology, Emissions, and Resilience Perspectives—Case of Finland. Energies 2019, 12, 949. [Google Scholar] [CrossRef] [Green Version]
- Detz, R.J.; van der Zwaan, B. Transitioning towards negative CO2 emissions. Energy Policy 2019, 133, 110938. [Google Scholar] [CrossRef]
- GNL Québec. Énergie Saguenay. Available online: https://energiesaguenay.com/en/ (accessed on 4 May 2020).
- Gazoduq. Gazoduq Project. Detailed Project Description. January 2020. Submitted to: The Impact Assessment Agency of Canada; Gazoduq Inc.: Montreal, QC, Canada, 2020. [Google Scholar]
- WSP. Projet Énergie Saguenay. Étude D’impact Environnemental. Version Finale; WSP Canada Inc.: Quebec, QC, Canada, 2019; p. 1132. [Google Scholar]
- WSP. Énergie Saguenay Project. Summary of the Environmental Impact Assessment; WSP Canada Inc.: Quebec, QC, Canada, 2019; p. 70. [Google Scholar]
- Bureau D’audiences Publiques sur L’environnement, BAPE. Projet de Construction d’un Complexe de Liquéfaction de Gaz Naturel À Saguenay. Available online: https://www.bape.gouv.qc.ca/fr/dossiers/projet-complexe-liquefaction-gaz-naturel-saguenay/ (accessed on 23 July 2020).
- Ministère de l’Environnement et de la Lutte contre les Changements Climatiques, MELCC. Environmental Assessment in Southern Quebec. Available online: http://www.environnement.gouv.qc.ca/evaluations/procedure-en.htm#process (accessed on 23 July 2020).
- In MELCC; The Carbon Market, A Green Economy Growth Tool! Available online: http://www.environnement.gouv.qc.ca/changementsclimatiques/marche-carbone_en.asp (accessed on 14 April 2020).
- Gouvernment of Quebec. Regulation Respecting A Cap-and-Trade System for Greenhouse Gas Emission Allowances; Chapitre Q-2, r. 46.1; Environment Quality Act, Gouvernment of Quebec, Eds.; Gouvernment of Quebec: Quebec City, QC, Canada, 2020. [Google Scholar]
- World Business Council for Sustainable Development and the World Resources Institute, WBCSD/WRI. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard, Revised ed.; WBCSD: Geneva, Switzerland; WRI: Washington, DC, USA, 2004; p. 114. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Global CCS Institute. Global Status of CCS 2019. Targeting Climate Change; Global CCS Institute: Melbourne, Australia, 2019; p. 85. [Google Scholar]
- CO2 Sciences and the Global CO2 Initiative. Global Roadmap for Implementing CO2 Utilization; The Global CO2 Initiative: Ann Arbor, MI, USA, 2016. [Google Scholar]
- Rahman, F.A.; Aziz, M.M.A.; Saidur, R.; Abu Bakar, W.A.W.; Hainin, M.R.; Putrajaya, R.; Hassan, N.A. Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev. 2017, 71, 112–126. [Google Scholar] [CrossRef]
- Rudin, S.N.F.M.; Muis, Z.; Hashim, H.; Ho, W.S. Overview of carbon reduction, capture, utilization and storage: Development of new framework. Chem. Eng. Trans. 2017, 56, 649–654. [Google Scholar] [CrossRef]
- IPCC. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; p. 442. [Google Scholar]
- Gouvernment of Quebec. Regulation Respecting Mandatory Reporting of Certain Emissions of Contaminants into the Atmosphere; Chapter Q-2, r. 15; Gouvernment of Quebec, Ed.; Gouvernment of Quebec: Québec, QC, Canada, 2020. [Google Scholar]
- Natural Resources Canada. Waste Heat Recovery and Upgrading. Available online: https://doi.org/10.1016/j.apenergy.2016.06.147 (accessed on 21 April 2020).
- Government of Alberta. Alberta Emission Offset System. Available online: https://www.alberta.ca/alberta-emission-offset-system.aspx (accessed on 5 May 2020).
- WBCSD/WRI. The Greenhouse Gas Protocol. The GHG Protocol for Project Accounting; WBCSD: Geneva, Switzerland; WRI: Washington, DC, USA, 2005; p. 144. [Google Scholar]
- Rajhansa, K.; Al Horr, Y. Role of Regional Carbon Markets in Article 6.2 of Paris Agreement; Global Carbon Council: Aldafna, Doha, Qatar, 2019. [Google Scholar]
- Chalmers, H.; Leach, M.; Lucquiaud, M.; Gibbins, J. Valuing flexible operation of power plants with CO2 capture. Energy Procedia 2009, 1, 4289–4296. [Google Scholar] [CrossRef] [Green Version]
- Marcus, A.; Aragon-Correa, J.A.; Pinkse, J. Firms, Regulatory Uncertainty, and the Natural Environment. Calif. Manag. Rev. 2011, 54, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Herzog, H.J. The economics of CO2 separation and capture. Technol. Elmsf. J. Frankl. Inst. J. Sci. Serv. Legis. Regul. Judic. Syst. 2000, 7, 13–24. [Google Scholar]
- International Association of Oil and Gas Producers, IOGP. The Potential for CCS and CCU in Europe. Report to the Thirty Second Meeting of the European Gas Regulatory Forum 5–6 June 2019; International Association of Oil and Gas Producers: London, UK, 2019. [Google Scholar]
- European Commission. CASE M.8480—PRAXAIR/LINDE. MERGER PROCEDURE REGULATION (EC) 139/2004. Article 8(2) Regulation (EC) 139/2004; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Centre International de Référence sur le Cycle de vie des Produits Procédés et Services, CIRAIG. Rapport Technique. Répartition des Émissions de GES du Cycle de vie Selon la Responasbilité de L’émetteur; CIRAIG: Montreal, QC, Canada, 2020. [Google Scholar]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Ranius, T.; Hämäläinen, A.; Egnell, G.; Olsson, B.; Eklöf, K.; Stendahl, J.; Rudolphi, J.; Sténs, A.; Felton, A. The effects of logging residue extraction for energy on ecosystem services and biodiversity: A synthesis. J. Environ. Manag. 2018, 209, 409–425. [Google Scholar] [CrossRef]
- Ho, D.P.; Ngo, H.H.; Guo, W. A mini review on renewable sources for biofuel. Bioresour. Technol. 2014, 169, 742–749. [Google Scholar] [CrossRef]
- Aviseo Conseil. La Filière de Production de Gaz Naturel Renouvelable au Québec. Impacts Économiques À L’horizon 2030 et Contribution À L’économie Circulaire; Aviseo Conseil: Montreal, QC, Canada, 2019. [Google Scholar]
- Biochar Boréalis. Biochar Boréalis Dans le Cadre de L’événement: Défis Industriels et Environnementaux de la Filière du Biochar au Québec. Available online: https://cribiq.qc.ca/content/file/filemanager/%C3%89v%C3%A8nements/BIOCHAR/Pr%C3%A9sentations/Andr%C3%A9%20Benoit-%20Biochar%20Bor%C3%A9alis.pdf (accessed on 31 July 2019).
- WSP and Deloitte. Production Québécoise de Gaz Naturel Renouvelable (GNR): Un Levier Pour la Transition Énergétique Évaluation du Potentiel Technico-Économique au Québec (2018–2030); WSP Canada Inc.: Montreal, QC, Canada; Deloitte S.E.N.C.R.L./s.r.l.: Toronton, ON, Canada, 2018. [Google Scholar]
- Alberta Environment. Quantification Protocol for Diversion of Biomass to Energy from Biomass Combustion Facilities; Version 1.0; Environmental Monitoring and Evaluation: Edmonton, AB, Canada, 2007. [Google Scholar]
- Government of Alberta. Quantification Protocol for Energy Generation from the Combustion of Biomass Waste; Version 2.0; Alberta Environment and Sustainable Resource Development: Edmonton, AB, Canada, 2014. [Google Scholar]
- Government of British Columbia. Greenhouse Gas Emission Offset Projects. Available online: https://www2.gov.bc.ca/gov/content/environment/climate-change/industry/offset-projects (accessed on 13 May 2020).
- Gouvernment of Quebec. Regulation Respecting the Quantity of Renewable Natural Gas to be Delivered by a Distributor. Act Respecting the Régie de L’énergie; Chapter R-6.01, s. 112, 1st. Par., Subpar. 4; Gouvernment of Quebec, Ed.; Gouvernment of Quebec: Quebec City, QC, Canada, 2020. [Google Scholar]
- Canadian Council of Forest Ministers. National Forestry Database. Wood supply. Available online: http://nfdp.ccfm.org/en/data/woodsupply.php (accessed on 20 May 2020).
- Parker, N.; Williams, R.; Dominguez-Faus, R.; Scheitrum, D. Renewable natural gas in California: An assessment of the technical and economic potential. Energy Policy 2017, 111, 235–245. [Google Scholar] [CrossRef]
- Campbell, J.; Herremans, I.M.; Kleffner, A. Barriers to achieving additionality in carbon offsets: A regulatory risk perspective. J. Environ. Plan. Manag. 2018, 61, 2570–2589. [Google Scholar] [CrossRef]
- UNFCCC. Afforestation and Reforestation Projects under the Clean Development Mechanism: A Reference Manual; Climate Change Secretariat (UNFCCC): Bonn, Germany, 2013; p. 76. [Google Scholar]
- IPCC. Forestry. In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2007; pp. 541–584. [Google Scholar]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.A.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 2018, 10, 2141–2194. [Google Scholar] [CrossRef] [Green Version]
- Veldman, J.W.; Aleman, J.C.; Alvarado, S.T.; Anderson, T.M.; Archibald, S.; Bond, W.J.; Boutton, T.W.; Buchmann, N.; Buisson, E.; Canadell, J.G.; et al. Comment on “The global tree restoration potential”. Science 2019, 366, eaay7976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change and Land. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Morecroft, M.D.; Duffield, S.; Harley, M.; Pearce-Higgins, J.W.; Stevens, N.; Watts, O.; Whitaker, J. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 2019, 366, eaaw9256. [Google Scholar] [CrossRef] [Green Version]
- Kurz, W.A.; Dymond, C.C.; White, T.M.; Stinson, G.; Shaw, C.H.; Rampley, G.J.; Smyth, C.; Simpson, B.N.; Neilson, E.T.; Trofymow, J.A.; et al. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Model. 2009, 220, 480–504. [Google Scholar] [CrossRef]
- Ministère des Forêts, de la Faune et des Parcs, MFFP. Inventaire Écoforestier. Available online: https://mffp.gouv.qc.ca/les-forets/inventaire-ecoforestier/ (accessed on 24 August 2019).
- Plante, F. Évaluation des Superficies Potentielles de Remise en Production des Strates Mal Régénérées de la Région 02. Rapport de L’étape 3; Les Entreprises Gauthier, Parent, Ltée, pour le compte du Bureau régional 02 du Ministère des Ressources naturelles; Gouvernement du Québec: Quebec City, QC, Canada, 2003. [Google Scholar]
- Tree Canada. Tree Canada Afforestaiton and Reforestation Protocol; Version 2.0; Tree Canada: Ottawa, ON, Cananda, 2015; p. 62. [Google Scholar]
- Gaboury, S.; Boucher, J.-F.; Villeneuve, C.; Lord, D.; Gagnon, R. Estimating the net carbon balance of boreal open woodland afforestation: A case-study in Québec’s closed-crown boreal forest. For. Ecol. Manag. 2009, 257, 483–494. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Dong, H.; Elsiddig, E.A.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Bureau de Mise en Marché des Bois, BMMB. Analyse de Rentabilité Économique des Plantations D’Épinette Noire et Blanche et de Pin Gris; Gouvernement du Québec: Quebec City, QC, Canada, 2014. [Google Scholar]
- Gorte, R.W. U.S. Tree Planting for Carbon Sequestration; Congressional Research Service: Washington, DC, USA, 2009. [Google Scholar]
- Torres, A.B.; Marchant, R.; Lovett, J.C.; Smart, J.C.R.; Tipper, R. Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation. Ecol. Econ. 2010, 69, 469–477. [Google Scholar] [CrossRef]
- Hurteau, M.D.; Hungate, B.A.; Koch, G.W. Accounting for risk in valuing forest carbon offsets. Carbon Balance Manag. 2009, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Hurteau, M.D.; North, M. Carbon recovery rates following different wildfire risk mitigation treatments. For. Ecol. Manag. 2010, 260, 930–937. [Google Scholar] [CrossRef]
- Chomitz, K. Evaluating Carbon Offsets from Forestry and Energy Projects (English); Policy, Research Working Paper no. WPS 2357; The World Bank: Washington, DC, USA, 2000. [Google Scholar]
- Ecosystem Marketplace. State of the Voluntary Carbon Markets 2019. Available online: https://www.forest-trends.org/sovcm2019/ (accessed on 24 August 2019).
- UNFCCC. Climate Neutral Now. Available online: https://unfccc.int/climate-action/climate-neutral-now (accessed on 24 August 2019).
- Canadian Standards Association, CSA. GHG CleanProjects® Registry. Available online: https://www.csaregistries.ca/cleanprojects/index_e.cfm (accessed on 6 May 2020).
- Trotignon, R. Combining cap-and-trade with offsets: Lessons from the EU-ETS. Clim. Policy 2012, 12, 273–287. [Google Scholar] [CrossRef]
- Nazifi, F. Modelling the price spread between EUA and CER carbon prices. Energy Policy 2013, 56, 434–445. [Google Scholar] [CrossRef]
- Hintermann, B.; Gronwald, M. Linking with Uncertainty: The Relationship Between EU ETS Pollution Permits and Kyoto Offsets. Environ. Resour. Econ. 2019, 74, 761–784. [Google Scholar] [CrossRef]
- International Organization for Standardization, ISO. ISO 14040:2006. Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faubert, P.; Bouchard, S.; Morin Chassé, R.; Côté, H.; Dessureault, P.-L.; Villeneuve, C. Achieving Carbon Neutrality for A Future Large Greenhouse Gas Emitter in Quebec, Canada: A Case Study. Atmosphere 2020, 11, 810. https://doi.org/10.3390/atmos11080810
Faubert P, Bouchard S, Morin Chassé R, Côté H, Dessureault P-L, Villeneuve C. Achieving Carbon Neutrality for A Future Large Greenhouse Gas Emitter in Quebec, Canada: A Case Study. Atmosphere. 2020; 11(8):810. https://doi.org/10.3390/atmos11080810
Chicago/Turabian StyleFaubert, Patrick, Sylvie Bouchard, Rémi Morin Chassé, Hélène Côté, Pierre-Luc Dessureault, and Claude Villeneuve. 2020. "Achieving Carbon Neutrality for A Future Large Greenhouse Gas Emitter in Quebec, Canada: A Case Study" Atmosphere 11, no. 8: 810. https://doi.org/10.3390/atmos11080810
APA StyleFaubert, P., Bouchard, S., Morin Chassé, R., Côté, H., Dessureault, P. -L., & Villeneuve, C. (2020). Achieving Carbon Neutrality for A Future Large Greenhouse Gas Emitter in Quebec, Canada: A Case Study. Atmosphere, 11(8), 810. https://doi.org/10.3390/atmos11080810